ap.c 26 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012
  1. /*
  2. * WPA Supplicant - Basic AP mode support routines
  3. * Copyright (c) 2003-2009, Jouni Malinen <j@w1.fi>
  4. * Copyright (c) 2009, Atheros Communications
  5. *
  6. * This software may be distributed under the terms of the BSD license.
  7. * See README for more details.
  8. */
  9. #include "utils/includes.h"
  10. #include "utils/common.h"
  11. #include "utils/eloop.h"
  12. #include "utils/uuid.h"
  13. #include "common/ieee802_11_defs.h"
  14. #include "common/wpa_ctrl.h"
  15. #include "ap/hostapd.h"
  16. #include "ap/ap_config.h"
  17. #include "ap/ap_drv_ops.h"
  18. #ifdef NEED_AP_MLME
  19. #include "ap/ieee802_11.h"
  20. #endif /* NEED_AP_MLME */
  21. #include "ap/beacon.h"
  22. #include "ap/ieee802_1x.h"
  23. #include "ap/wps_hostapd.h"
  24. #include "ap/ctrl_iface_ap.h"
  25. #include "wps/wps.h"
  26. #include "common/ieee802_11_defs.h"
  27. #include "config_ssid.h"
  28. #include "config.h"
  29. #include "wpa_supplicant_i.h"
  30. #include "driver_i.h"
  31. #include "p2p_supplicant.h"
  32. #include "ap.h"
  33. #include "ap/sta_info.h"
  34. #include "notify.h"
  35. #ifdef CONFIG_WPS
  36. static void wpas_wps_ap_pin_timeout(void *eloop_data, void *user_ctx);
  37. #endif /* CONFIG_WPS */
  38. static int wpa_supplicant_conf_ap(struct wpa_supplicant *wpa_s,
  39. struct wpa_ssid *ssid,
  40. struct hostapd_config *conf)
  41. {
  42. struct hostapd_bss_config *bss = &conf->bss[0];
  43. int pairwise;
  44. conf->driver = wpa_s->driver;
  45. os_strlcpy(bss->iface, wpa_s->ifname, sizeof(bss->iface));
  46. if (ssid->frequency == 0) {
  47. /* default channel 11 */
  48. conf->hw_mode = HOSTAPD_MODE_IEEE80211G;
  49. conf->channel = 11;
  50. } else if (ssid->frequency >= 2412 && ssid->frequency <= 2472) {
  51. conf->hw_mode = HOSTAPD_MODE_IEEE80211G;
  52. conf->channel = (ssid->frequency - 2407) / 5;
  53. } else if ((ssid->frequency >= 5180 && ssid->frequency <= 5240) ||
  54. (ssid->frequency >= 5745 && ssid->frequency <= 5825)) {
  55. conf->hw_mode = HOSTAPD_MODE_IEEE80211A;
  56. conf->channel = (ssid->frequency - 5000) / 5;
  57. } else {
  58. wpa_printf(MSG_ERROR, "Unsupported AP mode frequency: %d MHz",
  59. ssid->frequency);
  60. return -1;
  61. }
  62. /* TODO: enable HT40 if driver supports it;
  63. * drop to 11b if driver does not support 11g */
  64. #ifdef CONFIG_IEEE80211N
  65. /*
  66. * Enable HT20 if the driver supports it, by setting conf->ieee80211n
  67. * and a mask of allowed capabilities within conf->ht_capab.
  68. * Using default config settings for: conf->ht_op_mode_fixed,
  69. * conf->secondary_channel, conf->require_ht
  70. */
  71. if (wpa_s->hw.modes) {
  72. struct hostapd_hw_modes *mode = NULL;
  73. int i, no_ht = 0;
  74. for (i = 0; i < wpa_s->hw.num_modes; i++) {
  75. if (wpa_s->hw.modes[i].mode == conf->hw_mode) {
  76. mode = &wpa_s->hw.modes[i];
  77. break;
  78. }
  79. }
  80. #ifdef CONFIG_HT_OVERRIDES
  81. if (ssid->disable_ht) {
  82. conf->ieee80211n = 0;
  83. conf->ht_capab = 0;
  84. no_ht = 1;
  85. }
  86. #endif /* CONFIG_HT_OVERRIDES */
  87. if (!no_ht && mode && mode->ht_capab) {
  88. conf->ieee80211n = 1;
  89. /*
  90. * white-list capabilities that won't cause issues
  91. * to connecting stations, while leaving the current
  92. * capabilities intact (currently disabled SMPS).
  93. */
  94. conf->ht_capab |= mode->ht_capab &
  95. (HT_CAP_INFO_GREEN_FIELD |
  96. HT_CAP_INFO_SHORT_GI20MHZ |
  97. HT_CAP_INFO_SHORT_GI40MHZ |
  98. HT_CAP_INFO_RX_STBC_MASK |
  99. HT_CAP_INFO_MAX_AMSDU_SIZE);
  100. }
  101. }
  102. #endif /* CONFIG_IEEE80211N */
  103. #ifdef CONFIG_P2P
  104. if (conf->hw_mode == HOSTAPD_MODE_IEEE80211G) {
  105. /* Remove 802.11b rates from supported and basic rate sets */
  106. int *list = os_malloc(4 * sizeof(int));
  107. if (list) {
  108. list[0] = 60;
  109. list[1] = 120;
  110. list[2] = 240;
  111. list[3] = -1;
  112. }
  113. conf->basic_rates = list;
  114. list = os_malloc(9 * sizeof(int));
  115. if (list) {
  116. list[0] = 60;
  117. list[1] = 90;
  118. list[2] = 120;
  119. list[3] = 180;
  120. list[4] = 240;
  121. list[5] = 360;
  122. list[6] = 480;
  123. list[7] = 540;
  124. list[8] = -1;
  125. }
  126. conf->supported_rates = list;
  127. }
  128. bss->isolate = !wpa_s->conf->p2p_intra_bss;
  129. #endif /* CONFIG_P2P */
  130. if (ssid->ssid_len == 0) {
  131. wpa_printf(MSG_ERROR, "No SSID configured for AP mode");
  132. return -1;
  133. }
  134. os_memcpy(bss->ssid.ssid, ssid->ssid, ssid->ssid_len);
  135. bss->ssid.ssid_len = ssid->ssid_len;
  136. bss->ssid.ssid_set = 1;
  137. bss->ignore_broadcast_ssid = ssid->ignore_broadcast_ssid;
  138. if (ssid->auth_alg)
  139. bss->auth_algs = ssid->auth_alg;
  140. if (wpa_key_mgmt_wpa_psk(ssid->key_mgmt))
  141. bss->wpa = ssid->proto;
  142. bss->wpa_key_mgmt = ssid->key_mgmt;
  143. bss->wpa_pairwise = ssid->pairwise_cipher;
  144. if (ssid->passphrase) {
  145. bss->ssid.wpa_passphrase = os_strdup(ssid->passphrase);
  146. } else if (ssid->psk_set) {
  147. os_free(bss->ssid.wpa_psk);
  148. bss->ssid.wpa_psk = os_zalloc(sizeof(struct hostapd_wpa_psk));
  149. if (bss->ssid.wpa_psk == NULL)
  150. return -1;
  151. os_memcpy(bss->ssid.wpa_psk->psk, ssid->psk, PMK_LEN);
  152. bss->ssid.wpa_psk->group = 1;
  153. } else if (ssid->wep_key_len[0] || ssid->wep_key_len[1] ||
  154. ssid->wep_key_len[2] || ssid->wep_key_len[3]) {
  155. struct hostapd_wep_keys *wep = &bss->ssid.wep;
  156. int i;
  157. for (i = 0; i < NUM_WEP_KEYS; i++) {
  158. if (ssid->wep_key_len[i] == 0)
  159. continue;
  160. wep->key[i] = os_malloc(ssid->wep_key_len[i]);
  161. if (wep->key[i] == NULL)
  162. return -1;
  163. os_memcpy(wep->key[i], ssid->wep_key[i],
  164. ssid->wep_key_len[i]);
  165. wep->len[i] = ssid->wep_key_len[i];
  166. }
  167. wep->idx = ssid->wep_tx_keyidx;
  168. wep->keys_set = 1;
  169. }
  170. if (ssid->ap_max_inactivity)
  171. bss->ap_max_inactivity = ssid->ap_max_inactivity;
  172. if (ssid->dtim_period)
  173. bss->dtim_period = ssid->dtim_period;
  174. /* Select group cipher based on the enabled pairwise cipher suites */
  175. pairwise = 0;
  176. if (bss->wpa & 1)
  177. pairwise |= bss->wpa_pairwise;
  178. if (bss->wpa & 2) {
  179. if (bss->rsn_pairwise == 0)
  180. bss->rsn_pairwise = bss->wpa_pairwise;
  181. pairwise |= bss->rsn_pairwise;
  182. }
  183. if (pairwise & WPA_CIPHER_TKIP)
  184. bss->wpa_group = WPA_CIPHER_TKIP;
  185. else
  186. bss->wpa_group = WPA_CIPHER_CCMP;
  187. if (bss->wpa && bss->ieee802_1x)
  188. bss->ssid.security_policy = SECURITY_WPA;
  189. else if (bss->wpa)
  190. bss->ssid.security_policy = SECURITY_WPA_PSK;
  191. else if (bss->ieee802_1x) {
  192. int cipher = WPA_CIPHER_NONE;
  193. bss->ssid.security_policy = SECURITY_IEEE_802_1X;
  194. bss->ssid.wep.default_len = bss->default_wep_key_len;
  195. if (bss->default_wep_key_len)
  196. cipher = bss->default_wep_key_len >= 13 ?
  197. WPA_CIPHER_WEP104 : WPA_CIPHER_WEP40;
  198. bss->wpa_group = cipher;
  199. bss->wpa_pairwise = cipher;
  200. bss->rsn_pairwise = cipher;
  201. } else if (bss->ssid.wep.keys_set) {
  202. int cipher = WPA_CIPHER_WEP40;
  203. if (bss->ssid.wep.len[0] >= 13)
  204. cipher = WPA_CIPHER_WEP104;
  205. bss->ssid.security_policy = SECURITY_STATIC_WEP;
  206. bss->wpa_group = cipher;
  207. bss->wpa_pairwise = cipher;
  208. bss->rsn_pairwise = cipher;
  209. } else {
  210. bss->ssid.security_policy = SECURITY_PLAINTEXT;
  211. bss->wpa_group = WPA_CIPHER_NONE;
  212. bss->wpa_pairwise = WPA_CIPHER_NONE;
  213. bss->rsn_pairwise = WPA_CIPHER_NONE;
  214. }
  215. #ifdef CONFIG_WPS
  216. /*
  217. * Enable WPS by default for open and WPA/WPA2-Personal network, but
  218. * require user interaction to actually use it. Only the internal
  219. * Registrar is supported.
  220. */
  221. if (bss->ssid.security_policy != SECURITY_WPA_PSK &&
  222. bss->ssid.security_policy != SECURITY_PLAINTEXT)
  223. goto no_wps;
  224. #ifdef CONFIG_WPS2
  225. if (bss->ssid.security_policy == SECURITY_WPA_PSK &&
  226. (!(pairwise & WPA_CIPHER_CCMP) || !(bss->wpa & 2)))
  227. goto no_wps; /* WPS2 does not allow WPA/TKIP-only
  228. * configuration */
  229. #endif /* CONFIG_WPS2 */
  230. bss->eap_server = 1;
  231. if (!ssid->ignore_broadcast_ssid)
  232. bss->wps_state = 2;
  233. bss->ap_setup_locked = 2;
  234. if (wpa_s->conf->config_methods)
  235. bss->config_methods = os_strdup(wpa_s->conf->config_methods);
  236. os_memcpy(bss->device_type, wpa_s->conf->device_type,
  237. WPS_DEV_TYPE_LEN);
  238. if (wpa_s->conf->device_name) {
  239. bss->device_name = os_strdup(wpa_s->conf->device_name);
  240. bss->friendly_name = os_strdup(wpa_s->conf->device_name);
  241. }
  242. if (wpa_s->conf->manufacturer)
  243. bss->manufacturer = os_strdup(wpa_s->conf->manufacturer);
  244. if (wpa_s->conf->model_name)
  245. bss->model_name = os_strdup(wpa_s->conf->model_name);
  246. if (wpa_s->conf->model_number)
  247. bss->model_number = os_strdup(wpa_s->conf->model_number);
  248. if (wpa_s->conf->serial_number)
  249. bss->serial_number = os_strdup(wpa_s->conf->serial_number);
  250. if (is_nil_uuid(wpa_s->conf->uuid))
  251. os_memcpy(bss->uuid, wpa_s->wps->uuid, WPS_UUID_LEN);
  252. else
  253. os_memcpy(bss->uuid, wpa_s->conf->uuid, WPS_UUID_LEN);
  254. os_memcpy(bss->os_version, wpa_s->conf->os_version, 4);
  255. bss->pbc_in_m1 = wpa_s->conf->pbc_in_m1;
  256. no_wps:
  257. #endif /* CONFIG_WPS */
  258. if (wpa_s->max_stations &&
  259. wpa_s->max_stations < wpa_s->conf->max_num_sta)
  260. bss->max_num_sta = wpa_s->max_stations;
  261. else
  262. bss->max_num_sta = wpa_s->conf->max_num_sta;
  263. bss->disassoc_low_ack = wpa_s->conf->disassoc_low_ack;
  264. return 0;
  265. }
  266. static void ap_public_action_rx(void *ctx, const u8 *buf, size_t len, int freq)
  267. {
  268. #ifdef CONFIG_P2P
  269. struct wpa_supplicant *wpa_s = ctx;
  270. const struct ieee80211_mgmt *mgmt;
  271. size_t hdr_len;
  272. mgmt = (const struct ieee80211_mgmt *) buf;
  273. hdr_len = (const u8 *) &mgmt->u.action.u.vs_public_action.action - buf;
  274. if (hdr_len > len)
  275. return;
  276. wpas_p2p_rx_action(wpa_s, mgmt->da, mgmt->sa, mgmt->bssid,
  277. mgmt->u.action.category,
  278. &mgmt->u.action.u.vs_public_action.action,
  279. len - hdr_len, freq);
  280. #endif /* CONFIG_P2P */
  281. }
  282. static void ap_wps_event_cb(void *ctx, enum wps_event event,
  283. union wps_event_data *data)
  284. {
  285. #ifdef CONFIG_P2P
  286. struct wpa_supplicant *wpa_s = ctx;
  287. if (event == WPS_EV_FAIL) {
  288. struct wps_event_fail *fail = &data->fail;
  289. if (wpa_s->parent && wpa_s->parent != wpa_s &&
  290. wpa_s == wpa_s->global->p2p_group_formation) {
  291. /*
  292. * src/ap/wps_hostapd.c has already sent this on the
  293. * main interface, so only send on the parent interface
  294. * here if needed.
  295. */
  296. wpa_msg(wpa_s->parent, MSG_INFO, WPS_EVENT_FAIL
  297. "msg=%d config_error=%d",
  298. fail->msg, fail->config_error);
  299. }
  300. wpas_p2p_wps_failed(wpa_s, fail);
  301. }
  302. #endif /* CONFIG_P2P */
  303. }
  304. static void ap_sta_authorized_cb(void *ctx, const u8 *mac_addr,
  305. int authorized, const u8 *p2p_dev_addr)
  306. {
  307. wpas_notify_sta_authorized(ctx, mac_addr, authorized, p2p_dev_addr);
  308. }
  309. static int ap_vendor_action_rx(void *ctx, const u8 *buf, size_t len, int freq)
  310. {
  311. #ifdef CONFIG_P2P
  312. struct wpa_supplicant *wpa_s = ctx;
  313. const struct ieee80211_mgmt *mgmt;
  314. size_t hdr_len;
  315. mgmt = (const struct ieee80211_mgmt *) buf;
  316. hdr_len = (const u8 *) &mgmt->u.action.u.vs_public_action.action - buf;
  317. if (hdr_len > len)
  318. return -1;
  319. wpas_p2p_rx_action(wpa_s, mgmt->da, mgmt->sa, mgmt->bssid,
  320. mgmt->u.action.category,
  321. &mgmt->u.action.u.vs_public_action.action,
  322. len - hdr_len, freq);
  323. #endif /* CONFIG_P2P */
  324. return 0;
  325. }
  326. static int ap_probe_req_rx(void *ctx, const u8 *sa, const u8 *da,
  327. const u8 *bssid, const u8 *ie, size_t ie_len,
  328. int ssi_signal)
  329. {
  330. #ifdef CONFIG_P2P
  331. struct wpa_supplicant *wpa_s = ctx;
  332. return wpas_p2p_probe_req_rx(wpa_s, sa, da, bssid, ie, ie_len,
  333. ssi_signal);
  334. #else /* CONFIG_P2P */
  335. return 0;
  336. #endif /* CONFIG_P2P */
  337. }
  338. static void ap_wps_reg_success_cb(void *ctx, const u8 *mac_addr,
  339. const u8 *uuid_e)
  340. {
  341. #ifdef CONFIG_P2P
  342. struct wpa_supplicant *wpa_s = ctx;
  343. wpas_p2p_wps_success(wpa_s, mac_addr, 1);
  344. #endif /* CONFIG_P2P */
  345. }
  346. static void wpas_ap_configured_cb(void *ctx)
  347. {
  348. struct wpa_supplicant *wpa_s = ctx;
  349. wpa_supplicant_set_state(wpa_s, WPA_COMPLETED);
  350. if (wpa_s->ap_configured_cb)
  351. wpa_s->ap_configured_cb(wpa_s->ap_configured_cb_ctx,
  352. wpa_s->ap_configured_cb_data);
  353. }
  354. int wpa_supplicant_create_ap(struct wpa_supplicant *wpa_s,
  355. struct wpa_ssid *ssid)
  356. {
  357. struct wpa_driver_associate_params params;
  358. struct hostapd_iface *hapd_iface;
  359. struct hostapd_config *conf;
  360. size_t i;
  361. if (ssid->ssid == NULL || ssid->ssid_len == 0) {
  362. wpa_printf(MSG_ERROR, "No SSID configured for AP mode");
  363. return -1;
  364. }
  365. wpa_supplicant_ap_deinit(wpa_s);
  366. wpa_printf(MSG_DEBUG, "Setting up AP (SSID='%s')",
  367. wpa_ssid_txt(ssid->ssid, ssid->ssid_len));
  368. os_memset(&params, 0, sizeof(params));
  369. params.ssid = ssid->ssid;
  370. params.ssid_len = ssid->ssid_len;
  371. switch (ssid->mode) {
  372. case WPAS_MODE_INFRA:
  373. params.mode = IEEE80211_MODE_INFRA;
  374. break;
  375. case WPAS_MODE_IBSS:
  376. params.mode = IEEE80211_MODE_IBSS;
  377. break;
  378. case WPAS_MODE_AP:
  379. case WPAS_MODE_P2P_GO:
  380. case WPAS_MODE_P2P_GROUP_FORMATION:
  381. params.mode = IEEE80211_MODE_AP;
  382. break;
  383. }
  384. params.freq = ssid->frequency;
  385. params.wpa_proto = ssid->proto;
  386. if (ssid->key_mgmt & WPA_KEY_MGMT_PSK)
  387. wpa_s->key_mgmt = WPA_KEY_MGMT_PSK;
  388. else
  389. wpa_s->key_mgmt = WPA_KEY_MGMT_NONE;
  390. params.key_mgmt_suite = key_mgmt2driver(wpa_s->key_mgmt);
  391. if (ssid->pairwise_cipher & WPA_CIPHER_CCMP)
  392. wpa_s->pairwise_cipher = WPA_CIPHER_CCMP;
  393. else if (ssid->pairwise_cipher & WPA_CIPHER_TKIP)
  394. wpa_s->pairwise_cipher = WPA_CIPHER_TKIP;
  395. else if (ssid->pairwise_cipher & WPA_CIPHER_NONE)
  396. wpa_s->pairwise_cipher = WPA_CIPHER_NONE;
  397. else {
  398. wpa_printf(MSG_WARNING, "WPA: Failed to select pairwise "
  399. "cipher.");
  400. return -1;
  401. }
  402. params.pairwise_suite = cipher_suite2driver(wpa_s->pairwise_cipher);
  403. params.group_suite = params.pairwise_suite;
  404. #ifdef CONFIG_P2P
  405. if (ssid->mode == WPAS_MODE_P2P_GO ||
  406. ssid->mode == WPAS_MODE_P2P_GROUP_FORMATION)
  407. params.p2p = 1;
  408. #endif /* CONFIG_P2P */
  409. if (wpa_s->parent->set_ap_uapsd)
  410. params.uapsd = wpa_s->parent->ap_uapsd;
  411. else
  412. params.uapsd = -1;
  413. if (wpa_drv_associate(wpa_s, &params) < 0) {
  414. wpa_msg(wpa_s, MSG_INFO, "Failed to start AP functionality");
  415. return -1;
  416. }
  417. wpa_s->ap_iface = hapd_iface = os_zalloc(sizeof(*wpa_s->ap_iface));
  418. if (hapd_iface == NULL)
  419. return -1;
  420. hapd_iface->owner = wpa_s;
  421. hapd_iface->drv_flags = wpa_s->drv_flags;
  422. hapd_iface->probe_resp_offloads = wpa_s->probe_resp_offloads;
  423. wpa_s->ap_iface->conf = conf = hostapd_config_defaults();
  424. if (conf == NULL) {
  425. wpa_supplicant_ap_deinit(wpa_s);
  426. return -1;
  427. }
  428. os_memcpy(wpa_s->ap_iface->conf->wmm_ac_params,
  429. wpa_s->conf->wmm_ac_params,
  430. sizeof(wpa_s->conf->wmm_ac_params));
  431. if (params.uapsd > 0) {
  432. conf->bss->wmm_enabled = 1;
  433. conf->bss->wmm_uapsd = 1;
  434. }
  435. if (wpa_supplicant_conf_ap(wpa_s, ssid, conf)) {
  436. wpa_printf(MSG_ERROR, "Failed to create AP configuration");
  437. wpa_supplicant_ap_deinit(wpa_s);
  438. return -1;
  439. }
  440. #ifdef CONFIG_P2P
  441. if (ssid->mode == WPAS_MODE_P2P_GO)
  442. conf->bss[0].p2p = P2P_ENABLED | P2P_GROUP_OWNER;
  443. else if (ssid->mode == WPAS_MODE_P2P_GROUP_FORMATION)
  444. conf->bss[0].p2p = P2P_ENABLED | P2P_GROUP_OWNER |
  445. P2P_GROUP_FORMATION;
  446. #endif /* CONFIG_P2P */
  447. hapd_iface->num_bss = conf->num_bss;
  448. hapd_iface->bss = os_calloc(conf->num_bss,
  449. sizeof(struct hostapd_data *));
  450. if (hapd_iface->bss == NULL) {
  451. wpa_supplicant_ap_deinit(wpa_s);
  452. return -1;
  453. }
  454. for (i = 0; i < conf->num_bss; i++) {
  455. hapd_iface->bss[i] =
  456. hostapd_alloc_bss_data(hapd_iface, conf,
  457. &conf->bss[i]);
  458. if (hapd_iface->bss[i] == NULL) {
  459. wpa_supplicant_ap_deinit(wpa_s);
  460. return -1;
  461. }
  462. hapd_iface->bss[i]->msg_ctx = wpa_s;
  463. hapd_iface->bss[i]->msg_ctx_parent = wpa_s->parent;
  464. hapd_iface->bss[i]->public_action_cb = ap_public_action_rx;
  465. hapd_iface->bss[i]->public_action_cb_ctx = wpa_s;
  466. hapd_iface->bss[i]->vendor_action_cb = ap_vendor_action_rx;
  467. hapd_iface->bss[i]->vendor_action_cb_ctx = wpa_s;
  468. hostapd_register_probereq_cb(hapd_iface->bss[i],
  469. ap_probe_req_rx, wpa_s);
  470. hapd_iface->bss[i]->wps_reg_success_cb = ap_wps_reg_success_cb;
  471. hapd_iface->bss[i]->wps_reg_success_cb_ctx = wpa_s;
  472. hapd_iface->bss[i]->wps_event_cb = ap_wps_event_cb;
  473. hapd_iface->bss[i]->wps_event_cb_ctx = wpa_s;
  474. hapd_iface->bss[i]->sta_authorized_cb = ap_sta_authorized_cb;
  475. hapd_iface->bss[i]->sta_authorized_cb_ctx = wpa_s;
  476. #ifdef CONFIG_P2P
  477. hapd_iface->bss[i]->p2p = wpa_s->global->p2p;
  478. hapd_iface->bss[i]->p2p_group = wpas_p2p_group_init(wpa_s,
  479. ssid);
  480. #endif /* CONFIG_P2P */
  481. hapd_iface->bss[i]->setup_complete_cb = wpas_ap_configured_cb;
  482. hapd_iface->bss[i]->setup_complete_cb_ctx = wpa_s;
  483. }
  484. os_memcpy(hapd_iface->bss[0]->own_addr, wpa_s->own_addr, ETH_ALEN);
  485. hapd_iface->bss[0]->driver = wpa_s->driver;
  486. hapd_iface->bss[0]->drv_priv = wpa_s->drv_priv;
  487. wpa_s->current_ssid = ssid;
  488. os_memcpy(wpa_s->bssid, wpa_s->own_addr, ETH_ALEN);
  489. wpa_s->assoc_freq = ssid->frequency;
  490. if (hostapd_setup_interface(wpa_s->ap_iface)) {
  491. wpa_printf(MSG_ERROR, "Failed to initialize AP interface");
  492. wpa_supplicant_ap_deinit(wpa_s);
  493. return -1;
  494. }
  495. return 0;
  496. }
  497. void wpa_supplicant_ap_deinit(struct wpa_supplicant *wpa_s)
  498. {
  499. #ifdef CONFIG_WPS
  500. eloop_cancel_timeout(wpas_wps_ap_pin_timeout, wpa_s, NULL);
  501. #endif /* CONFIG_WPS */
  502. if (wpa_s->ap_iface == NULL)
  503. return;
  504. wpa_s->current_ssid = NULL;
  505. wpa_s->assoc_freq = 0;
  506. wpa_s->reassociated_connection = 0;
  507. #ifdef CONFIG_P2P
  508. if (wpa_s->ap_iface->bss)
  509. wpa_s->ap_iface->bss[0]->p2p_group = NULL;
  510. wpas_p2p_group_deinit(wpa_s);
  511. #endif /* CONFIG_P2P */
  512. hostapd_interface_deinit(wpa_s->ap_iface);
  513. hostapd_interface_free(wpa_s->ap_iface);
  514. wpa_s->ap_iface = NULL;
  515. wpa_drv_deinit_ap(wpa_s);
  516. }
  517. void ap_tx_status(void *ctx, const u8 *addr,
  518. const u8 *buf, size_t len, int ack)
  519. {
  520. #ifdef NEED_AP_MLME
  521. struct wpa_supplicant *wpa_s = ctx;
  522. hostapd_tx_status(wpa_s->ap_iface->bss[0], addr, buf, len, ack);
  523. #endif /* NEED_AP_MLME */
  524. }
  525. void ap_eapol_tx_status(void *ctx, const u8 *dst,
  526. const u8 *data, size_t len, int ack)
  527. {
  528. #ifdef NEED_AP_MLME
  529. struct wpa_supplicant *wpa_s = ctx;
  530. hostapd_tx_status(wpa_s->ap_iface->bss[0], dst, data, len, ack);
  531. #endif /* NEED_AP_MLME */
  532. }
  533. void ap_client_poll_ok(void *ctx, const u8 *addr)
  534. {
  535. #ifdef NEED_AP_MLME
  536. struct wpa_supplicant *wpa_s = ctx;
  537. if (wpa_s->ap_iface)
  538. hostapd_client_poll_ok(wpa_s->ap_iface->bss[0], addr);
  539. #endif /* NEED_AP_MLME */
  540. }
  541. void ap_rx_from_unknown_sta(void *ctx, const u8 *addr, int wds)
  542. {
  543. #ifdef NEED_AP_MLME
  544. struct wpa_supplicant *wpa_s = ctx;
  545. ieee802_11_rx_from_unknown(wpa_s->ap_iface->bss[0], addr, wds);
  546. #endif /* NEED_AP_MLME */
  547. }
  548. void ap_mgmt_rx(void *ctx, struct rx_mgmt *rx_mgmt)
  549. {
  550. #ifdef NEED_AP_MLME
  551. struct wpa_supplicant *wpa_s = ctx;
  552. struct hostapd_frame_info fi;
  553. os_memset(&fi, 0, sizeof(fi));
  554. fi.datarate = rx_mgmt->datarate;
  555. fi.ssi_signal = rx_mgmt->ssi_signal;
  556. ieee802_11_mgmt(wpa_s->ap_iface->bss[0], rx_mgmt->frame,
  557. rx_mgmt->frame_len, &fi);
  558. #endif /* NEED_AP_MLME */
  559. }
  560. void ap_mgmt_tx_cb(void *ctx, const u8 *buf, size_t len, u16 stype, int ok)
  561. {
  562. #ifdef NEED_AP_MLME
  563. struct wpa_supplicant *wpa_s = ctx;
  564. ieee802_11_mgmt_cb(wpa_s->ap_iface->bss[0], buf, len, stype, ok);
  565. #endif /* NEED_AP_MLME */
  566. }
  567. void wpa_supplicant_ap_rx_eapol(struct wpa_supplicant *wpa_s,
  568. const u8 *src_addr, const u8 *buf, size_t len)
  569. {
  570. ieee802_1x_receive(wpa_s->ap_iface->bss[0], src_addr, buf, len);
  571. }
  572. #ifdef CONFIG_WPS
  573. int wpa_supplicant_ap_wps_pbc(struct wpa_supplicant *wpa_s, const u8 *bssid,
  574. const u8 *p2p_dev_addr)
  575. {
  576. if (!wpa_s->ap_iface)
  577. return -1;
  578. return hostapd_wps_button_pushed(wpa_s->ap_iface->bss[0],
  579. p2p_dev_addr);
  580. }
  581. int wpa_supplicant_ap_wps_cancel(struct wpa_supplicant *wpa_s)
  582. {
  583. struct wps_registrar *reg;
  584. int reg_sel = 0, wps_sta = 0;
  585. if (!wpa_s->ap_iface || !wpa_s->ap_iface->bss[0]->wps)
  586. return -1;
  587. reg = wpa_s->ap_iface->bss[0]->wps->registrar;
  588. reg_sel = wps_registrar_wps_cancel(reg);
  589. wps_sta = ap_for_each_sta(wpa_s->ap_iface->bss[0],
  590. ap_sta_wps_cancel, NULL);
  591. if (!reg_sel && !wps_sta) {
  592. wpa_printf(MSG_DEBUG, "No WPS operation in progress at this "
  593. "time");
  594. return -1;
  595. }
  596. /*
  597. * There are 2 cases to return wps cancel as success:
  598. * 1. When wps cancel was initiated but no connection has been
  599. * established with client yet.
  600. * 2. Client is in the middle of exchanging WPS messages.
  601. */
  602. return 0;
  603. }
  604. int wpa_supplicant_ap_wps_pin(struct wpa_supplicant *wpa_s, const u8 *bssid,
  605. const char *pin, char *buf, size_t buflen)
  606. {
  607. int ret, ret_len = 0;
  608. if (!wpa_s->ap_iface)
  609. return -1;
  610. if (pin == NULL) {
  611. unsigned int rpin = wps_generate_pin();
  612. ret_len = os_snprintf(buf, buflen, "%08d", rpin);
  613. pin = buf;
  614. } else
  615. ret_len = os_snprintf(buf, buflen, "%s", pin);
  616. ret = hostapd_wps_add_pin(wpa_s->ap_iface->bss[0], bssid, "any", pin,
  617. 0);
  618. if (ret)
  619. return -1;
  620. return ret_len;
  621. }
  622. static void wpas_wps_ap_pin_timeout(void *eloop_data, void *user_ctx)
  623. {
  624. struct wpa_supplicant *wpa_s = eloop_data;
  625. wpa_printf(MSG_DEBUG, "WPS: AP PIN timed out");
  626. wpas_wps_ap_pin_disable(wpa_s);
  627. }
  628. static void wpas_wps_ap_pin_enable(struct wpa_supplicant *wpa_s, int timeout)
  629. {
  630. struct hostapd_data *hapd;
  631. if (wpa_s->ap_iface == NULL)
  632. return;
  633. hapd = wpa_s->ap_iface->bss[0];
  634. wpa_printf(MSG_DEBUG, "WPS: Enabling AP PIN (timeout=%d)", timeout);
  635. hapd->ap_pin_failures = 0;
  636. eloop_cancel_timeout(wpas_wps_ap_pin_timeout, wpa_s, NULL);
  637. if (timeout > 0)
  638. eloop_register_timeout(timeout, 0,
  639. wpas_wps_ap_pin_timeout, wpa_s, NULL);
  640. }
  641. void wpas_wps_ap_pin_disable(struct wpa_supplicant *wpa_s)
  642. {
  643. struct hostapd_data *hapd;
  644. if (wpa_s->ap_iface == NULL)
  645. return;
  646. wpa_printf(MSG_DEBUG, "WPS: Disabling AP PIN");
  647. hapd = wpa_s->ap_iface->bss[0];
  648. os_free(hapd->conf->ap_pin);
  649. hapd->conf->ap_pin = NULL;
  650. eloop_cancel_timeout(wpas_wps_ap_pin_timeout, wpa_s, NULL);
  651. }
  652. const char * wpas_wps_ap_pin_random(struct wpa_supplicant *wpa_s, int timeout)
  653. {
  654. struct hostapd_data *hapd;
  655. unsigned int pin;
  656. char pin_txt[9];
  657. if (wpa_s->ap_iface == NULL)
  658. return NULL;
  659. hapd = wpa_s->ap_iface->bss[0];
  660. pin = wps_generate_pin();
  661. os_snprintf(pin_txt, sizeof(pin_txt), "%08u", pin);
  662. os_free(hapd->conf->ap_pin);
  663. hapd->conf->ap_pin = os_strdup(pin_txt);
  664. if (hapd->conf->ap_pin == NULL)
  665. return NULL;
  666. wpas_wps_ap_pin_enable(wpa_s, timeout);
  667. return hapd->conf->ap_pin;
  668. }
  669. const char * wpas_wps_ap_pin_get(struct wpa_supplicant *wpa_s)
  670. {
  671. struct hostapd_data *hapd;
  672. if (wpa_s->ap_iface == NULL)
  673. return NULL;
  674. hapd = wpa_s->ap_iface->bss[0];
  675. return hapd->conf->ap_pin;
  676. }
  677. int wpas_wps_ap_pin_set(struct wpa_supplicant *wpa_s, const char *pin,
  678. int timeout)
  679. {
  680. struct hostapd_data *hapd;
  681. char pin_txt[9];
  682. int ret;
  683. if (wpa_s->ap_iface == NULL)
  684. return -1;
  685. hapd = wpa_s->ap_iface->bss[0];
  686. ret = os_snprintf(pin_txt, sizeof(pin_txt), "%s", pin);
  687. if (ret < 0 || ret >= (int) sizeof(pin_txt))
  688. return -1;
  689. os_free(hapd->conf->ap_pin);
  690. hapd->conf->ap_pin = os_strdup(pin_txt);
  691. if (hapd->conf->ap_pin == NULL)
  692. return -1;
  693. wpas_wps_ap_pin_enable(wpa_s, timeout);
  694. return 0;
  695. }
  696. void wpa_supplicant_ap_pwd_auth_fail(struct wpa_supplicant *wpa_s)
  697. {
  698. struct hostapd_data *hapd;
  699. if (wpa_s->ap_iface == NULL)
  700. return;
  701. hapd = wpa_s->ap_iface->bss[0];
  702. /*
  703. * Registrar failed to prove its knowledge of the AP PIN. Disable AP
  704. * PIN if this happens multiple times to slow down brute force attacks.
  705. */
  706. hapd->ap_pin_failures++;
  707. wpa_printf(MSG_DEBUG, "WPS: AP PIN authentication failure number %u",
  708. hapd->ap_pin_failures);
  709. if (hapd->ap_pin_failures < 3)
  710. return;
  711. wpa_printf(MSG_DEBUG, "WPS: Disable AP PIN");
  712. hapd->ap_pin_failures = 0;
  713. os_free(hapd->conf->ap_pin);
  714. hapd->conf->ap_pin = NULL;
  715. }
  716. #endif /* CONFIG_WPS */
  717. #ifdef CONFIG_CTRL_IFACE
  718. int ap_ctrl_iface_sta_first(struct wpa_supplicant *wpa_s,
  719. char *buf, size_t buflen)
  720. {
  721. if (wpa_s->ap_iface == NULL)
  722. return -1;
  723. return hostapd_ctrl_iface_sta_first(wpa_s->ap_iface->bss[0],
  724. buf, buflen);
  725. }
  726. int ap_ctrl_iface_sta(struct wpa_supplicant *wpa_s, const char *txtaddr,
  727. char *buf, size_t buflen)
  728. {
  729. if (wpa_s->ap_iface == NULL)
  730. return -1;
  731. return hostapd_ctrl_iface_sta(wpa_s->ap_iface->bss[0], txtaddr,
  732. buf, buflen);
  733. }
  734. int ap_ctrl_iface_sta_next(struct wpa_supplicant *wpa_s, const char *txtaddr,
  735. char *buf, size_t buflen)
  736. {
  737. if (wpa_s->ap_iface == NULL)
  738. return -1;
  739. return hostapd_ctrl_iface_sta_next(wpa_s->ap_iface->bss[0], txtaddr,
  740. buf, buflen);
  741. }
  742. int ap_ctrl_iface_sta_disassociate(struct wpa_supplicant *wpa_s,
  743. const char *txtaddr)
  744. {
  745. if (wpa_s->ap_iface == NULL)
  746. return -1;
  747. return hostapd_ctrl_iface_disassociate(wpa_s->ap_iface->bss[0],
  748. txtaddr);
  749. }
  750. int ap_ctrl_iface_sta_deauthenticate(struct wpa_supplicant *wpa_s,
  751. const char *txtaddr)
  752. {
  753. if (wpa_s->ap_iface == NULL)
  754. return -1;
  755. return hostapd_ctrl_iface_deauthenticate(wpa_s->ap_iface->bss[0],
  756. txtaddr);
  757. }
  758. int ap_ctrl_iface_wpa_get_status(struct wpa_supplicant *wpa_s, char *buf,
  759. size_t buflen, int verbose)
  760. {
  761. char *pos = buf, *end = buf + buflen;
  762. int ret;
  763. struct hostapd_bss_config *conf;
  764. if (wpa_s->ap_iface == NULL)
  765. return -1;
  766. conf = wpa_s->ap_iface->bss[0]->conf;
  767. if (conf->wpa == 0)
  768. return 0;
  769. ret = os_snprintf(pos, end - pos,
  770. "pairwise_cipher=%s\n"
  771. "group_cipher=%s\n"
  772. "key_mgmt=%s\n",
  773. wpa_cipher_txt(conf->rsn_pairwise),
  774. wpa_cipher_txt(conf->wpa_group),
  775. wpa_key_mgmt_txt(conf->wpa_key_mgmt,
  776. conf->wpa));
  777. if (ret < 0 || ret >= end - pos)
  778. return pos - buf;
  779. pos += ret;
  780. return pos - buf;
  781. }
  782. #endif /* CONFIG_CTRL_IFACE */
  783. int wpa_supplicant_ap_update_beacon(struct wpa_supplicant *wpa_s)
  784. {
  785. struct hostapd_iface *iface = wpa_s->ap_iface;
  786. struct wpa_ssid *ssid = wpa_s->current_ssid;
  787. struct hostapd_data *hapd;
  788. if (ssid == NULL || wpa_s->ap_iface == NULL ||
  789. ssid->mode == WPAS_MODE_INFRA ||
  790. ssid->mode == WPAS_MODE_IBSS)
  791. return -1;
  792. #ifdef CONFIG_P2P
  793. if (ssid->mode == WPAS_MODE_P2P_GO)
  794. iface->conf->bss[0].p2p = P2P_ENABLED | P2P_GROUP_OWNER;
  795. else if (ssid->mode == WPAS_MODE_P2P_GROUP_FORMATION)
  796. iface->conf->bss[0].p2p = P2P_ENABLED | P2P_GROUP_OWNER |
  797. P2P_GROUP_FORMATION;
  798. #endif /* CONFIG_P2P */
  799. hapd = iface->bss[0];
  800. if (hapd->drv_priv == NULL)
  801. return -1;
  802. ieee802_11_set_beacons(iface);
  803. hostapd_set_ap_wps_ie(hapd);
  804. return 0;
  805. }
  806. void wpas_ap_ch_switch(struct wpa_supplicant *wpa_s, int freq, int ht,
  807. int offset)
  808. {
  809. if (!wpa_s->ap_iface)
  810. return;
  811. wpa_s->assoc_freq = freq;
  812. hostapd_event_ch_switch(wpa_s->ap_iface->bss[0], freq, ht, offset);
  813. }
  814. int wpa_supplicant_ap_mac_addr_filter(struct wpa_supplicant *wpa_s,
  815. const u8 *addr)
  816. {
  817. struct hostapd_data *hapd;
  818. struct hostapd_bss_config *conf;
  819. if (!wpa_s->ap_iface)
  820. return -1;
  821. if (addr)
  822. wpa_printf(MSG_DEBUG, "AP: Set MAC address filter: " MACSTR,
  823. MAC2STR(addr));
  824. else
  825. wpa_printf(MSG_DEBUG, "AP: Clear MAC address filter");
  826. hapd = wpa_s->ap_iface->bss[0];
  827. conf = hapd->conf;
  828. os_free(conf->accept_mac);
  829. conf->accept_mac = NULL;
  830. conf->num_accept_mac = 0;
  831. os_free(conf->deny_mac);
  832. conf->deny_mac = NULL;
  833. conf->num_deny_mac = 0;
  834. if (addr == NULL) {
  835. conf->macaddr_acl = ACCEPT_UNLESS_DENIED;
  836. return 0;
  837. }
  838. conf->macaddr_acl = DENY_UNLESS_ACCEPTED;
  839. conf->accept_mac = os_zalloc(sizeof(struct mac_acl_entry));
  840. if (conf->accept_mac == NULL)
  841. return -1;
  842. os_memcpy(conf->accept_mac[0].addr, addr, ETH_ALEN);
  843. conf->num_accept_mac = 1;
  844. return 0;
  845. }