/* * Copyright 2013 Andrew Smith * Copyright 2013-2015 Con Kolivas * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the Free * Software Foundation; either version 3 of the License, or (at your option) * any later version. See COPYING for more details. */ #include "config.h" #include #include #include #include #include #include #include #include #include #include "compat.h" #include "miner.h" #include "usbutils.h" #include "driver-bflsc.h" int opt_bflsc_overheat = BFLSC_TEMP_OVERHEAT; static const char *blank = ""; static enum driver_version drv_ver(struct cgpu_info *bflsc, const char *ver) { char *tmp; if (strstr(ver, "1.0.0")) return BFLSC_DRV1; if (strstr(ver, "1.0.") || strstr(ver, "1.1.")) { applog(LOG_WARNING, "%s detect (%s) Warning assuming firmware '%s' is Ver1", bflsc->drv->dname, bflsc->device_path, ver); return BFLSC_DRV1; } if (strstr(ver, "1.2.")) return BFLSC_DRV2; tmp = str_text((char *)ver); applog(LOG_INFO, "%s detect (%s) Warning unknown firmware '%s' using Ver2", bflsc->drv->dname, bflsc->device_path, tmp); free(tmp); return BFLSC_DRV2; } static void xlinkstr(char *xlink, size_t siz, int dev, struct bflsc_info *sc_info) { if (dev > 0) snprintf(xlink, siz, " x-%d", dev); else { if (sc_info->sc_count > 1) strcpy(xlink, " master"); else *xlink = '\0'; } } static void bflsc_applog(struct cgpu_info *bflsc, int dev, enum usb_cmds cmd, int amount, int err) { struct bflsc_info *sc_info = (struct bflsc_info *)(bflsc->device_data); char xlink[17]; xlinkstr(xlink, sizeof(xlink), dev, sc_info); usb_applog(bflsc, cmd, xlink, amount, err); } // Break an input up into lines with LFs removed // false means an error, but if *lines > 0 then data was also found // error would be no data or missing LF at the end static bool tolines(struct cgpu_info *bflsc, int dev, char *buf, int *lines, char ***items, enum usb_cmds cmd) { bool ok = false; char *ptr; #define p_lines (*lines) #define p_items (*items) p_lines = 0; p_items = NULL; if (!buf || !(*buf)) { applog(LOG_DEBUG, "USB: %s%i: (%d) empty %s", bflsc->drv->name, bflsc->device_id, dev, usb_cmdname(cmd)); return ok; } ptr = strdup(buf); while (ptr && *ptr) { p_items = cgrealloc(p_items, ++p_lines * sizeof(*p_items)); p_items[p_lines-1] = ptr; ptr = strchr(ptr, '\n'); if (ptr) *(ptr++) = '\0'; else { applog(LOG_DEBUG, "USB: %s%i: (%d) missing lf(s) in %s", bflsc->drv->name, bflsc->device_id, dev, usb_cmdname(cmd)); return ok; } } ok = true; return ok; } static void freetolines(int *lines, char ***items) { if (*lines > 0) { free(**items); free(*items); } *lines = 0; *items = NULL; } enum breakmode { NOCOLON, ONECOLON, ALLCOLON // Temperature uses this }; // Break down a single line into 'fields' // 'lf' will be a pointer to the final LF if it is there (or NULL) // firstname will be the allocated buf copy pointer which is also // the string before ':' for ONECOLON and ALLCOLON // If any string is missing the ':' when it was expected, false is returned static bool breakdown(enum breakmode mode, char *buf, int *count, char **firstname, char ***fields, char **lf) { char *ptr, *colon, *comma; bool ok = false; #define p_count (*count) #define p_firstname (*firstname) #define p_fields (*fields) #define p_lf (*lf) p_count = 0; p_firstname = NULL; p_fields = NULL; p_lf = NULL; if (!buf || !(*buf)) return ok; ptr = p_firstname = strdup(buf); p_lf = strchr(p_firstname, '\n'); if (mode == ONECOLON) { colon = strchr(ptr, ':'); if (colon) { ptr = colon; *(ptr++) = '\0'; } else return ok; } while (ptr && *ptr) { if (mode == ALLCOLON) { colon = strchr(ptr, ':'); if (colon) ptr = colon + 1; else return ok; } comma = strchr(ptr, ','); if (comma) *(comma++) = '\0'; p_fields = cgrealloc(p_fields, ++p_count * sizeof(*p_fields)); p_fields[p_count-1] = ptr; ptr = comma; } ok = true; return ok; } static void freebreakdown(int *count, char **firstname, char ***fields) { if (*firstname) free(*firstname); if (*count > 0) free(*fields); *count = 0; *firstname = NULL; *fields = NULL; } static bool isokerr(int err, char *buf, int amount) { if (err < 0 || amount < (int)BFLSC_OK_LEN) return false; else { if (strstr(buf, BFLSC_ANERR)) { applog(LOG_INFO, "BFLSC not ok err: %s", buf); return false; } else return true; } } // send+receive dual stage - always single line replies static int send_recv_ds(struct cgpu_info *bflsc, int dev, int *stage, bool *sent, int *amount, char *send1, int send1_len, enum usb_cmds send1_cmd, enum usb_cmds recv1_cmd, char *send2, int send2_len, enum usb_cmds send2_cmd, enum usb_cmds recv2_cmd, char *recv, int recv_siz) { struct DataForwardToChain data; int len, err, tried; if (dev == 0) { usb_buffer_clear(bflsc); *stage = 1; *sent = false; err = usb_write(bflsc, send1, send1_len, amount, send1_cmd); if (err < 0 || *amount < send1_len) return err; *sent = true; err = usb_read_nl(bflsc, recv, recv_siz, amount, recv1_cmd); if (!isokerr(err, recv, *amount)) return err; usb_buffer_clear(bflsc); *stage = 2; *sent = false; err = usb_write(bflsc, send2, send2_len, amount, send2_cmd); if (err < 0 || *amount < send2_len) return err; *sent = true; err = usb_read_nl(bflsc, recv, recv_siz, amount, recv2_cmd); return err; } data.header = BFLSC_XLINKHDR; data.deviceAddress = (uint8_t)dev; tried = 0; while (tried++ < 3) { data.payloadSize = send1_len; memcpy(data.payloadData, send1, send1_len); len = DATAFORWARDSIZE(data); usb_buffer_clear(bflsc); *stage = 1; *sent = false; err = usb_write(bflsc, (char *)&data, len, amount, send1_cmd); if (err < 0 || *amount < send1_len) return err; *sent = true; err = usb_read_nl(bflsc, recv, recv_siz, amount, recv1_cmd); if (err != LIBUSB_SUCCESS) return err; // x-link timeout? - try again? if (strstr(recv, BFLSC_XTIMEOUT)) continue; if (!isokerr(err, recv, *amount)) return err; data.payloadSize = send2_len; memcpy(data.payloadData, send2, send2_len); len = DATAFORWARDSIZE(data); usb_buffer_clear(bflsc); *stage = 2; *sent = false; err = usb_write(bflsc, (char *)&data, len, amount, send2_cmd); if (err < 0 || *amount < send2_len) return err; *sent = true; err = usb_read_nl(bflsc, recv, recv_siz, amount, recv2_cmd); if (err != LIBUSB_SUCCESS) return err; // x-link timeout? - try again? if (strstr(recv, BFLSC_XTIMEOUT)) continue; // SUCCESS - return it break; } return err; } #define READ_OK true #define READ_NL false // send+receive single stage static int send_recv_ss(struct cgpu_info *bflsc, int dev, bool *sent, int *amount, char *send, int send_len, enum usb_cmds send_cmd, char *recv, int recv_siz, enum usb_cmds recv_cmd, bool read_ok) { struct DataForwardToChain data; int len, err, tried; if (dev == 0) { usb_buffer_clear(bflsc); *sent = false; err = usb_write(bflsc, send, send_len, amount, send_cmd); if (err < 0 || *amount < send_len) { // N.B. thus !(*sent) directly implies err < 0 or *amount < send_len return err; } *sent = true; if (read_ok == READ_OK) err = usb_read_ok(bflsc, recv, recv_siz, amount, recv_cmd); else err = usb_read_nl(bflsc, recv, recv_siz, amount, recv_cmd); return err; } data.header = BFLSC_XLINKHDR; data.deviceAddress = (uint8_t)dev; data.payloadSize = send_len; memcpy(data.payloadData, send, send_len); len = DATAFORWARDSIZE(data); tried = 0; while (tried++ < 3) { usb_buffer_clear(bflsc); *sent = false; err = usb_write(bflsc, (char *)&data, len, amount, recv_cmd); if (err < 0 || *amount < send_len) return err; *sent = true; if (read_ok == READ_OK) err = usb_read_ok(bflsc, recv, recv_siz, amount, recv_cmd); else err = usb_read_nl(bflsc, recv, recv_siz, amount, recv_cmd); if (err != LIBUSB_SUCCESS && err != LIBUSB_ERROR_TIMEOUT) return err; // read_ok can err timeout if it's looking for OK // TODO: add a usb_read() option to spot the ERR: and convert end=OK to just // x-link timeout? - try again? if ((err == LIBUSB_SUCCESS || (read_ok == READ_OK && err == LIBUSB_ERROR_TIMEOUT)) && strstr(recv, BFLSC_XTIMEOUT)) continue; // SUCCESS or TIMEOUT - return it break; } return err; } static int write_to_dev(struct cgpu_info *bflsc, int dev, char *buf, int buflen, int *amount, enum usb_cmds cmd) { struct DataForwardToChain data; int len; /* * The protocol is syncronous so any previous excess can be * discarded and assumed corrupt data or failed USB transfers */ usb_buffer_clear(bflsc); if (dev == 0) return usb_write(bflsc, buf, buflen, amount, cmd); data.header = BFLSC_XLINKHDR; data.deviceAddress = (uint8_t)dev; data.payloadSize = buflen; memcpy(data.payloadData, buf, buflen); len = DATAFORWARDSIZE(data); return usb_write(bflsc, (char *)&data, len, amount, cmd); } static void bflsc_send_flush_work(struct cgpu_info *bflsc, int dev) { char buf[BFLSC_BUFSIZ+1]; int err, amount; bool sent; // Device is gone if (bflsc->usbinfo.nodev) return; mutex_lock(&bflsc->device_mutex); err = send_recv_ss(bflsc, dev, &sent, &amount, BFLSC_QFLUSH, BFLSC_QFLUSH_LEN, C_QUEFLUSH, buf, sizeof(buf)-1, C_QUEFLUSHREPLY, READ_NL); mutex_unlock(&bflsc->device_mutex); if (!sent) bflsc_applog(bflsc, dev, C_QUEFLUSH, amount, err); else { // TODO: do we care if we don't get 'OK'? (always will in normal processing) } } /* return True = attempted usb_read_ok() * set ignore to true means no applog/ignore errors */ static bool bflsc_qres(struct cgpu_info *bflsc, char *buf, size_t bufsiz, int dev, int *err, int *amount, bool ignore) { bool readok = false; mutex_lock(&(bflsc->device_mutex)); *err = send_recv_ss(bflsc, dev, &readok, amount, BFLSC_QRES, BFLSC_QRES_LEN, C_REQUESTRESULTS, buf, bufsiz-1, C_GETRESULTS, READ_OK); mutex_unlock(&(bflsc->device_mutex)); if (!readok) { if (!ignore) bflsc_applog(bflsc, dev, C_REQUESTRESULTS, *amount, *err); // TODO: do what? flag as dead device? // count how many times it has happened and reset/fail it // or even make sure it is all x-link and that means device // has failed after some limit of this? // of course all other I/O must also be failing ... } else { if (*err < 0 || *amount < 1) { if (!ignore) bflsc_applog(bflsc, dev, C_GETRESULTS, *amount, *err); // TODO: do what? ... see above } } return readok; } static void __bflsc_initialise(struct cgpu_info *bflsc) { int err, interface; // TODO: does x-link bypass the other device FTDI? (I think it does) // So no initialisation required except for the master device? if (bflsc->usbinfo.nodev) return; interface = usb_interface(bflsc); // Reset err = usb_transfer(bflsc, FTDI_TYPE_OUT, FTDI_REQUEST_RESET, FTDI_VALUE_RESET, interface, C_RESET); applog(LOG_DEBUG, "%s%i: reset got err %d", bflsc->drv->name, bflsc->device_id, err); if (bflsc->usbinfo.nodev) return; usb_ftdi_set_latency(bflsc); if (bflsc->usbinfo.nodev) return; // Set data control err = usb_transfer(bflsc, FTDI_TYPE_OUT, FTDI_REQUEST_DATA, FTDI_VALUE_DATA_BAS, interface, C_SETDATA); applog(LOG_DEBUG, "%s%i: setdata got err %d", bflsc->drv->name, bflsc->device_id, err); if (bflsc->usbinfo.nodev) return; // Set the baud err = usb_transfer(bflsc, FTDI_TYPE_OUT, FTDI_REQUEST_BAUD, FTDI_VALUE_BAUD_BAS, (FTDI_INDEX_BAUD_BAS & 0xff00) | interface, C_SETBAUD); applog(LOG_DEBUG, "%s%i: setbaud got err %d", bflsc->drv->name, bflsc->device_id, err); if (bflsc->usbinfo.nodev) return; // Set Flow Control err = usb_transfer(bflsc, FTDI_TYPE_OUT, FTDI_REQUEST_FLOW, FTDI_VALUE_FLOW, interface, C_SETFLOW); applog(LOG_DEBUG, "%s%i: setflowctrl got err %d", bflsc->drv->name, bflsc->device_id, err); if (bflsc->usbinfo.nodev) return; // Set Modem Control err = usb_transfer(bflsc, FTDI_TYPE_OUT, FTDI_REQUEST_MODEM, FTDI_VALUE_MODEM, interface, C_SETMODEM); applog(LOG_DEBUG, "%s%i: setmodemctrl got err %d", bflsc->drv->name, bflsc->device_id, err); if (bflsc->usbinfo.nodev) return; // Clear any sent data err = usb_transfer(bflsc, FTDI_TYPE_OUT, FTDI_REQUEST_RESET, FTDI_VALUE_PURGE_TX, interface, C_PURGETX); applog(LOG_DEBUG, "%s%i: purgetx got err %d", bflsc->drv->name, bflsc->device_id, err); if (bflsc->usbinfo.nodev) return; // Clear any received data err = usb_transfer(bflsc, FTDI_TYPE_OUT, FTDI_REQUEST_RESET, FTDI_VALUE_PURGE_RX, interface, C_PURGERX); applog(LOG_DEBUG, "%s%i: purgerx got err %d", bflsc->drv->name, bflsc->device_id, err); if (!bflsc->cutofftemp) bflsc->cutofftemp = opt_bflsc_overheat; } static void bflsc_initialise(struct cgpu_info *bflsc) { struct bflsc_info *sc_info = (struct bflsc_info *)(bflsc->device_data); char buf[BFLSC_BUFSIZ+1]; int err, amount; int dev; mutex_lock(&(bflsc->device_mutex)); __bflsc_initialise(bflsc); mutex_unlock(&(bflsc->device_mutex)); for (dev = 0; dev < sc_info->sc_count; dev++) { bflsc_send_flush_work(bflsc, dev); bflsc_qres(bflsc, buf, sizeof(buf), dev, &err, &amount, true); } } static bool getinfo(struct cgpu_info *bflsc, int dev) { struct bflsc_info *sc_info = (struct bflsc_info *)(bflsc->device_data); struct bflsc_dev sc_dev; char buf[BFLSC_BUFSIZ+1]; int err, amount; char **items, *firstname, **fields, *lf; bool res, ok = false; int i, lines, count; char *tmp; /* * Kano's first dev Jalapeno output: * DEVICE: BitFORCE SC * FIRMWARE: 1.0.0 * ENGINES: 30 * FREQUENCY: [UNKNOWN] * XLINK MODE: MASTER * XLINK PRESENT: YES * --DEVICES IN CHAIN: 0 * --CHAIN PRESENCE MASK: 00000000 * OK */ /* * Don't use send_recv_ss() since we have a different receive timeout * Also getinfo() is called multiple times if it fails anyway */ err = write_to_dev(bflsc, dev, BFLSC_DETAILS, BFLSC_DETAILS_LEN, &amount, C_REQUESTDETAILS); if (err < 0 || amount != BFLSC_DETAILS_LEN) { applog(LOG_ERR, "%s detect (%s) send details request failed (%d:%d)", bflsc->drv->dname, bflsc->device_path, amount, err); return ok; } err = usb_read_ok_timeout(bflsc, buf, sizeof(buf)-1, &amount, BFLSC_INFO_TIMEOUT, C_GETDETAILS); if (err < 0 || amount < 1) { if (err < 0) { applog(LOG_ERR, "%s detect (%s) get details return invalid/timed out (%d:%d)", bflsc->drv->dname, bflsc->device_path, amount, err); } else { applog(LOG_ERR, "%s detect (%s) get details returned nothing (%d:%d)", bflsc->drv->dname, bflsc->device_path, amount, err); } return ok; } memset(&sc_dev, 0, sizeof(struct bflsc_dev)); sc_info->sc_count = 1; res = tolines(bflsc, dev, &(buf[0]), &lines, &items, C_GETDETAILS); if (!res) return ok; tmp = str_text(buf); strncpy(sc_dev.getinfo, tmp, sizeof(sc_dev.getinfo)); sc_dev.getinfo[sizeof(sc_dev.getinfo)-1] = '\0'; free(tmp); for (i = 0; i < lines-2; i++) { res = breakdown(ONECOLON, items[i], &count, &firstname, &fields, &lf); if (lf) *lf = '\0'; if (!res || count != 1) { tmp = str_text(items[i]); applogsiz(LOG_WARNING, BFLSC_APPLOGSIZ, "%s detect (%s) invalid details line: '%s' %d", bflsc->drv->dname, bflsc->device_path, tmp, count); free(tmp); dev_error(bflsc, REASON_DEV_COMMS_ERROR); goto mata; } if (strstr(firstname, BFLSC_DI_FIRMWARE)) { sc_dev.firmware = strdup(fields[0]); sc_info->driver_version = drv_ver(bflsc, sc_dev.firmware); } else if (Strcasestr(firstname, BFLSC_DI_ENGINES)) { sc_dev.engines = atoi(fields[0]); if (sc_dev.engines < 1) { tmp = str_text(items[i]); applogsiz(LOG_WARNING, BFLSC_APPLOGSIZ, "%s detect (%s) invalid engine count: '%s'", bflsc->drv->dname, bflsc->device_path, tmp); free(tmp); goto mata; } } else if (strstr(firstname, BFLSC_DI_XLINKMODE)) sc_dev.xlink_mode = strdup(fields[0]); else if (strstr(firstname, BFLSC_DI_XLINKPRESENT)) sc_dev.xlink_present = strdup(fields[0]); else if (strstr(firstname, BFLSC_DI_DEVICESINCHAIN)) { if (fields[0][0] == '0' || (fields[0][0] == ' ' && fields[0][1] == '0')) sc_info->sc_count = 1; else sc_info->sc_count = atoi(fields[0]); if (sc_info->sc_count < 1 || sc_info->sc_count > 30) { tmp = str_text(items[i]); applogsiz(LOG_WARNING, BFLSC_APPLOGSIZ, "%s detect (%s) invalid x-link count: '%s'", bflsc->drv->dname, bflsc->device_path, tmp); free(tmp); goto mata; } } else if (strstr(firstname, BFLSC_DI_CHIPS)) sc_dev.chips = strdup(fields[0]); else if (strstr(firstname, BFLSC28_DI_ASICS)) sc_dev.chips = strdup(fields[0]); freebreakdown(&count, &firstname, &fields); } if (sc_info->driver_version == BFLSC_DRVUNDEF) { applog(LOG_WARNING, "%s detect (%s) missing %s", bflsc->drv->dname, bflsc->device_path, BFLSC_DI_FIRMWARE); goto ne; } sc_info->sc_devs = cgcalloc(sc_info->sc_count, sizeof(struct bflsc_dev)); memcpy(&(sc_info->sc_devs[0]), &sc_dev, sizeof(sc_dev)); // TODO: do we care about getting this info for the rest if > 0 x-link ok = true; goto ne; mata: freebreakdown(&count, &firstname, &fields); ok = false; ne: freetolines(&lines, &items); return ok; } static bool bflsc28_queue_full(struct cgpu_info *bflsc); static struct cgpu_info *bflsc_detect_one(struct libusb_device *dev, struct usb_find_devices *found) { struct bflsc_info *sc_info = NULL; char buf[BFLSC_BUFSIZ+1]; int i, err, amount; struct timeval init_start, init_now; int init_sleep, init_count; bool ident_first, sent; char *newname; uint16_t latency; struct cgpu_info *bflsc = usb_alloc_cgpu(&bflsc_drv, 1); sc_info = cgcalloc(1, sizeof(*sc_info)); // TODO: fix ... everywhere ... bflsc->device_data = (FILE *)sc_info; if (!usb_init(bflsc, dev, found)) goto shin; // Allow 2 complete attempts if the 1st time returns an unrecognised reply ident_first = true; retry: init_count = 0; init_sleep = REINIT_TIME_FIRST_MS; cgtime(&init_start); reinit: __bflsc_initialise(bflsc); err = send_recv_ss(bflsc, 0, &sent, &amount, BFLSC_IDENTIFY, BFLSC_IDENTIFY_LEN, C_REQUESTIDENTIFY, buf, sizeof(buf)-1, C_GETIDENTIFY, READ_NL); if (!sent) { applog(LOG_ERR, "%s detect (%s) send identify request failed (%d:%d)", bflsc->drv->dname, bflsc->device_path, amount, err); goto unshin; } if (err < 0 || amount < 1) { init_count++; cgtime(&init_now); if (us_tdiff(&init_now, &init_start) <= REINIT_TIME_MAX) { if (init_count == 2) { applog(LOG_WARNING, "%s detect (%s) 2nd init failed (%d:%d) - retrying", bflsc->drv->dname, bflsc->device_path, amount, err); } cgsleep_ms(init_sleep); if ((init_sleep * 2) <= REINIT_TIME_MAX_MS) init_sleep *= 2; goto reinit; } if (init_count > 0) applog(LOG_WARNING, "%s detect (%s) init failed %d times %.2fs", bflsc->drv->dname, bflsc->device_path, init_count, tdiff(&init_now, &init_start)); if (err < 0) { applog(LOG_ERR, "%s detect (%s) error identify reply (%d:%d)", bflsc->drv->dname, bflsc->device_path, amount, err); } else { applog(LOG_ERR, "%s detect (%s) empty identify reply (%d)", bflsc->drv->dname, bflsc->device_path, amount); } goto unshin; } buf[amount] = '\0'; if (unlikely(!strstr(buf, BFLSC_BFLSC) && !strstr(buf, BFLSC_BFLSC28))) { applog(LOG_DEBUG, "%s detect (%s) found an FPGA '%s' ignoring", bflsc->drv->dname, bflsc->device_path, buf); goto unshin; } if (unlikely(strstr(buf, BFLSC_IDENTITY))) { if (ident_first) { applog(LOG_DEBUG, "%s detect (%s) didn't recognise '%s' trying again ...", bflsc->drv->dname, bflsc->device_path, buf); ident_first = false; goto retry; } applog(LOG_DEBUG, "%s detect (%s) didn't recognise '%s' on 2nd attempt", bflsc->drv->dname, bflsc->device_path, buf); goto unshin; } int tries = 0; while (7734) { if (getinfo(bflsc, 0)) break; // N.B. we will get displayed errors each time it fails if (++tries > 2) goto unshin; cgsleep_ms(40); } switch (sc_info->driver_version) { case BFLSC_DRV1: sc_info->que_size = BFLSC_QUE_SIZE_V1; sc_info->que_full_enough = BFLSC_QUE_FULL_ENOUGH_V1; sc_info->que_watermark = BFLSC_QUE_WATERMARK_V1; sc_info->que_low = BFLSC_QUE_LOW_V1; sc_info->que_noncecount = QUE_NONCECOUNT_V1; sc_info->que_fld_min = QUE_FLD_MIN_V1; sc_info->que_fld_max = QUE_FLD_MAX_V1; // Only Jalapeno uses 1.0.0 sc_info->flush_size = 1; break; case BFLSC_DRV2: case BFLSC_DRVUNDEF: default: sc_info->driver_version = BFLSC_DRV2; sc_info->que_size = BFLSC_QUE_SIZE_V2; sc_info->que_full_enough = BFLSC_QUE_FULL_ENOUGH_V2; sc_info->que_watermark = BFLSC_QUE_WATERMARK_V2; sc_info->que_low = BFLSC_QUE_LOW_V2; sc_info->que_noncecount = QUE_NONCECOUNT_V2; sc_info->que_fld_min = QUE_FLD_MIN_V2; sc_info->que_fld_max = QUE_FLD_MAX_V2; // TODO: this can be reduced to total chip count sc_info->flush_size = 16 * sc_info->sc_count; break; } // Set parallelization based on the getinfo() response if it is present if (sc_info->sc_devs[0].chips && strlen(sc_info->sc_devs[0].chips)) { if (strstr(sc_info->sc_devs[0].chips, BFLSC_DI_CHIPS_PARALLEL)) { sc_info->que_noncecount = QUE_NONCECOUNT_V2; sc_info->que_fld_min = QUE_FLD_MIN_V2; sc_info->que_fld_max = QUE_FLD_MAX_V2; } else { sc_info->que_noncecount = QUE_NONCECOUNT_V1; sc_info->que_fld_min = QUE_FLD_MIN_V1; sc_info->que_fld_max = QUE_FLD_MAX_V1; } } sc_info->scan_sleep_time = BAS_SCAN_TIME; sc_info->results_sleep_time = BFLSC_RES_TIME; sc_info->default_ms_work = (unsigned int)BAS_WORK_TIME; latency = BAS_LATENCY; /* When getinfo() "FREQUENCY: [UNKNOWN]" is fixed - * use 'freq * engines' to estimate. * Otherwise for now: */ newname = NULL; if (sc_info->sc_count > 1) { newname = BFLSC_MINIRIG; sc_info->scan_sleep_time = BAM_SCAN_TIME; sc_info->default_ms_work = (unsigned int)BAM_WORK_TIME; bflsc->usbdev->ident = IDENT_BAM; latency = BAM_LATENCY; } else { if (sc_info->sc_devs[0].engines < 34) { // 16 * 2 + 2 newname = BFLSC_JALAPENO; sc_info->scan_sleep_time = BAJ_SCAN_TIME; sc_info->default_ms_work = (unsigned int)BAJ_WORK_TIME; bflsc->usbdev->ident = IDENT_BAJ; latency = BAJ_LATENCY; } else if (sc_info->sc_devs[0].engines < 130) { // 16 * 8 + 2 newname = BFLSC_LITTLESINGLE; sc_info->scan_sleep_time = BAL_SCAN_TIME; sc_info->default_ms_work = (unsigned int)BAL_WORK_TIME; bflsc->usbdev->ident = IDENT_BAL; latency = BAL_LATENCY; } } sc_info->ident = usb_ident(bflsc); if (sc_info->ident == IDENT_BMA) { bflsc->drv->queue_full = &bflsc28_queue_full; sc_info->scan_sleep_time = BMA_SCAN_TIME; sc_info->default_ms_work = (unsigned int)BMA_WORK_TIME; sc_info->results_sleep_time = BMA_RES_TIME; } if (latency != bflsc->usbdev->found->latency) { bflsc->usbdev->found->latency = latency; usb_ftdi_set_latency(bflsc); } for (i = 0; i < sc_info->sc_count; i++) sc_info->sc_devs[i].ms_work = sc_info->default_ms_work; if (newname) { if (!bflsc->drv->copy) bflsc->drv = copy_drv(bflsc->drv); bflsc->drv->name = newname; } // We have a real BFLSC! applog(LOG_DEBUG, "%s (%s) identified as: '%s'", bflsc->drv->dname, bflsc->device_path, bflsc->drv->name); if (!add_cgpu(bflsc)) goto unshin; update_usb_stats(bflsc); mutex_init(&bflsc->device_mutex); rwlock_init(&sc_info->stat_lock); return bflsc; unshin: usb_uninit(bflsc); shin: free(bflsc->device_data); bflsc->device_data = NULL; if (bflsc->name != blank) { free(bflsc->name); bflsc->name = NULL; } bflsc = usb_free_cgpu(bflsc); return NULL; } static void bflsc_detect(bool __maybe_unused hotplug) { usb_detect(&bflsc_drv, bflsc_detect_one); } static void get_bflsc_statline_before(char *buf, size_t bufsiz, struct cgpu_info *bflsc) { struct bflsc_info *sc_info = (struct bflsc_info *)(bflsc->device_data); float temp = 0; float vcc2 = 0; int i; rd_lock(&(sc_info->stat_lock)); for (i = 0; i < sc_info->sc_count; i++) { if (sc_info->sc_devs[i].temp1 > temp) temp = sc_info->sc_devs[i].temp1; if (sc_info->sc_devs[i].temp2 > temp) temp = sc_info->sc_devs[i].temp2; if (sc_info->sc_devs[i].vcc2 > vcc2) vcc2 = sc_info->sc_devs[i].vcc2; } rd_unlock(&(sc_info->stat_lock)); tailsprintf(buf, bufsiz, "max%3.0fC %4.2fV", temp, vcc2); } static void flush_one_dev(struct cgpu_info *bflsc, int dev) { struct bflsc_info *sc_info = (struct bflsc_info *)(bflsc->device_data); struct work *work, *tmp; bool did = false; bflsc_send_flush_work(bflsc, dev); rd_lock(&bflsc->qlock); HASH_ITER(hh, bflsc->queued_work, work, tmp) { if (work->subid == dev) { // devflag is used to flag stale work work->devflag = true; did = true; } } rd_unlock(&bflsc->qlock); if (did) { wr_lock(&(sc_info->stat_lock)); sc_info->sc_devs[dev].flushed = true; sc_info->sc_devs[dev].flush_id = sc_info->sc_devs[dev].result_id; sc_info->sc_devs[dev].work_queued = 0; wr_unlock(&(sc_info->stat_lock)); } } static void bflsc_flush_work(struct cgpu_info *bflsc) { struct bflsc_info *sc_info = (struct bflsc_info *)(bflsc->device_data); int dev; for (dev = 0; dev < sc_info->sc_count; dev++) flush_one_dev(bflsc, dev); } static void bflsc_set_volt(struct cgpu_info *bflsc, int dev) { struct bflsc_info *sc_info = (struct bflsc_info *)(bflsc->device_data); char buf[BFLSC_BUFSIZ+1]; char msg[16]; int err, amount; bool sent; // Device is gone if (bflsc->usbinfo.nodev) return; snprintf(msg, sizeof(msg), "V%dX", sc_info->volt_next); mutex_lock(&bflsc->device_mutex); err = send_recv_ss(bflsc, dev, &sent, &amount, msg, strlen(msg), C_SETVOLT, buf, sizeof(buf)-1, C_REPLYSETVOLT, READ_NL); mutex_unlock(&(bflsc->device_mutex)); if (!sent) bflsc_applog(bflsc, dev, C_SETVOLT, amount, err); else { // Don't care } sc_info->volt_next_stat = false; return; } static void bflsc_set_clock(struct cgpu_info *bflsc, int dev) { struct bflsc_info *sc_info = (struct bflsc_info *)(bflsc->device_data); char buf[BFLSC_BUFSIZ+1]; char msg[16]; int err, amount; bool sent; // Device is gone if (bflsc->usbinfo.nodev) return; snprintf(msg, sizeof(msg), "F%XX", sc_info->clock_next); mutex_lock(&bflsc->device_mutex); err = send_recv_ss(bflsc, dev, &sent, &amount, msg, strlen(msg), C_SETCLOCK, buf, sizeof(buf)-1, C_REPLYSETCLOCK, READ_NL); mutex_unlock(&(bflsc->device_mutex)); if (!sent) bflsc_applog(bflsc, dev, C_SETCLOCK, amount, err); else { // Don't care } sc_info->clock_next_stat = false; return; } static void bflsc_flash_led(struct cgpu_info *bflsc, int dev) { struct bflsc_info *sc_info = (struct bflsc_info *)(bflsc->device_data); char buf[BFLSC_BUFSIZ+1]; int err, amount; bool sent; // Device is gone if (bflsc->usbinfo.nodev) return; // It is not critical flashing the led so don't get stuck if we // can't grab the mutex now if (mutex_trylock(&bflsc->device_mutex)) return; err = send_recv_ss(bflsc, dev, &sent, &amount, BFLSC_FLASH, BFLSC_FLASH_LEN, C_REQUESTFLASH, buf, sizeof(buf)-1, C_FLASHREPLY, READ_NL); mutex_unlock(&(bflsc->device_mutex)); if (!sent) bflsc_applog(bflsc, dev, C_REQUESTFLASH, amount, err); else { // Don't care } // Once we've tried - don't do it until told to again // - even if it failed sc_info->flash_led = false; return; } /* Flush and stop all work if the device reaches the thermal cutoff temp, or * temporarily stop queueing work if it's in the throttling range. */ static void bflsc_manage_temp(struct cgpu_info *bflsc, struct bflsc_dev *sc_dev, int dev, float temp) { bflsc->temp = temp; if (bflsc->cutofftemp > 0) { int cutoff = bflsc->cutofftemp; int throttle = cutoff - BFLSC_TEMP_THROTTLE; int recover = cutoff - BFLSC_TEMP_RECOVER; if (sc_dev->overheat) { if (temp < recover) sc_dev->overheat = false; } else if (temp > throttle) { sc_dev->overheat = true; if (temp > cutoff) { applog(LOG_WARNING, "%s%i: temp (%.1f) hit thermal cutoff limit %d, stopping work!", bflsc->drv->name, bflsc->device_id, temp, cutoff); dev_error(bflsc, REASON_DEV_THERMAL_CUTOFF); flush_one_dev(bflsc, dev); } else { applog(LOG_NOTICE, "%s%i: temp (%.1f) hit thermal throttle limit %d, throttling", bflsc->drv->name, bflsc->device_id, temp, throttle); } } } } static bool bflsc_get_temp(struct cgpu_info *bflsc, int dev) { struct bflsc_info *sc_info = (struct bflsc_info *)(bflsc->device_data); struct bflsc_dev *sc_dev; char temp_buf[BFLSC_BUFSIZ+1]; char volt_buf[BFLSC_BUFSIZ+1]; char *tmp; int err, amount; char *firstname, **fields, *lf; char xlink[17]; int count; bool res, sent; float temp, temp1, temp2; float vcc1, vcc2, vmain; // Device is gone if (bflsc->usbinfo.nodev) return false; if (dev >= sc_info->sc_count) { applog(LOG_ERR, "%s%i: temp invalid xlink device %d - limit %d", bflsc->drv->name, bflsc->device_id, dev, sc_info->sc_count - 1); return false; } if (sc_info->volt_next_stat || sc_info->clock_next_stat) { if (sc_info->volt_next_stat) bflsc_set_volt(bflsc, dev); if (sc_info->clock_next_stat) bflsc_set_clock(bflsc, dev); return true; } // Flash instead of Temp if (sc_info->flash_led) { bflsc_flash_led(bflsc, dev); return true; } xlinkstr(xlink, sizeof(xlink), dev, sc_info); /* It is not very critical getting temp so don't get stuck if we * can't grab the mutex here */ if (mutex_trylock(&bflsc->device_mutex)) return false; err = send_recv_ss(bflsc, dev, &sent, &amount, BFLSC_TEMPERATURE, BFLSC_TEMPERATURE_LEN, C_REQUESTTEMPERATURE, temp_buf, sizeof(temp_buf)-1, C_GETTEMPERATURE, READ_NL); mutex_unlock(&(bflsc->device_mutex)); if (!sent) { applog(LOG_ERR, "%s%i: Error: Request%s temp invalid/timed out (%d:%d)", bflsc->drv->name, bflsc->device_id, xlink, amount, err); return false; } else { if (err < 0 || amount < 1) { if (err < 0) { applog(LOG_ERR, "%s%i: Error: Get%s temp return invalid/timed out (%d:%d)", bflsc->drv->name, bflsc->device_id, xlink, amount, err); } else { applog(LOG_ERR, "%s%i: Error: Get%s temp returned nothing (%d:%d)", bflsc->drv->name, bflsc->device_id, xlink, amount, err); } return false; } } // Ignore it if we can't get the V if (mutex_trylock(&bflsc->device_mutex)) return false; err = send_recv_ss(bflsc, dev, &sent, &amount, BFLSC_VOLTAGE, BFLSC_VOLTAGE_LEN, C_REQUESTVOLTS, volt_buf, sizeof(volt_buf)-1, C_GETVOLTS, READ_NL); mutex_unlock(&(bflsc->device_mutex)); if (!sent) { applog(LOG_ERR, "%s%i: Error: Request%s volts invalid/timed out (%d:%d)", bflsc->drv->name, bflsc->device_id, xlink, amount, err); return false; } else { if (err < 0 || amount < 1) { if (err < 0) { applog(LOG_ERR, "%s%i: Error: Get%s volt return invalid/timed out (%d:%d)", bflsc->drv->name, bflsc->device_id, xlink, amount, err); } else { applog(LOG_ERR, "%s%i: Error: Get%s volt returned nothing (%d:%d)", bflsc->drv->name, bflsc->device_id, xlink, amount, err); } return false; } } res = breakdown(ALLCOLON, temp_buf, &count, &firstname, &fields, &lf); if (lf) *lf = '\0'; if (!res || count < 2 || !lf) { tmp = str_text(temp_buf); applog(LOG_WARNING, "%s%i: Invalid%s temp reply: '%s'", bflsc->drv->name, bflsc->device_id, xlink, tmp); free(tmp); freebreakdown(&count, &firstname, &fields); dev_error(bflsc, REASON_DEV_COMMS_ERROR); return false; } temp = temp1 = (float)atoi(fields[0]); temp2 = (float)atoi(fields[1]); freebreakdown(&count, &firstname, &fields); res = breakdown(NOCOLON, volt_buf, &count, &firstname, &fields, &lf); if (lf) *lf = '\0'; if (!res || count != 3 || !lf) { tmp = str_text(volt_buf); applog(LOG_WARNING, "%s%i: Invalid%s volt reply: '%s'", bflsc->drv->name, bflsc->device_id, xlink, tmp); free(tmp); freebreakdown(&count, &firstname, &fields); dev_error(bflsc, REASON_DEV_COMMS_ERROR); return false; } sc_dev = &sc_info->sc_devs[dev]; vcc1 = (float)atoi(fields[0]) / 1000.0; vcc2 = (float)atoi(fields[1]) / 1000.0; vmain = (float)atoi(fields[2]) / 1000.0; freebreakdown(&count, &firstname, &fields); if (vcc1 > 0 || vcc2 > 0 || vmain > 0) { wr_lock(&(sc_info->stat_lock)); if (vcc1 > 0) { if (unlikely(sc_dev->vcc1 == 0)) sc_dev->vcc1 = vcc1; else { sc_dev->vcc1 += vcc1 * 0.63; sc_dev->vcc1 /= 1.63; } } if (vcc2 > 0) { if (unlikely(sc_dev->vcc2 == 0)) sc_dev->vcc2 = vcc2; else { sc_dev->vcc2 += vcc2 * 0.63; sc_dev->vcc2 /= 1.63; } } if (vmain > 0) { if (unlikely(sc_dev->vmain == 0)) sc_dev->vmain = vmain; else { sc_dev->vmain += vmain * 0.63; sc_dev->vmain /= 1.63; } } wr_unlock(&(sc_info->stat_lock)); } if (temp1 > 0 || temp2 > 0) { wr_lock(&(sc_info->stat_lock)); if (unlikely(!sc_dev->temp1)) sc_dev->temp1 = temp1; else { sc_dev->temp1 += temp1 * 0.63; sc_dev->temp1 /= 1.63; } if (unlikely(!sc_dev->temp2)) sc_dev->temp2 = temp2; else { sc_dev->temp2 += temp2 * 0.63; sc_dev->temp2 /= 1.63; } if (temp1 > sc_dev->temp1_max) { sc_dev->temp1_max = temp1; sc_dev->temp1_max_time = time(NULL); } if (temp2 > sc_dev->temp2_max) { sc_dev->temp2_max = temp2; sc_dev->temp2_max_time = time(NULL); } if (unlikely(sc_dev->temp1_5min_av == 0)) sc_dev->temp1_5min_av = temp1; else { sc_dev->temp1_5min_av += temp1 * .0042; sc_dev->temp1_5min_av /= 1.0042; } if (unlikely(sc_dev->temp2_5min_av == 0)) sc_dev->temp2_5min_av = temp2; else { sc_dev->temp2_5min_av += temp2 * .0042; sc_dev->temp2_5min_av /= 1.0042; } wr_unlock(&(sc_info->stat_lock)); if (temp < temp2) temp = temp2; bflsc_manage_temp(bflsc, sc_dev, dev, temp); } return true; } static void inc_core_errors(struct bflsc_info *info, int8_t core) { if (info->ident == IDENT_BMA) { if (core >= 0) info->cortex_hw[core]++; } else { if (core >= 0 && core < 16) info->core_hw[core]++; } } static void inc_bflsc_errors(struct thr_info *thr, struct bflsc_info *info, int8_t core) { inc_hw_errors(thr); inc_core_errors(info, core); } static void inc_bflsc_nonces(struct bflsc_info *info, int8_t core) { if (info->ident == IDENT_BMA) { if (core >= 0) info->cortex_nonces[core]++; } else { if (core >= 0 && core < 16) info->core_nonces[core]++; } } struct work *bflsc_work_by_uid(struct cgpu_info *bflsc, struct bflsc_info *sc_info, int id) { struct bflsc_work *bwork; struct work *work = NULL; wr_lock(&bflsc->qlock); HASH_FIND_INT(sc_info->bworks, &id, bwork); if (likely(bwork)) { HASH_DEL(sc_info->bworks, bwork); work = bwork->work; free(bwork); } wr_unlock(&bflsc->qlock); return work; } static void process_nonces(struct cgpu_info *bflsc, int dev, char *xlink, char *data, int count, char **fields, int *nonces) { struct bflsc_info *sc_info = (struct bflsc_info *)(bflsc->device_data); struct thr_info *thr = bflsc->thr[0]; struct work *work = NULL; int8_t core = -1; uint32_t nonce; int i, num, x; char *tmp; bool res; if (count < sc_info->que_fld_min) { tmp = str_text(data); applogsiz(LOG_INFO, BFLSC_APPLOGSIZ, "%s%i:%s work returned too small (%d,%s)", bflsc->drv->name, bflsc->device_id, xlink, count, tmp); free(tmp); inc_bflsc_errors(thr, sc_info, core); return; } if (sc_info->ident == IDENT_BMA) { unsigned int ucore; if (sscanf(fields[QUE_CC], "%x", &ucore) == 1) core = ucore; } else if (sc_info->que_noncecount != QUE_NONCECOUNT_V1) { unsigned int ucore; if (sscanf(fields[QUE_CHIP_V2], "%x", &ucore) == 1) core = ucore; } if (count > sc_info->que_fld_max) { applog(LOG_INFO, "%s%i:%s work returned too large (%d) processing %d anyway", bflsc->drv->name, bflsc->device_id, xlink, count, sc_info->que_fld_max); count = sc_info->que_fld_max; inc_bflsc_errors(thr, sc_info, core); } num = atoi(fields[sc_info->que_noncecount]); if (num != count - sc_info->que_fld_min) { tmp = str_text(data); applogsiz(LOG_INFO, BFLSC_APPLOGSIZ, "%s%i:%s incorrect data count (%d) will use %d instead from (%s)", bflsc->drv->name, bflsc->device_id, xlink, num, count - sc_info->que_fld_max, tmp); free(tmp); inc_bflsc_errors(thr, sc_info, core); } if (sc_info->ident == IDENT_BMA) { int uid; if (sscanf(fields[QUE_UID], "%04x", &uid) == 1) work = bflsc_work_by_uid(bflsc, sc_info, uid); } else { char midstate[MIDSTATE_BYTES] = {}, blockdata[MERKLE_BYTES] = {}; if (!hex2bin((unsigned char *)midstate, fields[QUE_MIDSTATE], MIDSTATE_BYTES) || !hex2bin((unsigned char *)blockdata, fields[QUE_BLOCKDATA], MERKLE_BYTES)) { applog(LOG_INFO, "%s%i:%s Failed to convert binary data to hex result - ignored", bflsc->drv->name, bflsc->device_id, xlink); inc_bflsc_errors(thr, sc_info, core); return; } work = take_queued_work_bymidstate(bflsc, midstate, MIDSTATE_BYTES, blockdata, MERKLE_OFFSET, MERKLE_BYTES); } if (!work) { if (sc_info->not_first_work) { applog(LOG_INFO, "%s%i:%s failed to find nonce work - can't be processed - ignored", bflsc->drv->name, bflsc->device_id, xlink); inc_bflsc_errors(thr, sc_info, core); } return; } res = false; x = 0; for (i = sc_info->que_fld_min; i < count; i++) { if (strlen(fields[i]) != 8) { tmp = str_text(data); applogsiz(LOG_INFO, BFLSC_APPLOGSIZ, "%s%i:%s invalid nonce (%s) will try to process anyway", bflsc->drv->name, bflsc->device_id, xlink, tmp); free(tmp); } hex2bin((void*)&nonce, fields[i], 4); nonce = htobe32(nonce); res = submit_nonce(thr, work, nonce); if (res) { wr_lock(&(sc_info->stat_lock)); sc_info->sc_devs[dev].nonces_found++; wr_unlock(&(sc_info->stat_lock)); (*nonces)++; x++; inc_bflsc_nonces(sc_info, core); } else inc_core_errors(sc_info, core); } wr_lock(&(sc_info->stat_lock)); if (res) sc_info->sc_devs[dev].result_id++; if (x > QUE_MAX_RESULTS) x = QUE_MAX_RESULTS + 1; (sc_info->result_size[x])++; sc_info->sc_devs[dev].work_complete++; sc_info->sc_devs[dev].hashes_unsent += FULLNONCE; // If not flushed (stale) if (!(work->devflag)) sc_info->sc_devs[dev].work_queued -= 1; wr_unlock(&(sc_info->stat_lock)); free_work(work); } static int process_results(struct cgpu_info *bflsc, int dev, char *pbuf, int *nonces, int *in_process) { struct bflsc_info *sc_info = (struct bflsc_info *)(bflsc->device_data); char **items, *firstname, **fields, *lf; int que = 0, i, lines, count; char *tmp, *tmp2, *buf; char xlink[17]; bool res; *nonces = 0; *in_process = 0; xlinkstr(xlink, sizeof(xlink), dev, sc_info); buf = strdup(pbuf); if (!strncmp(buf, "INPROCESS", 9)) sscanf(buf, "INPROCESS:%d\n%s", in_process, pbuf); res = tolines(bflsc, dev, buf, &lines, &items, C_GETRESULTS); if (!res || lines < 1) { tmp = str_text(pbuf); applogsiz(LOG_ERR, BFLSC_APPLOGSIZ, "%s%i:%s empty result (%s) ignored", bflsc->drv->name, bflsc->device_id, xlink, tmp); free(tmp); goto arigatou; } if (lines < QUE_RES_LINES_MIN) { tmp = str_text(pbuf); applogsiz(LOG_ERR, BFLSC_APPLOGSIZ, "%s%i:%s result of %d too small (%s) ignored", bflsc->drv->name, bflsc->device_id, xlink, lines, tmp); free(tmp); goto arigatou; } breakdown(ONECOLON, items[1], &count, &firstname, &fields, &lf); if (count < 1) { tmp = str_text(pbuf); tmp2 = str_text(items[1]); applogsiz(LOG_ERR, BFLSC_APPLOGSIZ, "%s%i:%s empty result count (%s) in (%s) ignoring", bflsc->drv->name, bflsc->device_id, xlink, tmp2, tmp); free(tmp2); free(tmp); goto arigatou; } else if (count != 1) { tmp = str_text(pbuf); tmp2 = str_text(items[1]); applogsiz(LOG_ERR, BFLSC_APPLOGSIZ, "%s%i:%s incorrect result count %d (%s) in (%s) will try anyway", bflsc->drv->name, bflsc->device_id, xlink, count, tmp2, tmp); free(tmp2); free(tmp); } que = atoi(fields[0]); if (que != (lines - QUE_RES_LINES_MIN)) { i = que; // 1+ In case the last line isn't 'OK' - try to process it que = 1 + lines - QUE_RES_LINES_MIN; tmp = str_text(pbuf); tmp2 = str_text(items[0]); applogsiz(LOG_ERR, BFLSC_APPLOGSIZ, "%s%i:%s incorrect result count %d (%s) will try %d (%s)", bflsc->drv->name, bflsc->device_id, xlink, i, tmp2, que, tmp); free(tmp2); free(tmp); } freebreakdown(&count, &firstname, &fields); for (i = 0; i < que; i++) { res = breakdown(NOCOLON, items[i + QUE_RES_LINES_MIN - 1], &count, &firstname, &fields, &lf); if (likely(res)) process_nonces(bflsc, dev, &(xlink[0]), items[i], count, fields, nonces); else applogsiz(LOG_ERR, BFLSC_APPLOGSIZ, "%s%i:%s failed to process nonce %s", bflsc->drv->name, bflsc->device_id, xlink, items[i]); freebreakdown(&count, &firstname, &fields); sc_info->not_first_work = true; } arigatou: freetolines(&lines, &items); free(buf); return que; } #define TVF(tv) ((float)((tv)->tv_sec) + ((float)((tv)->tv_usec) / 1000000.0)) #define TVFMS(tv) (TVF(tv) * 1000.0) // Thread to simply keep looking for results static void *bflsc_get_results(void *userdata) { struct cgpu_info *bflsc = (struct cgpu_info *)userdata; struct bflsc_info *sc_info = (struct bflsc_info *)(bflsc->device_data); struct timeval elapsed, now; float oldest, f; char buf[BFLSC_BUFSIZ+1]; int err, amount; int i, que, dev, nonces; bool readok; cgtime(&now); for (i = 0; i < sc_info->sc_count; i++) { copy_time(&(sc_info->sc_devs[i].last_check_result), &now); copy_time(&(sc_info->sc_devs[i].last_dev_result), &now); copy_time(&(sc_info->sc_devs[i].last_nonce_result), &now); } while (sc_info->shutdown == false) { cgtimer_t ts_start; int in_process; if (bflsc->usbinfo.nodev) return NULL; dev = -1; oldest = FLT_MAX; cgtime(&now); // Find the first oldest ... that also needs checking for (i = 0; i < sc_info->sc_count; i++) { timersub(&now, &(sc_info->sc_devs[i].last_check_result), &elapsed); f = TVFMS(&elapsed); if (f < oldest && f >= sc_info->sc_devs[i].ms_work) { f = oldest; dev = i; } } if (bflsc->usbinfo.nodev) return NULL; cgsleep_prepare_r(&ts_start); if (dev == -1) goto utsura; cgtime(&(sc_info->sc_devs[dev].last_check_result)); readok = bflsc_qres(bflsc, buf, sizeof(buf), dev, &err, &amount, false); if (err < 0 || (!readok && amount != BFLSC_QRES_LEN) || (readok && amount < 1)) { // TODO: do what else? } else { que = process_results(bflsc, dev, buf, &nonces, &in_process); sc_info->not_first_work = true; // in case it failed processing it if (que > 0) cgtime(&(sc_info->sc_devs[dev].last_dev_result)); if (nonces > 0) cgtime(&(sc_info->sc_devs[dev].last_nonce_result)); /* There are more results queued so do not sleep */ if (in_process) continue; // TODO: if not getting results ... reinit? } utsura: cgsleep_ms_r(&ts_start, sc_info->results_sleep_time); } return NULL; } static bool bflsc_thread_prepare(struct thr_info *thr) { struct cgpu_info *bflsc = thr->cgpu; struct bflsc_info *sc_info = (struct bflsc_info *)(bflsc->device_data); if (thr_info_create(&(sc_info->results_thr), NULL, bflsc_get_results, (void *)bflsc)) { applog(LOG_ERR, "%s%i: thread create failed", bflsc->drv->name, bflsc->device_id); return false; } pthread_detach(sc_info->results_thr.pth); return true; } static void bflsc_shutdown(struct thr_info *thr) { struct cgpu_info *bflsc = thr->cgpu; struct bflsc_info *sc_info = (struct bflsc_info *)(bflsc->device_data); bflsc_flush_work(bflsc); sc_info->shutdown = true; } static void bflsc_thread_enable(struct thr_info *thr) { struct cgpu_info *bflsc = thr->cgpu; if (bflsc->usbinfo.nodev) return; bflsc_initialise(bflsc); } static bool bflsc_send_work(struct cgpu_info *bflsc, int dev, bool mandatory) { struct bflsc_info *sc_info = (struct bflsc_info *)(bflsc->device_data); struct FullNonceRangeJob data; char buf[BFLSC_BUFSIZ+1]; bool sent, ret = false; struct work *work; int err, amount; int len, try; int stage; // Device is gone if (bflsc->usbinfo.nodev) return false; // TODO: handle this everywhere if (sc_info->sc_devs[dev].overheat == true) return false; // Initially code only deals with sending one work item data.payloadSize = BFLSC_JOBSIZ; data.endOfBlock = BFLSC_EOB; len = sizeof(struct FullNonceRangeJob); /* On faster devices we have a lot of lock contention so only * mandatorily grab the lock and send work if the queue is empty since * we have a submit queue. */ if (mandatory) mutex_lock(&(bflsc->device_mutex)); else { if (mutex_trylock(&bflsc->device_mutex)) return ret; } work = get_queued(bflsc); if (unlikely(!work)) { mutex_unlock(&bflsc->device_mutex); return ret; } memcpy(data.midState, work->midstate, MIDSTATE_BYTES); memcpy(data.blockData, work->data + MERKLE_OFFSET, MERKLE_BYTES); try = 0; re_send: err = send_recv_ds(bflsc, dev, &stage, &sent, &amount, BFLSC_QJOB, BFLSC_QJOB_LEN, C_REQUESTQUEJOB, C_REQUESTQUEJOBSTATUS, (char *)&data, len, C_QUEJOB, C_QUEJOBSTATUS, buf, sizeof(buf)-1); mutex_unlock(&(bflsc->device_mutex)); switch (stage) { case 1: if (!sent) { bflsc_applog(bflsc, dev, C_REQUESTQUEJOB, amount, err); goto out; } else { // TODO: handle other errors ... // Try twice if (try++ < 1 && amount > 1 && strstr(buf, BFLSC_TIMEOUT)) goto re_send; bflsc_applog(bflsc, dev, C_REQUESTQUEJOBSTATUS, amount, err); goto out; } break; case 2: if (!sent) { bflsc_applog(bflsc, dev, C_QUEJOB, amount, err); goto out; } else { if (!isokerr(err, buf, amount)) { // TODO: check for QUEUE FULL and set work_queued to sc_info->que_size // and report a code bug LOG_ERR - coz it should never happen // TODO: handle other errors ... // Try twice if (try++ < 1 && amount > 1 && strstr(buf, BFLSC_TIMEOUT)) goto re_send; bflsc_applog(bflsc, dev, C_QUEJOBSTATUS, amount, err); goto out; } } break; } wr_lock(&(sc_info->stat_lock)); sc_info->sc_devs[dev].work_queued++; wr_unlock(&(sc_info->stat_lock)); work->subid = dev; ret = true; out: if (unlikely(!ret)) work_completed(bflsc, work); return ret; } #define JP_COMMAND 0 #define JP_STREAMLENGTH 2 #define JP_SIGNATURE 4 #define JP_JOBSINARRY 5 #define JP_JOBSARRY 6 #define JP_ARRAYSIZE 45 static bool bflsc28_queue_full(struct cgpu_info *bflsc) { struct bflsc_info *sc_info = bflsc->device_data; int created, queued = 0, create, i, offset; struct work *base_work, *work, *works[10]; char *buf, *field, *ptr; bool sent, ret = false; uint16_t *streamlen; uint8_t *job_pack; int err, amount; job_pack = alloca(2 + // Command 2 + // StreamLength 1 + // Signature 1 + // JobsInArray JP_ARRAYSIZE * 10 +// Array of up to 10 Job Structs 1 // EndOfWrapper ); if (bflsc->usbinfo.nodev) return true; /* Don't send any work if this device is overheating */ if (sc_info->sc_devs[0].overheat == true) return true; wr_lock(&bflsc->qlock); base_work = __get_queued(bflsc); if (likely(base_work)) __work_completed(bflsc, base_work); wr_unlock(&bflsc->qlock); if (unlikely(!base_work)) return ret; created = 1; create = 9; if (base_work->drv_rolllimit < create) create = base_work->drv_rolllimit; works[0] = base_work; for (i = 1; i <= create ; i++) { created++; work = make_clone(base_work); roll_work(base_work); works[i] = work; } memcpy(job_pack, "WX", 2); streamlen = (uint16_t *)&job_pack[JP_STREAMLENGTH]; *streamlen = created * JP_ARRAYSIZE + 7; job_pack[JP_SIGNATURE] = 0xc1; job_pack[JP_JOBSINARRY] = created; offset = JP_JOBSARRY; /* Create the maximum number of work items we can queue by nrolling one */ for (i = 0; i < created; i++) { work = works[i]; memcpy(job_pack + offset, work->midstate, MIDSTATE_BYTES); offset += MIDSTATE_BYTES; memcpy(job_pack + offset, work->data + MERKLE_OFFSET, MERKLE_BYTES); offset += MERKLE_BYTES; job_pack[offset] = 0xaa; // EndOfBlock signature offset++; } job_pack[offset++] = 0xfe; // EndOfWrapper buf = alloca(BFLSC_BUFSIZ + 1); mutex_lock(&bflsc->device_mutex); err = send_recv_ss(bflsc, 0, &sent, &amount, (char *)job_pack, offset, C_REQUESTQUEJOB, buf, BFLSC_BUFSIZ, C_REQUESTQUEJOBSTATUS, READ_NL); mutex_unlock(&bflsc->device_mutex); if (!isokerr(err, buf, amount)) { if (!strncasecmp(buf, "ERR:QUEUE FULL", 14)) { applog(LOG_DEBUG, "%s%d: Queue full", bflsc->drv->name, bflsc->device_id); ret = true; } else { applog(LOG_WARNING, "%s%d: Queue response not ok %s", bflsc->drv->name, bflsc->device_id, buf); } goto out; } ptr = alloca(strlen(buf)); if (sscanf(buf, "OK:QUEUED %d:%s", &queued, ptr) != 2) { applog(LOG_WARNING, "%s%d: Failed to parse queue response %s", bflsc->drv->name, bflsc->device_id, buf); goto out; } if (queued < 1 || queued > 10) { applog(LOG_WARNING, "%s%d: Invalid queued count %d", bflsc->drv->name, bflsc->device_id, queued); queued = 0; goto out; } for (i = 0; i < queued; i++) { struct bflsc_work *bwork, *oldbwork; unsigned int uid; work = works[i]; field = Strsep(&ptr, ","); if (!field) { applog(LOG_WARNING, "%s%d: Ran out of queued IDs after %d of %d", bflsc->drv->name, bflsc->device_id, i, queued); queued = i; goto out; } sscanf(field, "%04x", &uid); bwork = cgcalloc(sizeof(struct bflsc_work), 1); bwork->id = uid; bwork->work = work; wr_lock(&bflsc->qlock); HASH_REPLACE_INT(sc_info->bworks, id, bwork, oldbwork); if (oldbwork) { free_work(oldbwork->work); free(oldbwork); } wr_unlock(&bflsc->qlock); sc_info->sc_devs[0].work_queued++; } if (queued < created) ret = true; out: for (i = queued; i < created; i++) { work = works[i]; discard_work(work); } return ret; } static bool bflsc_queue_full(struct cgpu_info *bflsc) { struct bflsc_info *sc_info = (struct bflsc_info *)(bflsc->device_data); int i, dev, tried, que; bool ret = false; int tries = 0; tried = -1; // if something is wrong with a device try the next one available // TODO: try them all? Add an unavailable flag to sc_devs[i] init to 0 here first while (++tries < 3) { bool mandatory = false; // Device is gone - shouldn't normally get here if (bflsc->usbinfo.nodev) { ret = true; break; } dev = -1; rd_lock(&(sc_info->stat_lock)); // Anything waiting - gets the work first for (i = 0; i < sc_info->sc_count; i++) { // TODO: and ignore x-link dead - once I work out how to decide it is dead if (i != tried && sc_info->sc_devs[i].work_queued == 0 && !sc_info->sc_devs[i].overheat) { dev = i; break; } } if (dev == -1) { que = sc_info->que_size * 10; // 10x is certainly above the MAX it could be // The first device with the smallest amount queued for (i = 0; i < sc_info->sc_count; i++) { if (i != tried && sc_info->sc_devs[i].work_queued < que && !sc_info->sc_devs[i].overheat) { dev = i; que = sc_info->sc_devs[i].work_queued; } } if (que > sc_info->que_full_enough) dev = -1; else if (que < sc_info->que_low) mandatory = true; } rd_unlock(&(sc_info->stat_lock)); // nothing needs work yet if (dev == -1) { ret = true; break; } if (bflsc_send_work(bflsc, dev, mandatory)) break; else tried = dev; } return ret; } static int64_t bflsc_scanwork(struct thr_info *thr) { struct cgpu_info *bflsc = thr->cgpu; struct bflsc_info *sc_info = (struct bflsc_info *)(bflsc->device_data); int64_t ret, unsent; bool flushed, cleanup; struct work *work, *tmp; int dev, waited, i; // Device is gone if (bflsc->usbinfo.nodev) return -1; flushed = false; // Single lock check if any are flagged as flushed rd_lock(&(sc_info->stat_lock)); for (dev = 0; dev < sc_info->sc_count; dev++) flushed |= sc_info->sc_devs[dev].flushed; rd_unlock(&(sc_info->stat_lock)); // > 0 flagged as flushed if (flushed) { // TODO: something like this ...... for (dev = 0; dev < sc_info->sc_count; dev++) { cleanup = false; // Is there any flushed work that can be removed? rd_lock(&(sc_info->stat_lock)); if (sc_info->sc_devs[dev].flushed) { if (sc_info->sc_devs[dev].result_id > (sc_info->sc_devs[dev].flush_id + sc_info->flush_size)) cleanup = true; } rd_unlock(&(sc_info->stat_lock)); // yes remove the flushed work that can be removed if (cleanup) { wr_lock(&bflsc->qlock); HASH_ITER(hh, bflsc->queued_work, work, tmp) { if (work->devflag && work->subid == dev) { bflsc->queued_count--; HASH_DEL(bflsc->queued_work, work); discard_work(work); } } wr_unlock(&bflsc->qlock); wr_lock(&(sc_info->stat_lock)); sc_info->sc_devs[dev].flushed = false; wr_unlock(&(sc_info->stat_lock)); } } } waited = restart_wait(thr, sc_info->scan_sleep_time); if (waited == ETIMEDOUT && sc_info->ident != IDENT_BMA) { unsigned int old_sleep_time, new_sleep_time = 0; int min_queued = sc_info->que_size; /* Only adjust the scan_sleep_time if we did not receive a * restart message while waiting. Try to adjust sleep time * so we drop to sc_info->que_watermark before getting more work. */ rd_lock(&sc_info->stat_lock); old_sleep_time = sc_info->scan_sleep_time; for (i = 0; i < sc_info->sc_count; i++) { if (sc_info->sc_devs[i].work_queued < min_queued) min_queued = sc_info->sc_devs[i].work_queued; } rd_unlock(&sc_info->stat_lock); new_sleep_time = old_sleep_time; /* Increase slowly but decrease quickly */ if (min_queued > sc_info->que_full_enough && old_sleep_time < BFLSC_MAX_SLEEP) new_sleep_time = old_sleep_time * 21 / 20; else if (min_queued < sc_info->que_low) new_sleep_time = old_sleep_time * 2 / 3; /* Do not sleep more than BFLSC_MAX_SLEEP so we can always * report in at least 2 results per 5s log interval. */ if (new_sleep_time != old_sleep_time) { if (new_sleep_time > BFLSC_MAX_SLEEP) new_sleep_time = BFLSC_MAX_SLEEP; else if (new_sleep_time == 0) new_sleep_time = 1; applog(LOG_DEBUG, "%s%i: Changed scan sleep time to %d", bflsc->drv->name, bflsc->device_id, new_sleep_time); wr_lock(&sc_info->stat_lock); sc_info->scan_sleep_time = new_sleep_time; wr_unlock(&sc_info->stat_lock); } } // Count up the work done since we last were here ret = 0; wr_lock(&(sc_info->stat_lock)); for (dev = 0; dev < sc_info->sc_count; dev++) { unsent = sc_info->sc_devs[dev].hashes_unsent; sc_info->sc_devs[dev].hashes_unsent = 0; sc_info->sc_devs[dev].hashes_sent += unsent; sc_info->hashes_sent += unsent; ret += unsent; } wr_unlock(&(sc_info->stat_lock)); return ret; } #define BFLSC_OVER_TEMP 75 /* Set the fanspeed to auto for any valid value <= BFLSC_OVER_TEMP, * or max for any value > BFLSC_OVER_TEMP or if we don't know the temperature. */ static void bflsc_set_fanspeed(struct cgpu_info *bflsc) { struct bflsc_info *sc_info = (struct bflsc_info *)bflsc->device_data; char buf[BFLSC_BUFSIZ+1]; char data[16+1]; int amount; bool sent; if ((bflsc->temp <= BFLSC_OVER_TEMP && bflsc->temp > 0 && sc_info->fanauto) || ((bflsc->temp > BFLSC_OVER_TEMP || !bflsc->temp) && !sc_info->fanauto)) return; if (bflsc->temp > BFLSC_OVER_TEMP || !bflsc->temp) { strcpy(data, BFLSC_FAN4); sc_info->fanauto = false; } else { strcpy(data, BFLSC_FANAUTO); sc_info->fanauto = true; } applog(LOG_DEBUG, "%s%i: temp=%.0f over=%d set fan to %s", bflsc->drv->name, bflsc->device_id, bflsc->temp, BFLSC_OVER_TEMP, data); mutex_lock(&bflsc->device_mutex); send_recv_ss(bflsc, 0, &sent, &amount, data, strlen(data), C_SETFAN, buf, sizeof(buf)-1, C_FANREPLY, READ_NL); mutex_unlock(&bflsc->device_mutex); } static bool bflsc_get_stats(struct cgpu_info *bflsc) { struct bflsc_info *sc_info = (struct bflsc_info *)(bflsc->device_data); bool allok = true; int i; // Device is gone if (bflsc->usbinfo.nodev) return false; for (i = 0; i < sc_info->sc_count; i++) { if (!bflsc_get_temp(bflsc, i)) allok = false; // Device is gone if (bflsc->usbinfo.nodev) return false; if (i < (sc_info->sc_count - 1)) cgsleep_ms(BFLSC_TEMP_SLEEPMS); } bflsc_set_fanspeed(bflsc); return allok; } static char *bflsc_set(struct cgpu_info *bflsc, char *option, char *setting, char *replybuf) { struct bflsc_info *sc_info = (struct bflsc_info *)(bflsc->device_data); int val; if (sc_info->ident != IDENT_BMA) { strcpy(replybuf, "no set options available"); return replybuf; } if (strcasecmp(option, "help") == 0) { sprintf(replybuf, "volt: range 0-9 clock: range 0-15"); return replybuf; } if (strcasecmp(option, "volt") == 0) { if (!setting || !*setting) { sprintf(replybuf, "missing volt setting"); return replybuf; } val = atoi(setting); if (val < 0 || val > 9) { sprintf(replybuf, "invalid volt: '%s' valid range 0-9", setting); } sc_info->volt_next = val; sc_info->volt_next_stat = true; return NULL; } if (strcasecmp(option, "clock") == 0) { if (!setting || !*setting) { sprintf(replybuf, "missing clock setting"); return replybuf; } val = atoi(setting); if (val < 0 || val > 15) { sprintf(replybuf, "invalid clock: '%s' valid range 0-15", setting); } sc_info->clock_next = val; sc_info->clock_next_stat = true; return NULL; } sprintf(replybuf, "Unknown option: %s", option); return replybuf; } static void bflsc_identify(struct cgpu_info *bflsc) { struct bflsc_info *sc_info = (struct bflsc_info *)(bflsc->device_data); // TODO: handle x-link sc_info->flash_led = true; } static bool bflsc_thread_init(struct thr_info *thr) { struct cgpu_info *bflsc = thr->cgpu; if (bflsc->usbinfo.nodev) return false; bflsc_initialise(bflsc); return true; } // there should be a new API function to return device info that isn't the standard stuff // instead of bflsc_api_stats - since the stats should really just be internal code info // and the new one should be UNusual device stats/extra details - like the stuff below static struct api_data *bflsc_api_stats(struct cgpu_info *bflsc) { struct bflsc_info *sc_info = (struct bflsc_info *)(bflsc->device_data); struct api_data *root = NULL; char data[4096]; char buf[256]; int i, j, off; size_t len; //if no x-link ... etc rd_lock(&(sc_info->stat_lock)); root = api_add_temp(root, "Temp1", &(sc_info->sc_devs[0].temp1), true); root = api_add_temp(root, "Temp2", &(sc_info->sc_devs[0].temp2), true); root = api_add_volts(root, "Vcc1", &(sc_info->sc_devs[0].vcc1), true); root = api_add_volts(root, "Vcc2", &(sc_info->sc_devs[0].vcc2), true); root = api_add_volts(root, "Vmain", &(sc_info->sc_devs[0].vmain), true); root = api_add_temp(root, "Temp1 Max", &(sc_info->sc_devs[0].temp1_max), true); root = api_add_temp(root, "Temp2 Max", &(sc_info->sc_devs[0].temp2_max), true); root = api_add_time(root, "Temp1 Max Time", &(sc_info->sc_devs[0].temp1_max_time), true); root = api_add_time(root, "Temp2 Max Time", &(sc_info->sc_devs[0].temp2_max_time), true); root = api_add_int(root, "Work Queued", &(sc_info->sc_devs[0].work_queued), true); root = api_add_int(root, "Work Complete", &(sc_info->sc_devs[0].work_complete), true); root = api_add_bool(root, "Overheat", &(sc_info->sc_devs[0].overheat), true); root = api_add_uint64(root, "Flush ID", &(sc_info->sc_devs[0].flush_id), true); root = api_add_uint64(root, "Result ID", &(sc_info->sc_devs[0].result_id), true); root = api_add_bool(root, "Flushed", &(sc_info->sc_devs[0].flushed), true); root = api_add_uint(root, "Scan Sleep", &(sc_info->scan_sleep_time), true); root = api_add_uint(root, "Results Sleep", &(sc_info->results_sleep_time), true); root = api_add_uint(root, "Work ms", &(sc_info->default_ms_work), true); buf[0] = '\0'; for (i = 0; i <= QUE_MAX_RESULTS + 1; i++) tailsprintf(buf, sizeof(buf), "%s%"PRIu64, (i > 0) ? "/" : "", sc_info->result_size[i]); root = api_add_string(root, "Result Size", buf, true); rd_unlock(&(sc_info->stat_lock)); i = (int)(sc_info->driver_version); root = api_add_int(root, "Driver", &i, true); root = api_add_string(root, "Firmware", sc_info->sc_devs[0].firmware, false); root = api_add_string(root, "Chips", sc_info->sc_devs[0].chips, false); root = api_add_int(root, "Que Size", &(sc_info->que_size), false); root = api_add_int(root, "Que Full", &(sc_info->que_full_enough), false); root = api_add_int(root, "Que Watermark", &(sc_info->que_watermark), false); root = api_add_int(root, "Que Low", &(sc_info->que_low), false); root = api_add_escape(root, "GetInfo", sc_info->sc_devs[0].getinfo, false); /* else a whole lot of something like these ... etc root = api_add_temp(root, "X-%d-Temp1", &(sc_info->temp1), false); root = api_add_temp(root, "X-%d-Temp2", &(sc_info->temp2), false); root = api_add_volts(root, "X-%d-Vcc1", &(sc_info->vcc1), false); root = api_add_volts(root, "X-%d-Vcc2", &(sc_info->vcc2), false); root = api_add_volts(root, "X-%d-Vmain", &(sc_info->vmain), false); */ if (sc_info->ident == IDENT_BMA) { for (i = 0; i < 128; i += 16) { data[0] = '\0'; off = 0; for (j = 0; j < 16; j++) { len = snprintf(data+off, sizeof(data)-off, "%s%"PRIu64, j > 0 ? " " : "", sc_info->cortex_nonces[i+j]); if (len >= (sizeof(data)-off)) off = sizeof(data)-1; else { if (len > 0) off += len; } } sprintf(buf, "Cortex %02x-%02x Nonces", i, i+15); root = api_add_string(root, buf, data, true); } for (i = 0; i < 128; i += 16) { data[0] = '\0'; off = 0; for (j = 0; j < 16; j++) { len = snprintf(data+off, sizeof(data)-off, "%s%"PRIu64, j > 0 ? " " : "", sc_info->cortex_hw[i+j]); if (len >= (sizeof(data)-off)) off = sizeof(data)-1; else { if (len > 0) off += len; } } sprintf(buf, "Cortex %02x-%02x HW Errors", i, i+15); root = api_add_string(root, buf, data, true); } } else if (sc_info->que_noncecount != QUE_NONCECOUNT_V1) { for (i = 0; i < 16; i++) { sprintf(buf, "Core%d Nonces", i); root = api_add_uint64(root, buf, &sc_info->core_nonces[i], false); } for (i = 0; i < 16; i++) { sprintf(buf, "Core%d HW Errors", i); root = api_add_uint64(root, buf, &sc_info->core_hw[i], false); } } return root; } struct device_drv bflsc_drv = { .drv_id = DRIVER_bflsc, .dname = "BitForceSC", .name = BFLSC_SINGLE, .drv_detect = bflsc_detect, .get_api_stats = bflsc_api_stats, .get_statline_before = get_bflsc_statline_before, .get_stats = bflsc_get_stats, .set_device = bflsc_set, .identify_device = bflsc_identify, .thread_prepare = bflsc_thread_prepare, .thread_init = bflsc_thread_init, .hash_work = hash_queued_work, .scanwork = bflsc_scanwork, .queue_full = bflsc_queue_full, .flush_work = bflsc_flush_work, .thread_shutdown = bflsc_shutdown, .thread_enable = bflsc_thread_enable };