ap.c 31 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219
  1. /*
  2. * WPA Supplicant - Basic AP mode support routines
  3. * Copyright (c) 2003-2009, Jouni Malinen <j@w1.fi>
  4. * Copyright (c) 2009, Atheros Communications
  5. *
  6. * This software may be distributed under the terms of the BSD license.
  7. * See README for more details.
  8. */
  9. #include "utils/includes.h"
  10. #include "utils/common.h"
  11. #include "utils/eloop.h"
  12. #include "utils/uuid.h"
  13. #include "common/ieee802_11_defs.h"
  14. #include "common/wpa_ctrl.h"
  15. #include "eapol_supp/eapol_supp_sm.h"
  16. #include "crypto/dh_group5.h"
  17. #include "ap/hostapd.h"
  18. #include "ap/ap_config.h"
  19. #include "ap/ap_drv_ops.h"
  20. #ifdef NEED_AP_MLME
  21. #include "ap/ieee802_11.h"
  22. #endif /* NEED_AP_MLME */
  23. #include "ap/beacon.h"
  24. #include "ap/ieee802_1x.h"
  25. #include "ap/wps_hostapd.h"
  26. #include "ap/ctrl_iface_ap.h"
  27. #include "wps/wps.h"
  28. #include "common/ieee802_11_defs.h"
  29. #include "config_ssid.h"
  30. #include "config.h"
  31. #include "wpa_supplicant_i.h"
  32. #include "driver_i.h"
  33. #include "p2p_supplicant.h"
  34. #include "ap.h"
  35. #include "ap/sta_info.h"
  36. #include "notify.h"
  37. #ifdef CONFIG_WPS
  38. static void wpas_wps_ap_pin_timeout(void *eloop_data, void *user_ctx);
  39. #endif /* CONFIG_WPS */
  40. #ifdef CONFIG_IEEE80211N
  41. static void wpas_conf_ap_vht(struct wpa_supplicant *wpa_s,
  42. struct hostapd_config *conf,
  43. struct hostapd_hw_modes *mode)
  44. {
  45. #ifdef CONFIG_P2P
  46. u8 center_chan = 0;
  47. u8 channel = conf->channel;
  48. if (!conf->secondary_channel)
  49. goto no_vht;
  50. center_chan = wpas_p2p_get_vht80_center(wpa_s, mode, channel);
  51. if (!center_chan)
  52. goto no_vht;
  53. /* Use 80 MHz channel */
  54. conf->vht_oper_chwidth = 1;
  55. conf->vht_oper_centr_freq_seg0_idx = center_chan;
  56. return;
  57. no_vht:
  58. conf->vht_oper_centr_freq_seg0_idx =
  59. channel + conf->secondary_channel * 2;
  60. #else /* CONFIG_P2P */
  61. conf->vht_oper_centr_freq_seg0_idx =
  62. conf->channel + conf->secondary_channel * 2;
  63. #endif /* CONFIG_P2P */
  64. }
  65. #endif /* CONFIG_IEEE80211N */
  66. static int wpa_supplicant_conf_ap(struct wpa_supplicant *wpa_s,
  67. struct wpa_ssid *ssid,
  68. struct hostapd_config *conf)
  69. {
  70. struct hostapd_bss_config *bss = conf->bss[0];
  71. conf->driver = wpa_s->driver;
  72. os_strlcpy(bss->iface, wpa_s->ifname, sizeof(bss->iface));
  73. conf->hw_mode = ieee80211_freq_to_chan(ssid->frequency,
  74. &conf->channel);
  75. if (conf->hw_mode == NUM_HOSTAPD_MODES) {
  76. wpa_printf(MSG_ERROR, "Unsupported AP mode frequency: %d MHz",
  77. ssid->frequency);
  78. return -1;
  79. }
  80. /* TODO: enable HT40 if driver supports it;
  81. * drop to 11b if driver does not support 11g */
  82. #ifdef CONFIG_IEEE80211N
  83. /*
  84. * Enable HT20 if the driver supports it, by setting conf->ieee80211n
  85. * and a mask of allowed capabilities within conf->ht_capab.
  86. * Using default config settings for: conf->ht_op_mode_fixed,
  87. * conf->secondary_channel, conf->require_ht
  88. */
  89. if (wpa_s->hw.modes) {
  90. struct hostapd_hw_modes *mode = NULL;
  91. int i, no_ht = 0;
  92. for (i = 0; i < wpa_s->hw.num_modes; i++) {
  93. if (wpa_s->hw.modes[i].mode == conf->hw_mode) {
  94. mode = &wpa_s->hw.modes[i];
  95. break;
  96. }
  97. }
  98. #ifdef CONFIG_HT_OVERRIDES
  99. if (ssid->disable_ht) {
  100. conf->ieee80211n = 0;
  101. conf->ht_capab = 0;
  102. no_ht = 1;
  103. }
  104. #endif /* CONFIG_HT_OVERRIDES */
  105. if (!no_ht && mode && mode->ht_capab) {
  106. conf->ieee80211n = 1;
  107. #ifdef CONFIG_P2P
  108. if (conf->hw_mode == HOSTAPD_MODE_IEEE80211A &&
  109. (mode->ht_capab &
  110. HT_CAP_INFO_SUPP_CHANNEL_WIDTH_SET) &&
  111. ssid->ht40)
  112. conf->secondary_channel =
  113. wpas_p2p_get_ht40_mode(wpa_s, mode,
  114. conf->channel);
  115. if (conf->secondary_channel)
  116. conf->ht_capab |=
  117. HT_CAP_INFO_SUPP_CHANNEL_WIDTH_SET;
  118. #endif /* CONFIG_P2P */
  119. /*
  120. * white-list capabilities that won't cause issues
  121. * to connecting stations, while leaving the current
  122. * capabilities intact (currently disabled SMPS).
  123. */
  124. conf->ht_capab |= mode->ht_capab &
  125. (HT_CAP_INFO_GREEN_FIELD |
  126. HT_CAP_INFO_SHORT_GI20MHZ |
  127. HT_CAP_INFO_SHORT_GI40MHZ |
  128. HT_CAP_INFO_RX_STBC_MASK |
  129. HT_CAP_INFO_MAX_AMSDU_SIZE);
  130. if (mode->vht_capab && ssid->vht) {
  131. conf->ieee80211ac = 1;
  132. wpas_conf_ap_vht(wpa_s, conf, mode);
  133. }
  134. }
  135. }
  136. #endif /* CONFIG_IEEE80211N */
  137. #ifdef CONFIG_P2P
  138. if (conf->hw_mode == HOSTAPD_MODE_IEEE80211G &&
  139. (ssid->mode == WPAS_MODE_P2P_GO ||
  140. ssid->mode == WPAS_MODE_P2P_GROUP_FORMATION)) {
  141. /* Remove 802.11b rates from supported and basic rate sets */
  142. int *list = os_malloc(4 * sizeof(int));
  143. if (list) {
  144. list[0] = 60;
  145. list[1] = 120;
  146. list[2] = 240;
  147. list[3] = -1;
  148. }
  149. conf->basic_rates = list;
  150. list = os_malloc(9 * sizeof(int));
  151. if (list) {
  152. list[0] = 60;
  153. list[1] = 90;
  154. list[2] = 120;
  155. list[3] = 180;
  156. list[4] = 240;
  157. list[5] = 360;
  158. list[6] = 480;
  159. list[7] = 540;
  160. list[8] = -1;
  161. }
  162. conf->supported_rates = list;
  163. }
  164. bss->isolate = !wpa_s->conf->p2p_intra_bss;
  165. bss->force_per_enrollee_psk = wpa_s->global->p2p_per_sta_psk;
  166. if (ssid->p2p_group) {
  167. os_memcpy(bss->ip_addr_go, wpa_s->parent->conf->ip_addr_go, 4);
  168. os_memcpy(bss->ip_addr_mask, wpa_s->parent->conf->ip_addr_mask,
  169. 4);
  170. os_memcpy(bss->ip_addr_start,
  171. wpa_s->parent->conf->ip_addr_start, 4);
  172. os_memcpy(bss->ip_addr_end, wpa_s->parent->conf->ip_addr_end,
  173. 4);
  174. }
  175. #endif /* CONFIG_P2P */
  176. if (ssid->ssid_len == 0) {
  177. wpa_printf(MSG_ERROR, "No SSID configured for AP mode");
  178. return -1;
  179. }
  180. os_memcpy(bss->ssid.ssid, ssid->ssid, ssid->ssid_len);
  181. bss->ssid.ssid_len = ssid->ssid_len;
  182. bss->ssid.ssid_set = 1;
  183. bss->ignore_broadcast_ssid = ssid->ignore_broadcast_ssid;
  184. if (ssid->auth_alg)
  185. bss->auth_algs = ssid->auth_alg;
  186. if (wpa_key_mgmt_wpa_psk(ssid->key_mgmt))
  187. bss->wpa = ssid->proto;
  188. bss->wpa_key_mgmt = ssid->key_mgmt;
  189. bss->wpa_pairwise = ssid->pairwise_cipher;
  190. if (ssid->psk_set) {
  191. os_free(bss->ssid.wpa_psk);
  192. bss->ssid.wpa_psk = os_zalloc(sizeof(struct hostapd_wpa_psk));
  193. if (bss->ssid.wpa_psk == NULL)
  194. return -1;
  195. os_memcpy(bss->ssid.wpa_psk->psk, ssid->psk, PMK_LEN);
  196. bss->ssid.wpa_psk->group = 1;
  197. } else if (ssid->passphrase) {
  198. bss->ssid.wpa_passphrase = os_strdup(ssid->passphrase);
  199. } else if (ssid->wep_key_len[0] || ssid->wep_key_len[1] ||
  200. ssid->wep_key_len[2] || ssid->wep_key_len[3]) {
  201. struct hostapd_wep_keys *wep = &bss->ssid.wep;
  202. int i;
  203. for (i = 0; i < NUM_WEP_KEYS; i++) {
  204. if (ssid->wep_key_len[i] == 0)
  205. continue;
  206. wep->key[i] = os_malloc(ssid->wep_key_len[i]);
  207. if (wep->key[i] == NULL)
  208. return -1;
  209. os_memcpy(wep->key[i], ssid->wep_key[i],
  210. ssid->wep_key_len[i]);
  211. wep->len[i] = ssid->wep_key_len[i];
  212. }
  213. wep->idx = ssid->wep_tx_keyidx;
  214. wep->keys_set = 1;
  215. }
  216. if (ssid->ap_max_inactivity)
  217. bss->ap_max_inactivity = ssid->ap_max_inactivity;
  218. if (ssid->dtim_period)
  219. bss->dtim_period = ssid->dtim_period;
  220. else if (wpa_s->conf->dtim_period)
  221. bss->dtim_period = wpa_s->conf->dtim_period;
  222. if (ssid->beacon_int)
  223. conf->beacon_int = ssid->beacon_int;
  224. else if (wpa_s->conf->beacon_int)
  225. conf->beacon_int = wpa_s->conf->beacon_int;
  226. if ((bss->wpa & 2) && bss->rsn_pairwise == 0)
  227. bss->rsn_pairwise = bss->wpa_pairwise;
  228. bss->wpa_group = wpa_select_ap_group_cipher(bss->wpa, bss->wpa_pairwise,
  229. bss->rsn_pairwise);
  230. if (bss->wpa && bss->ieee802_1x)
  231. bss->ssid.security_policy = SECURITY_WPA;
  232. else if (bss->wpa)
  233. bss->ssid.security_policy = SECURITY_WPA_PSK;
  234. else if (bss->ieee802_1x) {
  235. int cipher = WPA_CIPHER_NONE;
  236. bss->ssid.security_policy = SECURITY_IEEE_802_1X;
  237. bss->ssid.wep.default_len = bss->default_wep_key_len;
  238. if (bss->default_wep_key_len)
  239. cipher = bss->default_wep_key_len >= 13 ?
  240. WPA_CIPHER_WEP104 : WPA_CIPHER_WEP40;
  241. bss->wpa_group = cipher;
  242. bss->wpa_pairwise = cipher;
  243. bss->rsn_pairwise = cipher;
  244. } else if (bss->ssid.wep.keys_set) {
  245. int cipher = WPA_CIPHER_WEP40;
  246. if (bss->ssid.wep.len[0] >= 13)
  247. cipher = WPA_CIPHER_WEP104;
  248. bss->ssid.security_policy = SECURITY_STATIC_WEP;
  249. bss->wpa_group = cipher;
  250. bss->wpa_pairwise = cipher;
  251. bss->rsn_pairwise = cipher;
  252. } else {
  253. bss->ssid.security_policy = SECURITY_PLAINTEXT;
  254. bss->wpa_group = WPA_CIPHER_NONE;
  255. bss->wpa_pairwise = WPA_CIPHER_NONE;
  256. bss->rsn_pairwise = WPA_CIPHER_NONE;
  257. }
  258. if (bss->wpa_group_rekey < 86400 && (bss->wpa & 2) &&
  259. (bss->wpa_group == WPA_CIPHER_CCMP ||
  260. bss->wpa_group == WPA_CIPHER_GCMP ||
  261. bss->wpa_group == WPA_CIPHER_CCMP_256 ||
  262. bss->wpa_group == WPA_CIPHER_GCMP_256)) {
  263. /*
  264. * Strong ciphers do not need frequent rekeying, so increase
  265. * the default GTK rekeying period to 24 hours.
  266. */
  267. bss->wpa_group_rekey = 86400;
  268. }
  269. #ifdef CONFIG_IEEE80211W
  270. if (ssid->ieee80211w != MGMT_FRAME_PROTECTION_DEFAULT)
  271. bss->ieee80211w = ssid->ieee80211w;
  272. #endif /* CONFIG_IEEE80211W */
  273. #ifdef CONFIG_WPS
  274. /*
  275. * Enable WPS by default for open and WPA/WPA2-Personal network, but
  276. * require user interaction to actually use it. Only the internal
  277. * Registrar is supported.
  278. */
  279. if (bss->ssid.security_policy != SECURITY_WPA_PSK &&
  280. bss->ssid.security_policy != SECURITY_PLAINTEXT)
  281. goto no_wps;
  282. if (bss->ssid.security_policy == SECURITY_WPA_PSK &&
  283. (!(bss->rsn_pairwise & WPA_CIPHER_CCMP) || !(bss->wpa & 2)))
  284. goto no_wps; /* WPS2 does not allow WPA/TKIP-only
  285. * configuration */
  286. bss->eap_server = 1;
  287. if (!ssid->ignore_broadcast_ssid)
  288. bss->wps_state = 2;
  289. bss->ap_setup_locked = 2;
  290. if (wpa_s->conf->config_methods)
  291. bss->config_methods = os_strdup(wpa_s->conf->config_methods);
  292. os_memcpy(bss->device_type, wpa_s->conf->device_type,
  293. WPS_DEV_TYPE_LEN);
  294. if (wpa_s->conf->device_name) {
  295. bss->device_name = os_strdup(wpa_s->conf->device_name);
  296. bss->friendly_name = os_strdup(wpa_s->conf->device_name);
  297. }
  298. if (wpa_s->conf->manufacturer)
  299. bss->manufacturer = os_strdup(wpa_s->conf->manufacturer);
  300. if (wpa_s->conf->model_name)
  301. bss->model_name = os_strdup(wpa_s->conf->model_name);
  302. if (wpa_s->conf->model_number)
  303. bss->model_number = os_strdup(wpa_s->conf->model_number);
  304. if (wpa_s->conf->serial_number)
  305. bss->serial_number = os_strdup(wpa_s->conf->serial_number);
  306. if (is_nil_uuid(wpa_s->conf->uuid))
  307. os_memcpy(bss->uuid, wpa_s->wps->uuid, WPS_UUID_LEN);
  308. else
  309. os_memcpy(bss->uuid, wpa_s->conf->uuid, WPS_UUID_LEN);
  310. os_memcpy(bss->os_version, wpa_s->conf->os_version, 4);
  311. bss->pbc_in_m1 = wpa_s->conf->pbc_in_m1;
  312. no_wps:
  313. #endif /* CONFIG_WPS */
  314. if (wpa_s->max_stations &&
  315. wpa_s->max_stations < wpa_s->conf->max_num_sta)
  316. bss->max_num_sta = wpa_s->max_stations;
  317. else
  318. bss->max_num_sta = wpa_s->conf->max_num_sta;
  319. bss->disassoc_low_ack = wpa_s->conf->disassoc_low_ack;
  320. if (wpa_s->conf->ap_vendor_elements) {
  321. bss->vendor_elements =
  322. wpabuf_dup(wpa_s->conf->ap_vendor_elements);
  323. }
  324. return 0;
  325. }
  326. static void ap_public_action_rx(void *ctx, const u8 *buf, size_t len, int freq)
  327. {
  328. #ifdef CONFIG_P2P
  329. struct wpa_supplicant *wpa_s = ctx;
  330. const struct ieee80211_mgmt *mgmt;
  331. size_t hdr_len;
  332. mgmt = (const struct ieee80211_mgmt *) buf;
  333. hdr_len = (const u8 *) &mgmt->u.action.u.vs_public_action.action - buf;
  334. if (hdr_len > len)
  335. return;
  336. if (mgmt->u.action.category != WLAN_ACTION_PUBLIC)
  337. return;
  338. wpas_p2p_rx_action(wpa_s, mgmt->da, mgmt->sa, mgmt->bssid,
  339. mgmt->u.action.category,
  340. &mgmt->u.action.u.vs_public_action.action,
  341. len - hdr_len, freq);
  342. #endif /* CONFIG_P2P */
  343. }
  344. static void ap_wps_event_cb(void *ctx, enum wps_event event,
  345. union wps_event_data *data)
  346. {
  347. #ifdef CONFIG_P2P
  348. struct wpa_supplicant *wpa_s = ctx;
  349. if (event == WPS_EV_FAIL) {
  350. struct wps_event_fail *fail = &data->fail;
  351. if (wpa_s->parent && wpa_s->parent != wpa_s &&
  352. wpa_s == wpa_s->global->p2p_group_formation) {
  353. /*
  354. * src/ap/wps_hostapd.c has already sent this on the
  355. * main interface, so only send on the parent interface
  356. * here if needed.
  357. */
  358. wpa_msg(wpa_s->parent, MSG_INFO, WPS_EVENT_FAIL
  359. "msg=%d config_error=%d",
  360. fail->msg, fail->config_error);
  361. }
  362. wpas_p2p_wps_failed(wpa_s, fail);
  363. }
  364. #endif /* CONFIG_P2P */
  365. }
  366. static void ap_sta_authorized_cb(void *ctx, const u8 *mac_addr,
  367. int authorized, const u8 *p2p_dev_addr)
  368. {
  369. wpas_notify_sta_authorized(ctx, mac_addr, authorized, p2p_dev_addr);
  370. }
  371. #ifdef CONFIG_P2P
  372. static void ap_new_psk_cb(void *ctx, const u8 *mac_addr, const u8 *p2p_dev_addr,
  373. const u8 *psk, size_t psk_len)
  374. {
  375. struct wpa_supplicant *wpa_s = ctx;
  376. if (wpa_s->ap_iface == NULL || wpa_s->current_ssid == NULL)
  377. return;
  378. wpas_p2p_new_psk_cb(wpa_s, mac_addr, p2p_dev_addr, psk, psk_len);
  379. }
  380. #endif /* CONFIG_P2P */
  381. static int ap_vendor_action_rx(void *ctx, const u8 *buf, size_t len, int freq)
  382. {
  383. #ifdef CONFIG_P2P
  384. struct wpa_supplicant *wpa_s = ctx;
  385. const struct ieee80211_mgmt *mgmt;
  386. size_t hdr_len;
  387. mgmt = (const struct ieee80211_mgmt *) buf;
  388. hdr_len = (const u8 *) &mgmt->u.action.u.vs_public_action.action - buf;
  389. if (hdr_len > len)
  390. return -1;
  391. wpas_p2p_rx_action(wpa_s, mgmt->da, mgmt->sa, mgmt->bssid,
  392. mgmt->u.action.category,
  393. &mgmt->u.action.u.vs_public_action.action,
  394. len - hdr_len, freq);
  395. #endif /* CONFIG_P2P */
  396. return 0;
  397. }
  398. static int ap_probe_req_rx(void *ctx, const u8 *sa, const u8 *da,
  399. const u8 *bssid, const u8 *ie, size_t ie_len,
  400. int ssi_signal)
  401. {
  402. #ifdef CONFIG_P2P
  403. struct wpa_supplicant *wpa_s = ctx;
  404. return wpas_p2p_probe_req_rx(wpa_s, sa, da, bssid, ie, ie_len,
  405. ssi_signal);
  406. #else /* CONFIG_P2P */
  407. return 0;
  408. #endif /* CONFIG_P2P */
  409. }
  410. static void ap_wps_reg_success_cb(void *ctx, const u8 *mac_addr,
  411. const u8 *uuid_e)
  412. {
  413. #ifdef CONFIG_P2P
  414. struct wpa_supplicant *wpa_s = ctx;
  415. wpas_p2p_wps_success(wpa_s, mac_addr, 1);
  416. #endif /* CONFIG_P2P */
  417. }
  418. static void wpas_ap_configured_cb(void *ctx)
  419. {
  420. struct wpa_supplicant *wpa_s = ctx;
  421. wpa_supplicant_set_state(wpa_s, WPA_COMPLETED);
  422. if (wpa_s->ap_configured_cb)
  423. wpa_s->ap_configured_cb(wpa_s->ap_configured_cb_ctx,
  424. wpa_s->ap_configured_cb_data);
  425. }
  426. int wpa_supplicant_create_ap(struct wpa_supplicant *wpa_s,
  427. struct wpa_ssid *ssid)
  428. {
  429. struct wpa_driver_associate_params params;
  430. struct hostapd_iface *hapd_iface;
  431. struct hostapd_config *conf;
  432. size_t i;
  433. if (ssid->ssid == NULL || ssid->ssid_len == 0) {
  434. wpa_printf(MSG_ERROR, "No SSID configured for AP mode");
  435. return -1;
  436. }
  437. wpa_supplicant_ap_deinit(wpa_s);
  438. wpa_printf(MSG_DEBUG, "Setting up AP (SSID='%s')",
  439. wpa_ssid_txt(ssid->ssid, ssid->ssid_len));
  440. os_memset(&params, 0, sizeof(params));
  441. params.ssid = ssid->ssid;
  442. params.ssid_len = ssid->ssid_len;
  443. switch (ssid->mode) {
  444. case WPAS_MODE_AP:
  445. case WPAS_MODE_P2P_GO:
  446. case WPAS_MODE_P2P_GROUP_FORMATION:
  447. params.mode = IEEE80211_MODE_AP;
  448. break;
  449. default:
  450. return -1;
  451. }
  452. if (ssid->frequency == 0)
  453. ssid->frequency = 2462; /* default channel 11 */
  454. params.freq = ssid->frequency;
  455. params.wpa_proto = ssid->proto;
  456. if (ssid->key_mgmt & WPA_KEY_MGMT_PSK)
  457. wpa_s->key_mgmt = WPA_KEY_MGMT_PSK;
  458. else
  459. wpa_s->key_mgmt = WPA_KEY_MGMT_NONE;
  460. params.key_mgmt_suite = wpa_s->key_mgmt;
  461. wpa_s->pairwise_cipher = wpa_pick_pairwise_cipher(ssid->pairwise_cipher,
  462. 1);
  463. if (wpa_s->pairwise_cipher < 0) {
  464. wpa_printf(MSG_WARNING, "WPA: Failed to select pairwise "
  465. "cipher.");
  466. return -1;
  467. }
  468. params.pairwise_suite = wpa_s->pairwise_cipher;
  469. params.group_suite = params.pairwise_suite;
  470. #ifdef CONFIG_P2P
  471. if (ssid->mode == WPAS_MODE_P2P_GO ||
  472. ssid->mode == WPAS_MODE_P2P_GROUP_FORMATION)
  473. params.p2p = 1;
  474. #endif /* CONFIG_P2P */
  475. if (wpa_s->parent->set_ap_uapsd)
  476. params.uapsd = wpa_s->parent->ap_uapsd;
  477. else if (params.p2p && (wpa_s->drv_flags & WPA_DRIVER_FLAGS_AP_UAPSD))
  478. params.uapsd = 1; /* mandatory for P2P GO */
  479. else
  480. params.uapsd = -1;
  481. if (wpa_drv_associate(wpa_s, &params) < 0) {
  482. wpa_msg(wpa_s, MSG_INFO, "Failed to start AP functionality");
  483. return -1;
  484. }
  485. wpa_s->ap_iface = hapd_iface = os_zalloc(sizeof(*wpa_s->ap_iface));
  486. if (hapd_iface == NULL)
  487. return -1;
  488. hapd_iface->owner = wpa_s;
  489. hapd_iface->drv_flags = wpa_s->drv_flags;
  490. hapd_iface->probe_resp_offloads = wpa_s->probe_resp_offloads;
  491. hapd_iface->extended_capa = wpa_s->extended_capa;
  492. hapd_iface->extended_capa_mask = wpa_s->extended_capa_mask;
  493. hapd_iface->extended_capa_len = wpa_s->extended_capa_len;
  494. wpa_s->ap_iface->conf = conf = hostapd_config_defaults();
  495. if (conf == NULL) {
  496. wpa_supplicant_ap_deinit(wpa_s);
  497. return -1;
  498. }
  499. os_memcpy(wpa_s->ap_iface->conf->wmm_ac_params,
  500. wpa_s->conf->wmm_ac_params,
  501. sizeof(wpa_s->conf->wmm_ac_params));
  502. if (params.uapsd > 0) {
  503. conf->bss[0]->wmm_enabled = 1;
  504. conf->bss[0]->wmm_uapsd = 1;
  505. }
  506. if (wpa_supplicant_conf_ap(wpa_s, ssid, conf)) {
  507. wpa_printf(MSG_ERROR, "Failed to create AP configuration");
  508. wpa_supplicant_ap_deinit(wpa_s);
  509. return -1;
  510. }
  511. #ifdef CONFIG_P2P
  512. if (ssid->mode == WPAS_MODE_P2P_GO)
  513. conf->bss[0]->p2p = P2P_ENABLED | P2P_GROUP_OWNER;
  514. else if (ssid->mode == WPAS_MODE_P2P_GROUP_FORMATION)
  515. conf->bss[0]->p2p = P2P_ENABLED | P2P_GROUP_OWNER |
  516. P2P_GROUP_FORMATION;
  517. #endif /* CONFIG_P2P */
  518. hapd_iface->num_bss = conf->num_bss;
  519. hapd_iface->bss = os_calloc(conf->num_bss,
  520. sizeof(struct hostapd_data *));
  521. if (hapd_iface->bss == NULL) {
  522. wpa_supplicant_ap_deinit(wpa_s);
  523. return -1;
  524. }
  525. for (i = 0; i < conf->num_bss; i++) {
  526. hapd_iface->bss[i] =
  527. hostapd_alloc_bss_data(hapd_iface, conf,
  528. conf->bss[i]);
  529. if (hapd_iface->bss[i] == NULL) {
  530. wpa_supplicant_ap_deinit(wpa_s);
  531. return -1;
  532. }
  533. hapd_iface->bss[i]->msg_ctx = wpa_s;
  534. hapd_iface->bss[i]->msg_ctx_parent = wpa_s->parent;
  535. hapd_iface->bss[i]->public_action_cb = ap_public_action_rx;
  536. hapd_iface->bss[i]->public_action_cb_ctx = wpa_s;
  537. hapd_iface->bss[i]->vendor_action_cb = ap_vendor_action_rx;
  538. hapd_iface->bss[i]->vendor_action_cb_ctx = wpa_s;
  539. hostapd_register_probereq_cb(hapd_iface->bss[i],
  540. ap_probe_req_rx, wpa_s);
  541. hapd_iface->bss[i]->wps_reg_success_cb = ap_wps_reg_success_cb;
  542. hapd_iface->bss[i]->wps_reg_success_cb_ctx = wpa_s;
  543. hapd_iface->bss[i]->wps_event_cb = ap_wps_event_cb;
  544. hapd_iface->bss[i]->wps_event_cb_ctx = wpa_s;
  545. hapd_iface->bss[i]->sta_authorized_cb = ap_sta_authorized_cb;
  546. hapd_iface->bss[i]->sta_authorized_cb_ctx = wpa_s;
  547. #ifdef CONFIG_P2P
  548. hapd_iface->bss[i]->new_psk_cb = ap_new_psk_cb;
  549. hapd_iface->bss[i]->new_psk_cb_ctx = wpa_s;
  550. hapd_iface->bss[i]->p2p = wpa_s->global->p2p;
  551. hapd_iface->bss[i]->p2p_group = wpas_p2p_group_init(wpa_s,
  552. ssid);
  553. #endif /* CONFIG_P2P */
  554. hapd_iface->bss[i]->setup_complete_cb = wpas_ap_configured_cb;
  555. hapd_iface->bss[i]->setup_complete_cb_ctx = wpa_s;
  556. }
  557. os_memcpy(hapd_iface->bss[0]->own_addr, wpa_s->own_addr, ETH_ALEN);
  558. hapd_iface->bss[0]->driver = wpa_s->driver;
  559. hapd_iface->bss[0]->drv_priv = wpa_s->drv_priv;
  560. wpa_s->current_ssid = ssid;
  561. eapol_sm_notify_config(wpa_s->eapol, NULL, NULL);
  562. os_memcpy(wpa_s->bssid, wpa_s->own_addr, ETH_ALEN);
  563. wpa_s->assoc_freq = ssid->frequency;
  564. if (hostapd_setup_interface(wpa_s->ap_iface)) {
  565. wpa_printf(MSG_ERROR, "Failed to initialize AP interface");
  566. wpa_supplicant_ap_deinit(wpa_s);
  567. return -1;
  568. }
  569. return 0;
  570. }
  571. void wpa_supplicant_ap_deinit(struct wpa_supplicant *wpa_s)
  572. {
  573. #ifdef CONFIG_WPS
  574. eloop_cancel_timeout(wpas_wps_ap_pin_timeout, wpa_s, NULL);
  575. #endif /* CONFIG_WPS */
  576. if (wpa_s->ap_iface == NULL)
  577. return;
  578. wpa_s->current_ssid = NULL;
  579. eapol_sm_notify_config(wpa_s->eapol, NULL, NULL);
  580. wpa_s->assoc_freq = 0;
  581. #ifdef CONFIG_P2P
  582. if (wpa_s->ap_iface->bss)
  583. wpa_s->ap_iface->bss[0]->p2p_group = NULL;
  584. wpas_p2p_group_deinit(wpa_s);
  585. #endif /* CONFIG_P2P */
  586. wpa_s->ap_iface->driver_ap_teardown =
  587. !!(wpa_s->drv_flags & WPA_DRIVER_FLAGS_AP_TEARDOWN_SUPPORT);
  588. hostapd_interface_deinit(wpa_s->ap_iface);
  589. hostapd_interface_free(wpa_s->ap_iface);
  590. wpa_s->ap_iface = NULL;
  591. wpa_drv_deinit_ap(wpa_s);
  592. }
  593. void ap_tx_status(void *ctx, const u8 *addr,
  594. const u8 *buf, size_t len, int ack)
  595. {
  596. #ifdef NEED_AP_MLME
  597. struct wpa_supplicant *wpa_s = ctx;
  598. hostapd_tx_status(wpa_s->ap_iface->bss[0], addr, buf, len, ack);
  599. #endif /* NEED_AP_MLME */
  600. }
  601. void ap_eapol_tx_status(void *ctx, const u8 *dst,
  602. const u8 *data, size_t len, int ack)
  603. {
  604. #ifdef NEED_AP_MLME
  605. struct wpa_supplicant *wpa_s = ctx;
  606. if (!wpa_s->ap_iface)
  607. return;
  608. hostapd_tx_status(wpa_s->ap_iface->bss[0], dst, data, len, ack);
  609. #endif /* NEED_AP_MLME */
  610. }
  611. void ap_client_poll_ok(void *ctx, const u8 *addr)
  612. {
  613. #ifdef NEED_AP_MLME
  614. struct wpa_supplicant *wpa_s = ctx;
  615. if (wpa_s->ap_iface)
  616. hostapd_client_poll_ok(wpa_s->ap_iface->bss[0], addr);
  617. #endif /* NEED_AP_MLME */
  618. }
  619. void ap_rx_from_unknown_sta(void *ctx, const u8 *addr, int wds)
  620. {
  621. #ifdef NEED_AP_MLME
  622. struct wpa_supplicant *wpa_s = ctx;
  623. ieee802_11_rx_from_unknown(wpa_s->ap_iface->bss[0], addr, wds);
  624. #endif /* NEED_AP_MLME */
  625. }
  626. void ap_mgmt_rx(void *ctx, struct rx_mgmt *rx_mgmt)
  627. {
  628. #ifdef NEED_AP_MLME
  629. struct wpa_supplicant *wpa_s = ctx;
  630. struct hostapd_frame_info fi;
  631. os_memset(&fi, 0, sizeof(fi));
  632. fi.datarate = rx_mgmt->datarate;
  633. fi.ssi_signal = rx_mgmt->ssi_signal;
  634. ieee802_11_mgmt(wpa_s->ap_iface->bss[0], rx_mgmt->frame,
  635. rx_mgmt->frame_len, &fi);
  636. #endif /* NEED_AP_MLME */
  637. }
  638. void ap_mgmt_tx_cb(void *ctx, const u8 *buf, size_t len, u16 stype, int ok)
  639. {
  640. #ifdef NEED_AP_MLME
  641. struct wpa_supplicant *wpa_s = ctx;
  642. ieee802_11_mgmt_cb(wpa_s->ap_iface->bss[0], buf, len, stype, ok);
  643. #endif /* NEED_AP_MLME */
  644. }
  645. void wpa_supplicant_ap_rx_eapol(struct wpa_supplicant *wpa_s,
  646. const u8 *src_addr, const u8 *buf, size_t len)
  647. {
  648. ieee802_1x_receive(wpa_s->ap_iface->bss[0], src_addr, buf, len);
  649. }
  650. #ifdef CONFIG_WPS
  651. int wpa_supplicant_ap_wps_pbc(struct wpa_supplicant *wpa_s, const u8 *bssid,
  652. const u8 *p2p_dev_addr)
  653. {
  654. if (!wpa_s->ap_iface)
  655. return -1;
  656. return hostapd_wps_button_pushed(wpa_s->ap_iface->bss[0],
  657. p2p_dev_addr);
  658. }
  659. int wpa_supplicant_ap_wps_cancel(struct wpa_supplicant *wpa_s)
  660. {
  661. struct wps_registrar *reg;
  662. int reg_sel = 0, wps_sta = 0;
  663. if (!wpa_s->ap_iface || !wpa_s->ap_iface->bss[0]->wps)
  664. return -1;
  665. reg = wpa_s->ap_iface->bss[0]->wps->registrar;
  666. reg_sel = wps_registrar_wps_cancel(reg);
  667. wps_sta = ap_for_each_sta(wpa_s->ap_iface->bss[0],
  668. ap_sta_wps_cancel, NULL);
  669. if (!reg_sel && !wps_sta) {
  670. wpa_printf(MSG_DEBUG, "No WPS operation in progress at this "
  671. "time");
  672. return -1;
  673. }
  674. /*
  675. * There are 2 cases to return wps cancel as success:
  676. * 1. When wps cancel was initiated but no connection has been
  677. * established with client yet.
  678. * 2. Client is in the middle of exchanging WPS messages.
  679. */
  680. return 0;
  681. }
  682. int wpa_supplicant_ap_wps_pin(struct wpa_supplicant *wpa_s, const u8 *bssid,
  683. const char *pin, char *buf, size_t buflen,
  684. int timeout)
  685. {
  686. int ret, ret_len = 0;
  687. if (!wpa_s->ap_iface)
  688. return -1;
  689. if (pin == NULL) {
  690. unsigned int rpin = wps_generate_pin();
  691. ret_len = os_snprintf(buf, buflen, "%08d", rpin);
  692. pin = buf;
  693. } else
  694. ret_len = os_snprintf(buf, buflen, "%s", pin);
  695. ret = hostapd_wps_add_pin(wpa_s->ap_iface->bss[0], bssid, "any", pin,
  696. timeout);
  697. if (ret)
  698. return -1;
  699. return ret_len;
  700. }
  701. static void wpas_wps_ap_pin_timeout(void *eloop_data, void *user_ctx)
  702. {
  703. struct wpa_supplicant *wpa_s = eloop_data;
  704. wpa_printf(MSG_DEBUG, "WPS: AP PIN timed out");
  705. wpas_wps_ap_pin_disable(wpa_s);
  706. }
  707. static void wpas_wps_ap_pin_enable(struct wpa_supplicant *wpa_s, int timeout)
  708. {
  709. struct hostapd_data *hapd;
  710. if (wpa_s->ap_iface == NULL)
  711. return;
  712. hapd = wpa_s->ap_iface->bss[0];
  713. wpa_printf(MSG_DEBUG, "WPS: Enabling AP PIN (timeout=%d)", timeout);
  714. hapd->ap_pin_failures = 0;
  715. eloop_cancel_timeout(wpas_wps_ap_pin_timeout, wpa_s, NULL);
  716. if (timeout > 0)
  717. eloop_register_timeout(timeout, 0,
  718. wpas_wps_ap_pin_timeout, wpa_s, NULL);
  719. }
  720. void wpas_wps_ap_pin_disable(struct wpa_supplicant *wpa_s)
  721. {
  722. struct hostapd_data *hapd;
  723. if (wpa_s->ap_iface == NULL)
  724. return;
  725. wpa_printf(MSG_DEBUG, "WPS: Disabling AP PIN");
  726. hapd = wpa_s->ap_iface->bss[0];
  727. os_free(hapd->conf->ap_pin);
  728. hapd->conf->ap_pin = NULL;
  729. eloop_cancel_timeout(wpas_wps_ap_pin_timeout, wpa_s, NULL);
  730. }
  731. const char * wpas_wps_ap_pin_random(struct wpa_supplicant *wpa_s, int timeout)
  732. {
  733. struct hostapd_data *hapd;
  734. unsigned int pin;
  735. char pin_txt[9];
  736. if (wpa_s->ap_iface == NULL)
  737. return NULL;
  738. hapd = wpa_s->ap_iface->bss[0];
  739. pin = wps_generate_pin();
  740. os_snprintf(pin_txt, sizeof(pin_txt), "%08u", pin);
  741. os_free(hapd->conf->ap_pin);
  742. hapd->conf->ap_pin = os_strdup(pin_txt);
  743. if (hapd->conf->ap_pin == NULL)
  744. return NULL;
  745. wpas_wps_ap_pin_enable(wpa_s, timeout);
  746. return hapd->conf->ap_pin;
  747. }
  748. const char * wpas_wps_ap_pin_get(struct wpa_supplicant *wpa_s)
  749. {
  750. struct hostapd_data *hapd;
  751. if (wpa_s->ap_iface == NULL)
  752. return NULL;
  753. hapd = wpa_s->ap_iface->bss[0];
  754. return hapd->conf->ap_pin;
  755. }
  756. int wpas_wps_ap_pin_set(struct wpa_supplicant *wpa_s, const char *pin,
  757. int timeout)
  758. {
  759. struct hostapd_data *hapd;
  760. char pin_txt[9];
  761. int ret;
  762. if (wpa_s->ap_iface == NULL)
  763. return -1;
  764. hapd = wpa_s->ap_iface->bss[0];
  765. ret = os_snprintf(pin_txt, sizeof(pin_txt), "%s", pin);
  766. if (ret < 0 || ret >= (int) sizeof(pin_txt))
  767. return -1;
  768. os_free(hapd->conf->ap_pin);
  769. hapd->conf->ap_pin = os_strdup(pin_txt);
  770. if (hapd->conf->ap_pin == NULL)
  771. return -1;
  772. wpas_wps_ap_pin_enable(wpa_s, timeout);
  773. return 0;
  774. }
  775. void wpa_supplicant_ap_pwd_auth_fail(struct wpa_supplicant *wpa_s)
  776. {
  777. struct hostapd_data *hapd;
  778. if (wpa_s->ap_iface == NULL)
  779. return;
  780. hapd = wpa_s->ap_iface->bss[0];
  781. /*
  782. * Registrar failed to prove its knowledge of the AP PIN. Disable AP
  783. * PIN if this happens multiple times to slow down brute force attacks.
  784. */
  785. hapd->ap_pin_failures++;
  786. wpa_printf(MSG_DEBUG, "WPS: AP PIN authentication failure number %u",
  787. hapd->ap_pin_failures);
  788. if (hapd->ap_pin_failures < 3)
  789. return;
  790. wpa_printf(MSG_DEBUG, "WPS: Disable AP PIN");
  791. hapd->ap_pin_failures = 0;
  792. os_free(hapd->conf->ap_pin);
  793. hapd->conf->ap_pin = NULL;
  794. }
  795. #ifdef CONFIG_WPS_NFC
  796. struct wpabuf * wpas_ap_wps_nfc_config_token(struct wpa_supplicant *wpa_s,
  797. int ndef)
  798. {
  799. struct hostapd_data *hapd;
  800. if (wpa_s->ap_iface == NULL)
  801. return NULL;
  802. hapd = wpa_s->ap_iface->bss[0];
  803. return hostapd_wps_nfc_config_token(hapd, ndef);
  804. }
  805. struct wpabuf * wpas_ap_wps_nfc_handover_sel(struct wpa_supplicant *wpa_s,
  806. int ndef)
  807. {
  808. struct hostapd_data *hapd;
  809. if (wpa_s->ap_iface == NULL)
  810. return NULL;
  811. hapd = wpa_s->ap_iface->bss[0];
  812. return hostapd_wps_nfc_hs_cr(hapd, ndef);
  813. }
  814. int wpas_ap_wps_nfc_report_handover(struct wpa_supplicant *wpa_s,
  815. const struct wpabuf *req,
  816. const struct wpabuf *sel)
  817. {
  818. struct hostapd_data *hapd;
  819. if (wpa_s->ap_iface == NULL)
  820. return -1;
  821. hapd = wpa_s->ap_iface->bss[0];
  822. return hostapd_wps_nfc_report_handover(hapd, req, sel);
  823. }
  824. #endif /* CONFIG_WPS_NFC */
  825. #endif /* CONFIG_WPS */
  826. #ifdef CONFIG_CTRL_IFACE
  827. int ap_ctrl_iface_sta_first(struct wpa_supplicant *wpa_s,
  828. char *buf, size_t buflen)
  829. {
  830. if (wpa_s->ap_iface == NULL)
  831. return -1;
  832. return hostapd_ctrl_iface_sta_first(wpa_s->ap_iface->bss[0],
  833. buf, buflen);
  834. }
  835. int ap_ctrl_iface_sta(struct wpa_supplicant *wpa_s, const char *txtaddr,
  836. char *buf, size_t buflen)
  837. {
  838. if (wpa_s->ap_iface == NULL)
  839. return -1;
  840. return hostapd_ctrl_iface_sta(wpa_s->ap_iface->bss[0], txtaddr,
  841. buf, buflen);
  842. }
  843. int ap_ctrl_iface_sta_next(struct wpa_supplicant *wpa_s, const char *txtaddr,
  844. char *buf, size_t buflen)
  845. {
  846. if (wpa_s->ap_iface == NULL)
  847. return -1;
  848. return hostapd_ctrl_iface_sta_next(wpa_s->ap_iface->bss[0], txtaddr,
  849. buf, buflen);
  850. }
  851. int ap_ctrl_iface_sta_disassociate(struct wpa_supplicant *wpa_s,
  852. const char *txtaddr)
  853. {
  854. if (wpa_s->ap_iface == NULL)
  855. return -1;
  856. return hostapd_ctrl_iface_disassociate(wpa_s->ap_iface->bss[0],
  857. txtaddr);
  858. }
  859. int ap_ctrl_iface_sta_deauthenticate(struct wpa_supplicant *wpa_s,
  860. const char *txtaddr)
  861. {
  862. if (wpa_s->ap_iface == NULL)
  863. return -1;
  864. return hostapd_ctrl_iface_deauthenticate(wpa_s->ap_iface->bss[0],
  865. txtaddr);
  866. }
  867. int ap_ctrl_iface_wpa_get_status(struct wpa_supplicant *wpa_s, char *buf,
  868. size_t buflen, int verbose)
  869. {
  870. char *pos = buf, *end = buf + buflen;
  871. int ret;
  872. struct hostapd_bss_config *conf;
  873. if (wpa_s->ap_iface == NULL)
  874. return -1;
  875. conf = wpa_s->ap_iface->bss[0]->conf;
  876. if (conf->wpa == 0)
  877. return 0;
  878. ret = os_snprintf(pos, end - pos,
  879. "pairwise_cipher=%s\n"
  880. "group_cipher=%s\n"
  881. "key_mgmt=%s\n",
  882. wpa_cipher_txt(conf->rsn_pairwise),
  883. wpa_cipher_txt(conf->wpa_group),
  884. wpa_key_mgmt_txt(conf->wpa_key_mgmt,
  885. conf->wpa));
  886. if (ret < 0 || ret >= end - pos)
  887. return pos - buf;
  888. pos += ret;
  889. return pos - buf;
  890. }
  891. #endif /* CONFIG_CTRL_IFACE */
  892. int wpa_supplicant_ap_update_beacon(struct wpa_supplicant *wpa_s)
  893. {
  894. struct hostapd_iface *iface = wpa_s->ap_iface;
  895. struct wpa_ssid *ssid = wpa_s->current_ssid;
  896. struct hostapd_data *hapd;
  897. if (ssid == NULL || wpa_s->ap_iface == NULL ||
  898. ssid->mode == WPAS_MODE_INFRA ||
  899. ssid->mode == WPAS_MODE_IBSS)
  900. return -1;
  901. #ifdef CONFIG_P2P
  902. if (ssid->mode == WPAS_MODE_P2P_GO)
  903. iface->conf->bss[0]->p2p = P2P_ENABLED | P2P_GROUP_OWNER;
  904. else if (ssid->mode == WPAS_MODE_P2P_GROUP_FORMATION)
  905. iface->conf->bss[0]->p2p = P2P_ENABLED | P2P_GROUP_OWNER |
  906. P2P_GROUP_FORMATION;
  907. #endif /* CONFIG_P2P */
  908. hapd = iface->bss[0];
  909. if (hapd->drv_priv == NULL)
  910. return -1;
  911. ieee802_11_set_beacons(iface);
  912. hostapd_set_ap_wps_ie(hapd);
  913. return 0;
  914. }
  915. int ap_switch_channel(struct wpa_supplicant *wpa_s,
  916. struct csa_settings *settings)
  917. {
  918. #ifdef NEED_AP_MLME
  919. if (!wpa_s->ap_iface || !wpa_s->ap_iface->bss[0])
  920. return -1;
  921. return hostapd_switch_channel(wpa_s->ap_iface->bss[0], settings);
  922. #else /* NEED_AP_MLME */
  923. return -1;
  924. #endif /* NEED_AP_MLME */
  925. }
  926. int ap_ctrl_iface_chanswitch(struct wpa_supplicant *wpa_s, const char *pos)
  927. {
  928. struct csa_settings settings;
  929. int ret = hostapd_parse_csa_settings(pos, &settings);
  930. if (ret)
  931. return ret;
  932. return ap_switch_channel(wpa_s, &settings);
  933. }
  934. void wpas_ap_ch_switch(struct wpa_supplicant *wpa_s, int freq, int ht,
  935. int offset, int width, int cf1, int cf2)
  936. {
  937. if (!wpa_s->ap_iface)
  938. return;
  939. wpa_s->assoc_freq = freq;
  940. hostapd_event_ch_switch(wpa_s->ap_iface->bss[0], freq, ht, offset, width, cf1, cf1);
  941. }
  942. int wpa_supplicant_ap_mac_addr_filter(struct wpa_supplicant *wpa_s,
  943. const u8 *addr)
  944. {
  945. struct hostapd_data *hapd;
  946. struct hostapd_bss_config *conf;
  947. if (!wpa_s->ap_iface)
  948. return -1;
  949. if (addr)
  950. wpa_printf(MSG_DEBUG, "AP: Set MAC address filter: " MACSTR,
  951. MAC2STR(addr));
  952. else
  953. wpa_printf(MSG_DEBUG, "AP: Clear MAC address filter");
  954. hapd = wpa_s->ap_iface->bss[0];
  955. conf = hapd->conf;
  956. os_free(conf->accept_mac);
  957. conf->accept_mac = NULL;
  958. conf->num_accept_mac = 0;
  959. os_free(conf->deny_mac);
  960. conf->deny_mac = NULL;
  961. conf->num_deny_mac = 0;
  962. if (addr == NULL) {
  963. conf->macaddr_acl = ACCEPT_UNLESS_DENIED;
  964. return 0;
  965. }
  966. conf->macaddr_acl = DENY_UNLESS_ACCEPTED;
  967. conf->accept_mac = os_zalloc(sizeof(struct mac_acl_entry));
  968. if (conf->accept_mac == NULL)
  969. return -1;
  970. os_memcpy(conf->accept_mac[0].addr, addr, ETH_ALEN);
  971. conf->num_accept_mac = 1;
  972. return 0;
  973. }
  974. #ifdef CONFIG_WPS_NFC
  975. int wpas_ap_wps_add_nfc_pw(struct wpa_supplicant *wpa_s, u16 pw_id,
  976. const struct wpabuf *pw, const u8 *pubkey_hash)
  977. {
  978. struct hostapd_data *hapd;
  979. struct wps_context *wps;
  980. if (!wpa_s->ap_iface)
  981. return -1;
  982. hapd = wpa_s->ap_iface->bss[0];
  983. wps = hapd->wps;
  984. if (wpa_s->parent->conf->wps_nfc_dh_pubkey == NULL ||
  985. wpa_s->parent->conf->wps_nfc_dh_privkey == NULL) {
  986. wpa_printf(MSG_DEBUG, "P2P: No NFC DH key known");
  987. return -1;
  988. }
  989. dh5_free(wps->dh_ctx);
  990. wpabuf_free(wps->dh_pubkey);
  991. wpabuf_free(wps->dh_privkey);
  992. wps->dh_privkey = wpabuf_dup(
  993. wpa_s->parent->conf->wps_nfc_dh_privkey);
  994. wps->dh_pubkey = wpabuf_dup(
  995. wpa_s->parent->conf->wps_nfc_dh_pubkey);
  996. if (wps->dh_privkey == NULL || wps->dh_pubkey == NULL) {
  997. wps->dh_ctx = NULL;
  998. wpabuf_free(wps->dh_pubkey);
  999. wps->dh_pubkey = NULL;
  1000. wpabuf_free(wps->dh_privkey);
  1001. wps->dh_privkey = NULL;
  1002. return -1;
  1003. }
  1004. wps->dh_ctx = dh5_init_fixed(wps->dh_privkey, wps->dh_pubkey);
  1005. if (wps->dh_ctx == NULL)
  1006. return -1;
  1007. return wps_registrar_add_nfc_pw_token(hapd->wps->registrar, pubkey_hash,
  1008. pw_id,
  1009. pw ? wpabuf_head(pw) : NULL,
  1010. pw ? wpabuf_len(pw) : 0, 1);
  1011. }
  1012. #endif /* CONFIG_WPS_NFC */