12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517 |
- // TR1 cmath -*- C++ -*-
- // Copyright (C) 2006-2015 Free Software Foundation, Inc.
- //
- // This file is part of the GNU ISO C++ Library. This library is free
- // software; you can redistribute it and/or modify it under the
- // terms of the GNU General Public License as published by the
- // Free Software Foundation; either version 3, or (at your option)
- // any later version.
- // This library is distributed in the hope that it will be useful,
- // but WITHOUT ANY WARRANTY; without even the implied warranty of
- // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- // GNU General Public License for more details.
- // Under Section 7 of GPL version 3, you are granted additional
- // permissions described in the GCC Runtime Library Exception, version
- // 3.1, as published by the Free Software Foundation.
- // You should have received a copy of the GNU General Public License and
- // a copy of the GCC Runtime Library Exception along with this program;
- // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
- // <http://www.gnu.org/licenses/>.
- /** @file tr1/cmath
- * This is a TR1 C++ Library header.
- */
- #ifndef _GLIBCXX_TR1_CMATH
- #define _GLIBCXX_TR1_CMATH 1
- #pragma GCC system_header
- #include <cmath>
- #ifdef _GLIBCXX_USE_C99_MATH_TR1
- #undef acosh
- #undef acoshf
- #undef acoshl
- #undef asinh
- #undef asinhf
- #undef asinhl
- #undef atanh
- #undef atanhf
- #undef atanhl
- #undef cbrt
- #undef cbrtf
- #undef cbrtl
- #undef copysign
- #undef copysignf
- #undef copysignl
- #undef erf
- #undef erff
- #undef erfl
- #undef erfc
- #undef erfcf
- #undef erfcl
- #undef exp2
- #undef exp2f
- #undef exp2l
- #undef expm1
- #undef expm1f
- #undef expm1l
- #undef fdim
- #undef fdimf
- #undef fdiml
- #undef fma
- #undef fmaf
- #undef fmal
- #undef fmax
- #undef fmaxf
- #undef fmaxl
- #undef fmin
- #undef fminf
- #undef fminl
- #undef hypot
- #undef hypotf
- #undef hypotl
- #undef ilogb
- #undef ilogbf
- #undef ilogbl
- #undef lgamma
- #undef lgammaf
- #undef lgammal
- #undef llrint
- #undef llrintf
- #undef llrintl
- #undef llround
- #undef llroundf
- #undef llroundl
- #undef log1p
- #undef log1pf
- #undef log1pl
- #undef log2
- #undef log2f
- #undef log2l
- #undef logb
- #undef logbf
- #undef logbl
- #undef lrint
- #undef lrintf
- #undef lrintl
- #undef lround
- #undef lroundf
- #undef lroundl
- #undef nan
- #undef nanf
- #undef nanl
- #undef nearbyint
- #undef nearbyintf
- #undef nearbyintl
- #undef nextafter
- #undef nextafterf
- #undef nextafterl
- #undef nexttoward
- #undef nexttowardf
- #undef nexttowardl
- #undef remainder
- #undef remainderf
- #undef remainderl
- #undef remquo
- #undef remquof
- #undef remquol
- #undef rint
- #undef rintf
- #undef rintl
- #undef round
- #undef roundf
- #undef roundl
- #undef scalbln
- #undef scalblnf
- #undef scalblnl
- #undef scalbn
- #undef scalbnf
- #undef scalbnl
- #undef tgamma
- #undef tgammaf
- #undef tgammal
- #undef trunc
- #undef truncf
- #undef truncl
- #endif
- namespace std _GLIBCXX_VISIBILITY(default)
- {
- namespace tr1
- {
- _GLIBCXX_BEGIN_NAMESPACE_VERSION
- #if _GLIBCXX_USE_C99_MATH_TR1
- // types
- using ::double_t;
- using ::float_t;
- // functions
- using ::acosh;
- using ::acoshf;
- using ::acoshl;
- using ::asinh;
- using ::asinhf;
- using ::asinhl;
- using ::atanh;
- using ::atanhf;
- using ::atanhl;
- using ::cbrt;
- using ::cbrtf;
- using ::cbrtl;
- using ::copysign;
- using ::copysignf;
- using ::copysignl;
- using ::erf;
- using ::erff;
- using ::erfl;
- using ::erfc;
- using ::erfcf;
- using ::erfcl;
- using ::exp2;
- using ::exp2f;
- using ::exp2l;
- using ::expm1;
- using ::expm1f;
- using ::expm1l;
- using ::fdim;
- using ::fdimf;
- using ::fdiml;
- using ::fma;
- using ::fmaf;
- using ::fmal;
- using ::fmax;
- using ::fmaxf;
- using ::fmaxl;
- using ::fmin;
- using ::fminf;
- using ::fminl;
- using ::hypot;
- using ::hypotf;
- using ::hypotl;
- using ::ilogb;
- using ::ilogbf;
- using ::ilogbl;
- using ::lgamma;
- using ::lgammaf;
- using ::lgammal;
- using ::llrint;
- using ::llrintf;
- using ::llrintl;
- using ::llround;
- using ::llroundf;
- using ::llroundl;
- using ::log1p;
- using ::log1pf;
- using ::log1pl;
- using ::log2;
- using ::log2f;
- using ::log2l;
- using ::logb;
- using ::logbf;
- using ::logbl;
- using ::lrint;
- using ::lrintf;
- using ::lrintl;
- using ::lround;
- using ::lroundf;
- using ::lroundl;
- using ::nan;
- using ::nanf;
- using ::nanl;
- using ::nearbyint;
- using ::nearbyintf;
- using ::nearbyintl;
- using ::nextafter;
- using ::nextafterf;
- using ::nextafterl;
- using ::nexttoward;
- using ::nexttowardf;
- using ::nexttowardl;
- using ::remainder;
- using ::remainderf;
- using ::remainderl;
- using ::remquo;
- using ::remquof;
- using ::remquol;
- using ::rint;
- using ::rintf;
- using ::rintl;
- using ::round;
- using ::roundf;
- using ::roundl;
- using ::scalbln;
- using ::scalblnf;
- using ::scalblnl;
- using ::scalbn;
- using ::scalbnf;
- using ::scalbnl;
- using ::tgamma;
- using ::tgammaf;
- using ::tgammal;
- using ::trunc;
- using ::truncf;
- using ::truncl;
- #endif
- #if _GLIBCXX_USE_C99_MATH
- #if !_GLIBCXX_USE_C99_FP_MACROS_DYNAMIC
- /// Function template definitions [8.16.3].
- template<typename _Tp>
- inline typename __gnu_cxx::__enable_if<__is_arithmetic<_Tp>::__value,
- int>::__type
- fpclassify(_Tp __f)
- {
- typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
- return __builtin_fpclassify(FP_NAN, FP_INFINITE, FP_NORMAL,
- FP_SUBNORMAL, FP_ZERO, __type(__f));
- }
- template<typename _Tp>
- inline typename __gnu_cxx::__enable_if<__is_arithmetic<_Tp>::__value,
- int>::__type
- isfinite(_Tp __f)
- {
- typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
- return __builtin_isfinite(__type(__f));
- }
- template<typename _Tp>
- inline typename __gnu_cxx::__enable_if<__is_arithmetic<_Tp>::__value,
- int>::__type
- isinf(_Tp __f)
- {
- typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
- return __builtin_isinf(__type(__f));
- }
- template<typename _Tp>
- inline typename __gnu_cxx::__enable_if<__is_arithmetic<_Tp>::__value,
- int>::__type
- isnan(_Tp __f)
- {
- typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
- return __builtin_isnan(__type(__f));
- }
- template<typename _Tp>
- inline typename __gnu_cxx::__enable_if<__is_arithmetic<_Tp>::__value,
- int>::__type
- isnormal(_Tp __f)
- {
- typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
- return __builtin_isnormal(__type(__f));
- }
- template<typename _Tp>
- inline typename __gnu_cxx::__enable_if<__is_arithmetic<_Tp>::__value,
- int>::__type
- signbit(_Tp __f)
- {
- typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
- return __builtin_signbit(__type(__f));
- }
- template<typename _Tp>
- inline typename __gnu_cxx::__enable_if<__is_arithmetic<_Tp>::__value,
- int>::__type
- isgreater(_Tp __f1, _Tp __f2)
- {
- typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
- return __builtin_isgreater(__type(__f1), __type(__f2));
- }
- template<typename _Tp>
- inline typename __gnu_cxx::__enable_if<__is_arithmetic<_Tp>::__value,
- int>::__type
- isgreaterequal(_Tp __f1, _Tp __f2)
- {
- typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
- return __builtin_isgreaterequal(__type(__f1), __type(__f2));
- }
- template<typename _Tp>
- inline typename __gnu_cxx::__enable_if<__is_arithmetic<_Tp>::__value,
- int>::__type
- isless(_Tp __f1, _Tp __f2)
- {
- typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
- return __builtin_isless(__type(__f1), __type(__f2));
- }
- template<typename _Tp>
- inline typename __gnu_cxx::__enable_if<__is_arithmetic<_Tp>::__value,
- int>::__type
- islessequal(_Tp __f1, _Tp __f2)
- {
- typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
- return __builtin_islessequal(__type(__f1), __type(__f2));
- }
- template<typename _Tp>
- inline typename __gnu_cxx::__enable_if<__is_arithmetic<_Tp>::__value,
- int>::__type
- islessgreater(_Tp __f1, _Tp __f2)
- {
- typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
- return __builtin_islessgreater(__type(__f1), __type(__f2));
- }
- template<typename _Tp>
- inline typename __gnu_cxx::__enable_if<__is_arithmetic<_Tp>::__value,
- int>::__type
- isunordered(_Tp __f1, _Tp __f2)
- {
- typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
- return __builtin_isunordered(__type(__f1), __type(__f2));
- }
- #endif
- #endif
- #if _GLIBCXX_USE_C99_MATH_TR1
- /// Additional overloads [8.16.4].
- using std::acos;
- #ifndef __CORRECT_ISO_CPP11_MATH_H_PROTO
- inline float
- acosh(float __x)
- { return __builtin_acoshf(__x); }
- inline long double
- acosh(long double __x)
- { return __builtin_acoshl(__x); }
- #endif
- template<typename _Tp>
- inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
- double>::__type
- acosh(_Tp __x)
- { return __builtin_acosh(__x); }
- using std::asin;
- #ifndef __CORRECT_ISO_CPP11_MATH_H_PROTO
- inline float
- asinh(float __x)
- { return __builtin_asinhf(__x); }
- inline long double
- asinh(long double __x)
- { return __builtin_asinhl(__x); }
- #endif
- template<typename _Tp>
- inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
- double>::__type
- asinh(_Tp __x)
- { return __builtin_asinh(__x); }
- using std::atan;
- using std::atan2;
- #ifndef __CORRECT_ISO_CPP11_MATH_H_PROTO
- inline float
- atanh(float __x)
- { return __builtin_atanhf(__x); }
- inline long double
- atanh(long double __x)
- { return __builtin_atanhl(__x); }
- #endif
- template<typename _Tp>
- inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
- double>::__type
- atanh(_Tp __x)
- { return __builtin_atanh(__x); }
- #ifndef __CORRECT_ISO_CPP11_MATH_H_PROTO
- inline float
- cbrt(float __x)
- { return __builtin_cbrtf(__x); }
- inline long double
- cbrt(long double __x)
- { return __builtin_cbrtl(__x); }
- #endif
- template<typename _Tp>
- inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
- double>::__type
- cbrt(_Tp __x)
- { return __builtin_cbrt(__x); }
- using std::ceil;
- #ifndef __CORRECT_ISO_CPP11_MATH_H_PROTO
- inline float
- copysign(float __x, float __y)
- { return __builtin_copysignf(__x, __y); }
- inline long double
- copysign(long double __x, long double __y)
- { return __builtin_copysignl(__x, __y); }
- #endif
- template<typename _Tp, typename _Up>
- inline typename __gnu_cxx::__promote_2<_Tp, _Up>::__type
- copysign(_Tp __x, _Up __y)
- {
- typedef typename __gnu_cxx::__promote_2<_Tp, _Up>::__type __type;
- return copysign(__type(__x), __type(__y));
- }
- using std::cos;
- using std::cosh;
- #ifndef __CORRECT_ISO_CPP11_MATH_H_PROTO
- inline float
- erf(float __x)
- { return __builtin_erff(__x); }
- inline long double
- erf(long double __x)
- { return __builtin_erfl(__x); }
- #endif
- template<typename _Tp>
- inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
- double>::__type
- erf(_Tp __x)
- { return __builtin_erf(__x); }
- #ifndef __CORRECT_ISO_CPP11_MATH_H_PROTO
- inline float
- erfc(float __x)
- { return __builtin_erfcf(__x); }
- inline long double
- erfc(long double __x)
- { return __builtin_erfcl(__x); }
- #endif
- template<typename _Tp>
- inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
- double>::__type
- erfc(_Tp __x)
- { return __builtin_erfc(__x); }
- using std::exp;
- #ifndef __CORRECT_ISO_CPP11_MATH_H_PROTO
- inline float
- exp2(float __x)
- { return __builtin_exp2f(__x); }
- inline long double
- exp2(long double __x)
- { return __builtin_exp2l(__x); }
- #endif
- template<typename _Tp>
- inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
- double>::__type
- exp2(_Tp __x)
- { return __builtin_exp2(__x); }
- #ifndef __CORRECT_ISO_CPP11_MATH_H_PROTO
- inline float
- expm1(float __x)
- { return __builtin_expm1f(__x); }
- inline long double
- expm1(long double __x)
- { return __builtin_expm1l(__x); }
- #endif
- template<typename _Tp>
- inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
- double>::__type
- expm1(_Tp __x)
- { return __builtin_expm1(__x); }
- // Note: we deal with fabs in a special way, because an using std::fabs
- // would bring in also the overloads for complex types, which in C++0x
- // mode have a different return type.
- // With __CORRECT_ISO_CPP_MATH_H_PROTO, math.h imports std::fabs in the
- // global namespace after the declarations of the float / double / long
- // double overloads but before the std::complex overloads.
- using ::fabs;
- #ifndef __CORRECT_ISO_CPP_MATH_H_PROTO
- #ifndef __CORRECT_ISO_CPP11_MATH_H_PROTO
- inline float
- fabs(float __x)
- { return __builtin_fabsf(__x); }
- inline long double
- fabs(long double __x)
- { return __builtin_fabsl(__x); }
- #endif
- template<typename _Tp>
- inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
- double>::__type
- fabs(_Tp __x)
- { return __builtin_fabs(__x); }
- #endif
- #ifndef __CORRECT_ISO_CPP11_MATH_H_PROTO
- inline float
- fdim(float __x, float __y)
- { return __builtin_fdimf(__x, __y); }
- inline long double
- fdim(long double __x, long double __y)
- { return __builtin_fdiml(__x, __y); }
- #endif
- template<typename _Tp, typename _Up>
- inline typename __gnu_cxx::__promote_2<_Tp, _Up>::__type
- fdim(_Tp __x, _Up __y)
- {
- typedef typename __gnu_cxx::__promote_2<_Tp, _Up>::__type __type;
- return fdim(__type(__x), __type(__y));
- }
- using std::floor;
- #ifndef __CORRECT_ISO_CPP11_MATH_H_PROTO
- inline float
- fma(float __x, float __y, float __z)
- { return __builtin_fmaf(__x, __y, __z); }
- inline long double
- fma(long double __x, long double __y, long double __z)
- { return __builtin_fmal(__x, __y, __z); }
- #endif
- template<typename _Tp, typename _Up, typename _Vp>
- inline typename __gnu_cxx::__promote_3<_Tp, _Up, _Vp>::__type
- fma(_Tp __x, _Up __y, _Vp __z)
- {
- typedef typename __gnu_cxx::__promote_3<_Tp, _Up, _Vp>::__type __type;
- return fma(__type(__x), __type(__y), __type(__z));
- }
- #ifndef __CORRECT_ISO_CPP11_MATH_H_PROTO
- inline float
- fmax(float __x, float __y)
- { return __builtin_fmaxf(__x, __y); }
- inline long double
- fmax(long double __x, long double __y)
- { return __builtin_fmaxl(__x, __y); }
- #endif
- template<typename _Tp, typename _Up>
- inline typename __gnu_cxx::__promote_2<_Tp, _Up>::__type
- fmax(_Tp __x, _Up __y)
- {
- typedef typename __gnu_cxx::__promote_2<_Tp, _Up>::__type __type;
- return fmax(__type(__x), __type(__y));
- }
- #ifndef __CORRECT_ISO_CPP11_MATH_H_PROTO
- inline float
- fmin(float __x, float __y)
- { return __builtin_fminf(__x, __y); }
- inline long double
- fmin(long double __x, long double __y)
- { return __builtin_fminl(__x, __y); }
- #endif
- template<typename _Tp, typename _Up>
- inline typename __gnu_cxx::__promote_2<_Tp, _Up>::__type
- fmin(_Tp __x, _Up __y)
- {
- typedef typename __gnu_cxx::__promote_2<_Tp, _Up>::__type __type;
- return fmin(__type(__x), __type(__y));
- }
- using std::fmod;
- using std::frexp;
- #ifndef __CORRECT_ISO_CPP11_MATH_H_PROTO
- inline float
- hypot(float __x, float __y)
- { return __builtin_hypotf(__x, __y); }
- inline long double
- hypot(long double __x, long double __y)
- { return __builtin_hypotl(__x, __y); }
- #endif
- template<typename _Tp, typename _Up>
- inline typename __gnu_cxx::__promote_2<_Tp, _Up>::__type
- hypot(_Tp __y, _Up __x)
- {
- typedef typename __gnu_cxx::__promote_2<_Tp, _Up>::__type __type;
- return hypot(__type(__y), __type(__x));
- }
- #ifndef __CORRECT_ISO_CPP11_MATH_H_PROTO
- inline int
- ilogb(float __x)
- { return __builtin_ilogbf(__x); }
- inline int
- ilogb(long double __x)
- { return __builtin_ilogbl(__x); }
- #endif
- template<typename _Tp>
- inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
- int>::__type
- ilogb(_Tp __x)
- { return __builtin_ilogb(__x); }
- using std::ldexp;
- #ifndef __CORRECT_ISO_CPP11_MATH_H_PROTO
- inline float
- lgamma(float __x)
- { return __builtin_lgammaf(__x); }
- inline long double
- lgamma(long double __x)
- { return __builtin_lgammal(__x); }
- #endif
- template<typename _Tp>
- inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
- double>::__type
- lgamma(_Tp __x)
- { return __builtin_lgamma(__x); }
- #ifndef __CORRECT_ISO_CPP11_MATH_H_PROTO
- inline long long
- llrint(float __x)
- { return __builtin_llrintf(__x); }
- inline long long
- llrint(long double __x)
- { return __builtin_llrintl(__x); }
- #endif
- template<typename _Tp>
- inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
- long long>::__type
- llrint(_Tp __x)
- { return __builtin_llrint(__x); }
- #ifndef __CORRECT_ISO_CPP11_MATH_H_PROTO
- inline long long
- llround(float __x)
- { return __builtin_llroundf(__x); }
- inline long long
- llround(long double __x)
- { return __builtin_llroundl(__x); }
- #endif
- template<typename _Tp>
- inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
- long long>::__type
- llround(_Tp __x)
- { return __builtin_llround(__x); }
- using std::log;
- using std::log10;
- #ifndef __CORRECT_ISO_CPP11_MATH_H_PROTO
- inline float
- log1p(float __x)
- { return __builtin_log1pf(__x); }
- inline long double
- log1p(long double __x)
- { return __builtin_log1pl(__x); }
- #endif
- template<typename _Tp>
- inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
- double>::__type
- log1p(_Tp __x)
- { return __builtin_log1p(__x); }
- // DR 568.
- #ifndef __CORRECT_ISO_CPP11_MATH_H_PROTO
- inline float
- log2(float __x)
- { return __builtin_log2f(__x); }
- inline long double
- log2(long double __x)
- { return __builtin_log2l(__x); }
- #endif
- template<typename _Tp>
- inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
- double>::__type
- log2(_Tp __x)
- { return __builtin_log2(__x); }
- #ifndef __CORRECT_ISO_CPP11_MATH_H_PROTO
- inline float
- logb(float __x)
- { return __builtin_logbf(__x); }
- inline long double
- logb(long double __x)
- { return __builtin_logbl(__x); }
- #endif
- template<typename _Tp>
- inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
- double>::__type
- logb(_Tp __x)
- {
- return __builtin_logb(__x);
- }
- #ifndef __CORRECT_ISO_CPP11_MATH_H_PROTO
- inline long
- lrint(float __x)
- { return __builtin_lrintf(__x); }
- inline long
- lrint(long double __x)
- { return __builtin_lrintl(__x); }
- #endif
- template<typename _Tp>
- inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
- long>::__type
- lrint(_Tp __x)
- { return __builtin_lrint(__x); }
- #ifndef __CORRECT_ISO_CPP11_MATH_H_PROTO
- inline long
- lround(float __x)
- { return __builtin_lroundf(__x); }
- inline long
- lround(long double __x)
- { return __builtin_lroundl(__x); }
- #endif
- template<typename _Tp>
- inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
- long>::__type
- lround(_Tp __x)
- { return __builtin_lround(__x); }
- #ifndef __CORRECT_ISO_CPP11_MATH_H_PROTO
- inline float
- nearbyint(float __x)
- { return __builtin_nearbyintf(__x); }
- inline long double
- nearbyint(long double __x)
- { return __builtin_nearbyintl(__x); }
- #endif
- template<typename _Tp>
- inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
- double>::__type
- nearbyint(_Tp __x)
- { return __builtin_nearbyint(__x); }
- #ifndef __CORRECT_ISO_CPP11_MATH_H_PROTO
- inline float
- nextafter(float __x, float __y)
- { return __builtin_nextafterf(__x, __y); }
- inline long double
- nextafter(long double __x, long double __y)
- { return __builtin_nextafterl(__x, __y); }
- #endif
- template<typename _Tp, typename _Up>
- inline typename __gnu_cxx::__promote_2<_Tp, _Up>::__type
- nextafter(_Tp __x, _Up __y)
- {
- typedef typename __gnu_cxx::__promote_2<_Tp, _Up>::__type __type;
- return nextafter(__type(__x), __type(__y));
- }
- #ifndef __CORRECT_ISO_CPP11_MATH_H_PROTO
- inline float
- nexttoward(float __x, long double __y)
- { return __builtin_nexttowardf(__x, __y); }
- inline long double
- nexttoward(long double __x, long double __y)
- { return __builtin_nexttowardl(__x, __y); }
- #endif
- template<typename _Tp>
- inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
- double>::__type
- nexttoward(_Tp __x, long double __y)
- { return __builtin_nexttoward(__x, __y); }
- #ifndef __CORRECT_ISO_CPP11_MATH_H_PROTO
- inline float
- remainder(float __x, float __y)
- { return __builtin_remainderf(__x, __y); }
- inline long double
- remainder(long double __x, long double __y)
- { return __builtin_remainderl(__x, __y); }
- #endif
- template<typename _Tp, typename _Up>
- inline typename __gnu_cxx::__promote_2<_Tp, _Up>::__type
- remainder(_Tp __x, _Up __y)
- {
- typedef typename __gnu_cxx::__promote_2<_Tp, _Up>::__type __type;
- return remainder(__type(__x), __type(__y));
- }
- #ifndef __CORRECT_ISO_CPP11_MATH_H_PROTO
- inline float
- remquo(float __x, float __y, int* __pquo)
- { return __builtin_remquof(__x, __y, __pquo); }
- inline long double
- remquo(long double __x, long double __y, int* __pquo)
- { return __builtin_remquol(__x, __y, __pquo); }
- #endif
- template<typename _Tp, typename _Up>
- inline typename __gnu_cxx::__promote_2<_Tp, _Up>::__type
- remquo(_Tp __x, _Up __y, int* __pquo)
- {
- typedef typename __gnu_cxx::__promote_2<_Tp, _Up>::__type __type;
- return remquo(__type(__x), __type(__y), __pquo);
- }
- #ifndef __CORRECT_ISO_CPP11_MATH_H_PROTO
- inline float
- rint(float __x)
- { return __builtin_rintf(__x); }
- inline long double
- rint(long double __x)
- { return __builtin_rintl(__x); }
- #endif
- template<typename _Tp>
- inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
- double>::__type
- rint(_Tp __x)
- { return __builtin_rint(__x); }
- #ifndef __CORRECT_ISO_CPP11_MATH_H_PROTO
- inline float
- round(float __x)
- { return __builtin_roundf(__x); }
- inline long double
- round(long double __x)
- { return __builtin_roundl(__x); }
- #endif
- template<typename _Tp>
- inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
- double>::__type
- round(_Tp __x)
- { return __builtin_round(__x); }
- #ifndef __CORRECT_ISO_CPP11_MATH_H_PROTO
- inline float
- scalbln(float __x, long __ex)
- { return __builtin_scalblnf(__x, __ex); }
- inline long double
- scalbln(long double __x, long __ex)
- { return __builtin_scalblnl(__x, __ex); }
- #endif
- template<typename _Tp>
- inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
- double>::__type
- scalbln(_Tp __x, long __ex)
- { return __builtin_scalbln(__x, __ex); }
-
- #ifndef __CORRECT_ISO_CPP11_MATH_H_PROTO
- inline float
- scalbn(float __x, int __ex)
- { return __builtin_scalbnf(__x, __ex); }
- inline long double
- scalbn(long double __x, int __ex)
- { return __builtin_scalbnl(__x, __ex); }
- #endif
- template<typename _Tp>
- inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
- double>::__type
- scalbn(_Tp __x, int __ex)
- { return __builtin_scalbn(__x, __ex); }
- using std::sin;
- using std::sinh;
- using std::sqrt;
- using std::tan;
- using std::tanh;
- #ifndef __CORRECT_ISO_CPP11_MATH_H_PROTO
- inline float
- tgamma(float __x)
- { return __builtin_tgammaf(__x); }
- inline long double
- tgamma(long double __x)
- { return __builtin_tgammal(__x); }
- #endif
- template<typename _Tp>
- inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
- double>::__type
- tgamma(_Tp __x)
- { return __builtin_tgamma(__x); }
-
- #ifndef __CORRECT_ISO_CPP11_MATH_H_PROTO
- inline float
- trunc(float __x)
- { return __builtin_truncf(__x); }
- inline long double
- trunc(long double __x)
- { return __builtin_truncl(__x); }
- #endif
- template<typename _Tp>
- inline typename __gnu_cxx::__enable_if<__is_integer<_Tp>::__value,
- double>::__type
- trunc(_Tp __x)
- { return __builtin_trunc(__x); }
- #endif
- _GLIBCXX_END_NAMESPACE_VERSION
- }
- }
- namespace std _GLIBCXX_VISIBILITY(default)
- {
- namespace tr1
- {
- _GLIBCXX_BEGIN_NAMESPACE_VERSION
- // DR 550. What should the return type of pow(float,int) be?
- // NB: C++0x and TR1 != C++03.
- // The std::tr1::pow(double, double) overload cannot be provided
- // here, because it would clash with ::pow(double,double) declared
- // in <math.h>, if <tr1/math.h> is included at the same time (raised
- // by the fix of PR c++/54537). It is not possible either to use the
- // using-declaration 'using ::pow;' here, because if the user code
- // has a 'using std::pow;', it would bring the pow(*,int) averloads
- // in the tr1 namespace, which is undesirable. Consequently, the
- // solution is to forward std::tr1::pow(double,double) to
- // std::pow(double,double) via the templatized version below. See
- // the discussion about this issue here:
- // http://gcc.gnu.org/ml/gcc-patches/2012-09/msg01278.html
- #ifndef __CORRECT_ISO_CPP11_MATH_H_PROTO
- inline float
- pow(float __x, float __y)
- { return std::pow(__x, __y); }
- inline long double
- pow(long double __x, long double __y)
- { return std::pow(__x, __y); }
- #endif
- template<typename _Tp, typename _Up>
- inline typename __gnu_cxx::__promote_2<_Tp, _Up>::__type
- pow(_Tp __x, _Up __y)
- {
- typedef typename __gnu_cxx::__promote_2<_Tp, _Up>::__type __type;
- return std::pow(__type(__x), __type(__y));
- }
- _GLIBCXX_END_NAMESPACE_VERSION
- }
- }
- #include <bits/stl_algobase.h>
- #include <limits>
- #include <tr1/type_traits>
- #include <tr1/gamma.tcc>
- #include <tr1/bessel_function.tcc>
- #include <tr1/beta_function.tcc>
- #include <tr1/ell_integral.tcc>
- #include <tr1/exp_integral.tcc>
- #include <tr1/hypergeometric.tcc>
- #include <tr1/legendre_function.tcc>
- #include <tr1/modified_bessel_func.tcc>
- #include <tr1/poly_hermite.tcc>
- #include <tr1/poly_laguerre.tcc>
- #include <tr1/riemann_zeta.tcc>
- namespace std _GLIBCXX_VISIBILITY(default)
- {
- namespace tr1
- {
- _GLIBCXX_BEGIN_NAMESPACE_VERSION
- /**
- * @defgroup tr1_math_spec_func Mathematical Special Functions
- * @ingroup numerics
- *
- * A collection of advanced mathematical special functions.
- * @{
- */
- inline float
- assoc_laguerref(unsigned int __n, unsigned int __m, float __x)
- { return __detail::__assoc_laguerre<float>(__n, __m, __x); }
- inline long double
- assoc_laguerrel(unsigned int __n, unsigned int __m, long double __x)
- {
- return __detail::__assoc_laguerre<long double>(__n, __m, __x);
- }
- /// 5.2.1.1 Associated Laguerre polynomials.
- template<typename _Tp>
- inline typename __gnu_cxx::__promote<_Tp>::__type
- assoc_laguerre(unsigned int __n, unsigned int __m, _Tp __x)
- {
- typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
- return __detail::__assoc_laguerre<__type>(__n, __m, __x);
- }
- inline float
- assoc_legendref(unsigned int __l, unsigned int __m, float __x)
- { return __detail::__assoc_legendre_p<float>(__l, __m, __x); }
- inline long double
- assoc_legendrel(unsigned int __l, unsigned int __m, long double __x)
- { return __detail::__assoc_legendre_p<long double>(__l, __m, __x); }
- /// 5.2.1.2 Associated Legendre functions.
- template<typename _Tp>
- inline typename __gnu_cxx::__promote<_Tp>::__type
- assoc_legendre(unsigned int __l, unsigned int __m, _Tp __x)
- {
- typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
- return __detail::__assoc_legendre_p<__type>(__l, __m, __x);
- }
- inline float
- betaf(float __x, float __y)
- { return __detail::__beta<float>(__x, __y); }
- inline long double
- betal(long double __x, long double __y)
- { return __detail::__beta<long double>(__x, __y); }
- /// 5.2.1.3 Beta functions.
- template<typename _Tpx, typename _Tpy>
- inline typename __gnu_cxx::__promote_2<_Tpx, _Tpy>::__type
- beta(_Tpx __x, _Tpy __y)
- {
- typedef typename __gnu_cxx::__promote_2<_Tpx, _Tpy>::__type __type;
- return __detail::__beta<__type>(__x, __y);
- }
- inline float
- comp_ellint_1f(float __k)
- { return __detail::__comp_ellint_1<float>(__k); }
- inline long double
- comp_ellint_1l(long double __k)
- { return __detail::__comp_ellint_1<long double>(__k); }
- /// 5.2.1.4 Complete elliptic integrals of the first kind.
- template<typename _Tp>
- inline typename __gnu_cxx::__promote<_Tp>::__type
- comp_ellint_1(_Tp __k)
- {
- typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
- return __detail::__comp_ellint_1<__type>(__k);
- }
- inline float
- comp_ellint_2f(float __k)
- { return __detail::__comp_ellint_2<float>(__k); }
- inline long double
- comp_ellint_2l(long double __k)
- { return __detail::__comp_ellint_2<long double>(__k); }
- /// 5.2.1.5 Complete elliptic integrals of the second kind.
- template<typename _Tp>
- inline typename __gnu_cxx::__promote<_Tp>::__type
- comp_ellint_2(_Tp __k)
- {
- typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
- return __detail::__comp_ellint_2<__type>(__k);
- }
- inline float
- comp_ellint_3f(float __k, float __nu)
- { return __detail::__comp_ellint_3<float>(__k, __nu); }
- inline long double
- comp_ellint_3l(long double __k, long double __nu)
- { return __detail::__comp_ellint_3<long double>(__k, __nu); }
- /// 5.2.1.6 Complete elliptic integrals of the third kind.
- template<typename _Tp, typename _Tpn>
- inline typename __gnu_cxx::__promote_2<_Tp, _Tpn>::__type
- comp_ellint_3(_Tp __k, _Tpn __nu)
- {
- typedef typename __gnu_cxx::__promote_2<_Tp, _Tpn>::__type __type;
- return __detail::__comp_ellint_3<__type>(__k, __nu);
- }
- inline float
- conf_hypergf(float __a, float __c, float __x)
- { return __detail::__conf_hyperg<float>(__a, __c, __x); }
- inline long double
- conf_hypergl(long double __a, long double __c, long double __x)
- { return __detail::__conf_hyperg<long double>(__a, __c, __x); }
- /// 5.2.1.7 Confluent hypergeometric functions.
- template<typename _Tpa, typename _Tpc, typename _Tp>
- inline typename __gnu_cxx::__promote_3<_Tpa, _Tpc, _Tp>::__type
- conf_hyperg(_Tpa __a, _Tpc __c, _Tp __x)
- {
- typedef typename __gnu_cxx::__promote_3<_Tpa, _Tpc, _Tp>::__type __type;
- return __detail::__conf_hyperg<__type>(__a, __c, __x);
- }
- inline float
- cyl_bessel_if(float __nu, float __x)
- { return __detail::__cyl_bessel_i<float>(__nu, __x); }
- inline long double
- cyl_bessel_il(long double __nu, long double __x)
- { return __detail::__cyl_bessel_i<long double>(__nu, __x); }
- /// 5.2.1.8 Regular modified cylindrical Bessel functions.
- template<typename _Tpnu, typename _Tp>
- inline typename __gnu_cxx::__promote_2<_Tpnu, _Tp>::__type
- cyl_bessel_i(_Tpnu __nu, _Tp __x)
- {
- typedef typename __gnu_cxx::__promote_2<_Tpnu, _Tp>::__type __type;
- return __detail::__cyl_bessel_i<__type>(__nu, __x);
- }
- inline float
- cyl_bessel_jf(float __nu, float __x)
- { return __detail::__cyl_bessel_j<float>(__nu, __x); }
- inline long double
- cyl_bessel_jl(long double __nu, long double __x)
- { return __detail::__cyl_bessel_j<long double>(__nu, __x); }
- /// 5.2.1.9 Cylindrical Bessel functions (of the first kind).
- template<typename _Tpnu, typename _Tp>
- inline typename __gnu_cxx::__promote_2<_Tpnu, _Tp>::__type
- cyl_bessel_j(_Tpnu __nu, _Tp __x)
- {
- typedef typename __gnu_cxx::__promote_2<_Tpnu, _Tp>::__type __type;
- return __detail::__cyl_bessel_j<__type>(__nu, __x);
- }
- inline float
- cyl_bessel_kf(float __nu, float __x)
- { return __detail::__cyl_bessel_k<float>(__nu, __x); }
- inline long double
- cyl_bessel_kl(long double __nu, long double __x)
- { return __detail::__cyl_bessel_k<long double>(__nu, __x); }
- /// 5.2.1.10 Irregular modified cylindrical Bessel functions.
- template<typename _Tpnu, typename _Tp>
- inline typename __gnu_cxx::__promote_2<_Tpnu, _Tp>::__type
- cyl_bessel_k(_Tpnu __nu, _Tp __x)
- {
- typedef typename __gnu_cxx::__promote_2<_Tpnu, _Tp>::__type __type;
- return __detail::__cyl_bessel_k<__type>(__nu, __x);
- }
- inline float
- cyl_neumannf(float __nu, float __x)
- { return __detail::__cyl_neumann_n<float>(__nu, __x); }
- inline long double
- cyl_neumannl(long double __nu, long double __x)
- { return __detail::__cyl_neumann_n<long double>(__nu, __x); }
- /// 5.2.1.11 Cylindrical Neumann functions.
- template<typename _Tpnu, typename _Tp>
- inline typename __gnu_cxx::__promote_2<_Tpnu, _Tp>::__type
- cyl_neumann(_Tpnu __nu, _Tp __x)
- {
- typedef typename __gnu_cxx::__promote_2<_Tpnu, _Tp>::__type __type;
- return __detail::__cyl_neumann_n<__type>(__nu, __x);
- }
- inline float
- ellint_1f(float __k, float __phi)
- { return __detail::__ellint_1<float>(__k, __phi); }
- inline long double
- ellint_1l(long double __k, long double __phi)
- { return __detail::__ellint_1<long double>(__k, __phi); }
- /// 5.2.1.12 Incomplete elliptic integrals of the first kind.
- template<typename _Tp, typename _Tpp>
- inline typename __gnu_cxx::__promote_2<_Tp, _Tpp>::__type
- ellint_1(_Tp __k, _Tpp __phi)
- {
- typedef typename __gnu_cxx::__promote_2<_Tp, _Tpp>::__type __type;
- return __detail::__ellint_1<__type>(__k, __phi);
- }
- inline float
- ellint_2f(float __k, float __phi)
- { return __detail::__ellint_2<float>(__k, __phi); }
- inline long double
- ellint_2l(long double __k, long double __phi)
- { return __detail::__ellint_2<long double>(__k, __phi); }
- /// 5.2.1.13 Incomplete elliptic integrals of the second kind.
- template<typename _Tp, typename _Tpp>
- inline typename __gnu_cxx::__promote_2<_Tp, _Tpp>::__type
- ellint_2(_Tp __k, _Tpp __phi)
- {
- typedef typename __gnu_cxx::__promote_2<_Tp, _Tpp>::__type __type;
- return __detail::__ellint_2<__type>(__k, __phi);
- }
- inline float
- ellint_3f(float __k, float __nu, float __phi)
- { return __detail::__ellint_3<float>(__k, __nu, __phi); }
- inline long double
- ellint_3l(long double __k, long double __nu, long double __phi)
- { return __detail::__ellint_3<long double>(__k, __nu, __phi); }
- /// 5.2.1.14 Incomplete elliptic integrals of the third kind.
- template<typename _Tp, typename _Tpn, typename _Tpp>
- inline typename __gnu_cxx::__promote_3<_Tp, _Tpn, _Tpp>::__type
- ellint_3(_Tp __k, _Tpn __nu, _Tpp __phi)
- {
- typedef typename __gnu_cxx::__promote_3<_Tp, _Tpn, _Tpp>::__type __type;
- return __detail::__ellint_3<__type>(__k, __nu, __phi);
- }
- inline float
- expintf(float __x)
- { return __detail::__expint<float>(__x); }
- inline long double
- expintl(long double __x)
- { return __detail::__expint<long double>(__x); }
- /// 5.2.1.15 Exponential integrals.
- template<typename _Tp>
- inline typename __gnu_cxx::__promote<_Tp>::__type
- expint(_Tp __x)
- {
- typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
- return __detail::__expint<__type>(__x);
- }
- inline float
- hermitef(unsigned int __n, float __x)
- { return __detail::__poly_hermite<float>(__n, __x); }
- inline long double
- hermitel(unsigned int __n, long double __x)
- { return __detail::__poly_hermite<long double>(__n, __x); }
- /// 5.2.1.16 Hermite polynomials.
- template<typename _Tp>
- inline typename __gnu_cxx::__promote<_Tp>::__type
- hermite(unsigned int __n, _Tp __x)
- {
- typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
- return __detail::__poly_hermite<__type>(__n, __x);
- }
- inline float
- hypergf(float __a, float __b, float __c, float __x)
- { return __detail::__hyperg<float>(__a, __b, __c, __x); }
- inline long double
- hypergl(long double __a, long double __b, long double __c, long double __x)
- { return __detail::__hyperg<long double>(__a, __b, __c, __x); }
- /// 5.2.1.17 Hypergeometric functions.
- template<typename _Tpa, typename _Tpb, typename _Tpc, typename _Tp>
- inline typename __gnu_cxx::__promote_4<_Tpa, _Tpb, _Tpc, _Tp>::__type
- hyperg(_Tpa __a, _Tpb __b, _Tpc __c, _Tp __x)
- {
- typedef typename __gnu_cxx::__promote_4<_Tpa, _Tpb, _Tpc, _Tp>::__type __type;
- return __detail::__hyperg<__type>(__a, __b, __c, __x);
- }
- inline float
- laguerref(unsigned int __n, float __x)
- { return __detail::__laguerre<float>(__n, __x); }
- inline long double
- laguerrel(unsigned int __n, long double __x)
- { return __detail::__laguerre<long double>(__n, __x); }
- /// 5.2.1.18 Laguerre polynomials.
- template<typename _Tp>
- inline typename __gnu_cxx::__promote<_Tp>::__type
- laguerre(unsigned int __n, _Tp __x)
- {
- typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
- return __detail::__laguerre<__type>(__n, __x);
- }
- inline float
- legendref(unsigned int __n, float __x)
- { return __detail::__poly_legendre_p<float>(__n, __x); }
- inline long double
- legendrel(unsigned int __n, long double __x)
- { return __detail::__poly_legendre_p<long double>(__n, __x); }
- /// 5.2.1.19 Legendre polynomials.
- template<typename _Tp>
- inline typename __gnu_cxx::__promote<_Tp>::__type
- legendre(unsigned int __n, _Tp __x)
- {
- typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
- return __detail::__poly_legendre_p<__type>(__n, __x);
- }
- inline float
- riemann_zetaf(float __x)
- { return __detail::__riemann_zeta<float>(__x); }
- inline long double
- riemann_zetal(long double __x)
- { return __detail::__riemann_zeta<long double>(__x); }
- /// 5.2.1.20 Riemann zeta function.
- template<typename _Tp>
- inline typename __gnu_cxx::__promote<_Tp>::__type
- riemann_zeta(_Tp __x)
- {
- typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
- return __detail::__riemann_zeta<__type>(__x);
- }
- inline float
- sph_besself(unsigned int __n, float __x)
- { return __detail::__sph_bessel<float>(__n, __x); }
- inline long double
- sph_bessell(unsigned int __n, long double __x)
- { return __detail::__sph_bessel<long double>(__n, __x); }
- /// 5.2.1.21 Spherical Bessel functions.
- template<typename _Tp>
- inline typename __gnu_cxx::__promote<_Tp>::__type
- sph_bessel(unsigned int __n, _Tp __x)
- {
- typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
- return __detail::__sph_bessel<__type>(__n, __x);
- }
- inline float
- sph_legendref(unsigned int __l, unsigned int __m, float __theta)
- { return __detail::__sph_legendre<float>(__l, __m, __theta); }
- inline long double
- sph_legendrel(unsigned int __l, unsigned int __m, long double __theta)
- { return __detail::__sph_legendre<long double>(__l, __m, __theta); }
- /// 5.2.1.22 Spherical associated Legendre functions.
- template<typename _Tp>
- inline typename __gnu_cxx::__promote<_Tp>::__type
- sph_legendre(unsigned int __l, unsigned int __m, _Tp __theta)
- {
- typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
- return __detail::__sph_legendre<__type>(__l, __m, __theta);
- }
- inline float
- sph_neumannf(unsigned int __n, float __x)
- { return __detail::__sph_neumann<float>(__n, __x); }
- inline long double
- sph_neumannl(unsigned int __n, long double __x)
- { return __detail::__sph_neumann<long double>(__n, __x); }
- /// 5.2.1.23 Spherical Neumann functions.
- template<typename _Tp>
- inline typename __gnu_cxx::__promote<_Tp>::__type
- sph_neumann(unsigned int __n, _Tp __x)
- {
- typedef typename __gnu_cxx::__promote<_Tp>::__type __type;
- return __detail::__sph_neumann<__type>(__n, __x);
- }
- /* @} */ // tr1_math_spec_func
- _GLIBCXX_END_NAMESPACE_VERSION
- }
- }
- #endif // _GLIBCXX_TR1_CMATH
|