ap.c 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986
  1. /*
  2. * WPA Supplicant - Basic AP mode support routines
  3. * Copyright (c) 2003-2009, Jouni Malinen <j@w1.fi>
  4. * Copyright (c) 2009, Atheros Communications
  5. *
  6. * This software may be distributed under the terms of the BSD license.
  7. * See README for more details.
  8. */
  9. #include "utils/includes.h"
  10. #include "utils/common.h"
  11. #include "utils/eloop.h"
  12. #include "utils/uuid.h"
  13. #include "common/ieee802_11_defs.h"
  14. #include "common/wpa_ctrl.h"
  15. #include "ap/hostapd.h"
  16. #include "ap/ap_config.h"
  17. #include "ap/ap_drv_ops.h"
  18. #ifdef NEED_AP_MLME
  19. #include "ap/ieee802_11.h"
  20. #endif /* NEED_AP_MLME */
  21. #include "ap/beacon.h"
  22. #include "ap/ieee802_1x.h"
  23. #include "ap/wps_hostapd.h"
  24. #include "ap/ctrl_iface_ap.h"
  25. #include "wps/wps.h"
  26. #include "common/ieee802_11_defs.h"
  27. #include "config_ssid.h"
  28. #include "config.h"
  29. #include "wpa_supplicant_i.h"
  30. #include "driver_i.h"
  31. #include "p2p_supplicant.h"
  32. #include "ap.h"
  33. #include "ap/sta_info.h"
  34. #include "notify.h"
  35. #ifdef CONFIG_WPS
  36. static void wpas_wps_ap_pin_timeout(void *eloop_data, void *user_ctx);
  37. #endif /* CONFIG_WPS */
  38. static int wpa_supplicant_conf_ap(struct wpa_supplicant *wpa_s,
  39. struct wpa_ssid *ssid,
  40. struct hostapd_config *conf)
  41. {
  42. struct hostapd_bss_config *bss = &conf->bss[0];
  43. int pairwise;
  44. conf->driver = wpa_s->driver;
  45. os_strlcpy(bss->iface, wpa_s->ifname, sizeof(bss->iface));
  46. if (ssid->frequency == 0) {
  47. /* default channel 11 */
  48. conf->hw_mode = HOSTAPD_MODE_IEEE80211G;
  49. conf->channel = 11;
  50. } else if (ssid->frequency >= 2412 && ssid->frequency <= 2472) {
  51. conf->hw_mode = HOSTAPD_MODE_IEEE80211G;
  52. conf->channel = (ssid->frequency - 2407) / 5;
  53. } else if ((ssid->frequency >= 5180 && ssid->frequency <= 5240) ||
  54. (ssid->frequency >= 5745 && ssid->frequency <= 5825)) {
  55. conf->hw_mode = HOSTAPD_MODE_IEEE80211A;
  56. conf->channel = (ssid->frequency - 5000) / 5;
  57. } else {
  58. wpa_printf(MSG_ERROR, "Unsupported AP mode frequency: %d MHz",
  59. ssid->frequency);
  60. return -1;
  61. }
  62. /* TODO: enable HT40 if driver supports it;
  63. * drop to 11b if driver does not support 11g */
  64. #ifdef CONFIG_IEEE80211N
  65. /*
  66. * Enable HT20 if the driver supports it, by setting conf->ieee80211n
  67. * and a mask of allowed capabilities within conf->ht_capab.
  68. * Using default config settings for: conf->ht_op_mode_fixed,
  69. * conf->secondary_channel, conf->require_ht
  70. */
  71. if (wpa_s->hw.modes) {
  72. struct hostapd_hw_modes *mode = NULL;
  73. int i;
  74. for (i = 0; i < wpa_s->hw.num_modes; i++) {
  75. if (wpa_s->hw.modes[i].mode == conf->hw_mode) {
  76. mode = &wpa_s->hw.modes[i];
  77. break;
  78. }
  79. }
  80. if (mode && mode->ht_capab) {
  81. conf->ieee80211n = 1;
  82. /*
  83. * white-list capabilities that won't cause issues
  84. * to connecting stations, while leaving the current
  85. * capabilities intact (currently disabled SMPS).
  86. */
  87. conf->ht_capab |= mode->ht_capab &
  88. (HT_CAP_INFO_GREEN_FIELD |
  89. HT_CAP_INFO_SHORT_GI20MHZ |
  90. HT_CAP_INFO_SHORT_GI40MHZ |
  91. HT_CAP_INFO_RX_STBC_MASK |
  92. HT_CAP_INFO_MAX_AMSDU_SIZE);
  93. }
  94. }
  95. #endif /* CONFIG_IEEE80211N */
  96. #ifdef CONFIG_P2P
  97. if (conf->hw_mode == HOSTAPD_MODE_IEEE80211G) {
  98. /* Remove 802.11b rates from supported and basic rate sets */
  99. int *list = os_malloc(4 * sizeof(int));
  100. if (list) {
  101. list[0] = 60;
  102. list[1] = 120;
  103. list[2] = 240;
  104. list[3] = -1;
  105. }
  106. conf->basic_rates = list;
  107. list = os_malloc(9 * sizeof(int));
  108. if (list) {
  109. list[0] = 60;
  110. list[1] = 90;
  111. list[2] = 120;
  112. list[3] = 180;
  113. list[4] = 240;
  114. list[5] = 360;
  115. list[6] = 480;
  116. list[7] = 540;
  117. list[8] = -1;
  118. }
  119. conf->supported_rates = list;
  120. }
  121. bss->isolate = !wpa_s->conf->p2p_intra_bss;
  122. #endif /* CONFIG_P2P */
  123. if (ssid->ssid_len == 0) {
  124. wpa_printf(MSG_ERROR, "No SSID configured for AP mode");
  125. return -1;
  126. }
  127. os_memcpy(bss->ssid.ssid, ssid->ssid, ssid->ssid_len);
  128. bss->ssid.ssid[ssid->ssid_len] = '\0';
  129. bss->ssid.ssid_len = ssid->ssid_len;
  130. bss->ssid.ssid_set = 1;
  131. bss->ignore_broadcast_ssid = ssid->ignore_broadcast_ssid;
  132. if (ssid->auth_alg)
  133. bss->auth_algs = ssid->auth_alg;
  134. if (wpa_key_mgmt_wpa_psk(ssid->key_mgmt))
  135. bss->wpa = ssid->proto;
  136. bss->wpa_key_mgmt = ssid->key_mgmt;
  137. bss->wpa_pairwise = ssid->pairwise_cipher;
  138. if (ssid->passphrase) {
  139. bss->ssid.wpa_passphrase = os_strdup(ssid->passphrase);
  140. } else if (ssid->psk_set) {
  141. os_free(bss->ssid.wpa_psk);
  142. bss->ssid.wpa_psk = os_zalloc(sizeof(struct hostapd_wpa_psk));
  143. if (bss->ssid.wpa_psk == NULL)
  144. return -1;
  145. os_memcpy(bss->ssid.wpa_psk->psk, ssid->psk, PMK_LEN);
  146. bss->ssid.wpa_psk->group = 1;
  147. } else if (ssid->wep_key_len[0] || ssid->wep_key_len[1] ||
  148. ssid->wep_key_len[2] || ssid->wep_key_len[3]) {
  149. struct hostapd_wep_keys *wep = &bss->ssid.wep;
  150. int i;
  151. for (i = 0; i < NUM_WEP_KEYS; i++) {
  152. if (ssid->wep_key_len[i] == 0)
  153. continue;
  154. wep->key[i] = os_malloc(ssid->wep_key_len[i]);
  155. if (wep->key[i] == NULL)
  156. return -1;
  157. os_memcpy(wep->key[i], ssid->wep_key[i],
  158. ssid->wep_key_len[i]);
  159. wep->len[i] = ssid->wep_key_len[i];
  160. }
  161. wep->idx = ssid->wep_tx_keyidx;
  162. wep->keys_set = 1;
  163. }
  164. if (ssid->ap_max_inactivity)
  165. bss->ap_max_inactivity = ssid->ap_max_inactivity;
  166. /* Select group cipher based on the enabled pairwise cipher suites */
  167. pairwise = 0;
  168. if (bss->wpa & 1)
  169. pairwise |= bss->wpa_pairwise;
  170. if (bss->wpa & 2) {
  171. if (bss->rsn_pairwise == 0)
  172. bss->rsn_pairwise = bss->wpa_pairwise;
  173. pairwise |= bss->rsn_pairwise;
  174. }
  175. if (pairwise & WPA_CIPHER_TKIP)
  176. bss->wpa_group = WPA_CIPHER_TKIP;
  177. else
  178. bss->wpa_group = WPA_CIPHER_CCMP;
  179. if (bss->wpa && bss->ieee802_1x)
  180. bss->ssid.security_policy = SECURITY_WPA;
  181. else if (bss->wpa)
  182. bss->ssid.security_policy = SECURITY_WPA_PSK;
  183. else if (bss->ieee802_1x) {
  184. int cipher = WPA_CIPHER_NONE;
  185. bss->ssid.security_policy = SECURITY_IEEE_802_1X;
  186. bss->ssid.wep.default_len = bss->default_wep_key_len;
  187. if (bss->default_wep_key_len)
  188. cipher = bss->default_wep_key_len >= 13 ?
  189. WPA_CIPHER_WEP104 : WPA_CIPHER_WEP40;
  190. bss->wpa_group = cipher;
  191. bss->wpa_pairwise = cipher;
  192. bss->rsn_pairwise = cipher;
  193. } else if (bss->ssid.wep.keys_set) {
  194. int cipher = WPA_CIPHER_WEP40;
  195. if (bss->ssid.wep.len[0] >= 13)
  196. cipher = WPA_CIPHER_WEP104;
  197. bss->ssid.security_policy = SECURITY_STATIC_WEP;
  198. bss->wpa_group = cipher;
  199. bss->wpa_pairwise = cipher;
  200. bss->rsn_pairwise = cipher;
  201. } else {
  202. bss->ssid.security_policy = SECURITY_PLAINTEXT;
  203. bss->wpa_group = WPA_CIPHER_NONE;
  204. bss->wpa_pairwise = WPA_CIPHER_NONE;
  205. bss->rsn_pairwise = WPA_CIPHER_NONE;
  206. }
  207. #ifdef CONFIG_WPS
  208. /*
  209. * Enable WPS by default for open and WPA/WPA2-Personal network, but
  210. * require user interaction to actually use it. Only the internal
  211. * Registrar is supported.
  212. */
  213. if (bss->ssid.security_policy != SECURITY_WPA_PSK &&
  214. bss->ssid.security_policy != SECURITY_PLAINTEXT)
  215. goto no_wps;
  216. #ifdef CONFIG_WPS2
  217. if (bss->ssid.security_policy == SECURITY_WPA_PSK &&
  218. (!(pairwise & WPA_CIPHER_CCMP) || !(bss->wpa & 2)))
  219. goto no_wps; /* WPS2 does not allow WPA/TKIP-only
  220. * configuration */
  221. #endif /* CONFIG_WPS2 */
  222. bss->eap_server = 1;
  223. if (!ssid->ignore_broadcast_ssid)
  224. bss->wps_state = 2;
  225. bss->ap_setup_locked = 2;
  226. if (wpa_s->conf->config_methods)
  227. bss->config_methods = os_strdup(wpa_s->conf->config_methods);
  228. os_memcpy(bss->device_type, wpa_s->conf->device_type,
  229. WPS_DEV_TYPE_LEN);
  230. if (wpa_s->conf->device_name) {
  231. bss->device_name = os_strdup(wpa_s->conf->device_name);
  232. bss->friendly_name = os_strdup(wpa_s->conf->device_name);
  233. }
  234. if (wpa_s->conf->manufacturer)
  235. bss->manufacturer = os_strdup(wpa_s->conf->manufacturer);
  236. if (wpa_s->conf->model_name)
  237. bss->model_name = os_strdup(wpa_s->conf->model_name);
  238. if (wpa_s->conf->model_number)
  239. bss->model_number = os_strdup(wpa_s->conf->model_number);
  240. if (wpa_s->conf->serial_number)
  241. bss->serial_number = os_strdup(wpa_s->conf->serial_number);
  242. if (is_nil_uuid(wpa_s->conf->uuid))
  243. os_memcpy(bss->uuid, wpa_s->wps->uuid, WPS_UUID_LEN);
  244. else
  245. os_memcpy(bss->uuid, wpa_s->conf->uuid, WPS_UUID_LEN);
  246. os_memcpy(bss->os_version, wpa_s->conf->os_version, 4);
  247. no_wps:
  248. #endif /* CONFIG_WPS */
  249. if (wpa_s->max_stations &&
  250. wpa_s->max_stations < wpa_s->conf->max_num_sta)
  251. bss->max_num_sta = wpa_s->max_stations;
  252. else
  253. bss->max_num_sta = wpa_s->conf->max_num_sta;
  254. bss->disassoc_low_ack = wpa_s->conf->disassoc_low_ack;
  255. return 0;
  256. }
  257. static void ap_public_action_rx(void *ctx, const u8 *buf, size_t len, int freq)
  258. {
  259. #ifdef CONFIG_P2P
  260. struct wpa_supplicant *wpa_s = ctx;
  261. const struct ieee80211_mgmt *mgmt;
  262. size_t hdr_len;
  263. mgmt = (const struct ieee80211_mgmt *) buf;
  264. hdr_len = (const u8 *) &mgmt->u.action.u.vs_public_action.action - buf;
  265. if (hdr_len > len)
  266. return;
  267. wpas_p2p_rx_action(wpa_s, mgmt->da, mgmt->sa, mgmt->bssid,
  268. mgmt->u.action.category,
  269. &mgmt->u.action.u.vs_public_action.action,
  270. len - hdr_len, freq);
  271. #endif /* CONFIG_P2P */
  272. }
  273. static void ap_wps_event_cb(void *ctx, enum wps_event event,
  274. union wps_event_data *data)
  275. {
  276. #ifdef CONFIG_P2P
  277. struct wpa_supplicant *wpa_s = ctx;
  278. if (event == WPS_EV_FAIL) {
  279. struct wps_event_fail *fail = &data->fail;
  280. if (wpa_s->parent && wpa_s->parent != wpa_s &&
  281. wpa_s == wpa_s->global->p2p_group_formation) {
  282. /*
  283. * src/ap/wps_hostapd.c has already sent this on the
  284. * main interface, so only send on the parent interface
  285. * here if needed.
  286. */
  287. wpa_msg(wpa_s->parent, MSG_INFO, WPS_EVENT_FAIL
  288. "msg=%d config_error=%d",
  289. fail->msg, fail->config_error);
  290. }
  291. wpas_p2p_wps_failed(wpa_s, fail);
  292. }
  293. #endif /* CONFIG_P2P */
  294. }
  295. static void ap_sta_authorized_cb(void *ctx, const u8 *mac_addr,
  296. int authorized, const u8 *p2p_dev_addr)
  297. {
  298. wpas_notify_sta_authorized(ctx, mac_addr, authorized, p2p_dev_addr);
  299. }
  300. static int ap_vendor_action_rx(void *ctx, const u8 *buf, size_t len, int freq)
  301. {
  302. #ifdef CONFIG_P2P
  303. struct wpa_supplicant *wpa_s = ctx;
  304. const struct ieee80211_mgmt *mgmt;
  305. size_t hdr_len;
  306. mgmt = (const struct ieee80211_mgmt *) buf;
  307. hdr_len = (const u8 *) &mgmt->u.action.u.vs_public_action.action - buf;
  308. if (hdr_len > len)
  309. return -1;
  310. wpas_p2p_rx_action(wpa_s, mgmt->da, mgmt->sa, mgmt->bssid,
  311. mgmt->u.action.category,
  312. &mgmt->u.action.u.vs_public_action.action,
  313. len - hdr_len, freq);
  314. #endif /* CONFIG_P2P */
  315. return 0;
  316. }
  317. static int ap_probe_req_rx(void *ctx, const u8 *sa, const u8 *da,
  318. const u8 *bssid, const u8 *ie, size_t ie_len,
  319. int ssi_signal)
  320. {
  321. #ifdef CONFIG_P2P
  322. struct wpa_supplicant *wpa_s = ctx;
  323. return wpas_p2p_probe_req_rx(wpa_s, sa, da, bssid, ie, ie_len,
  324. ssi_signal);
  325. #else /* CONFIG_P2P */
  326. return 0;
  327. #endif /* CONFIG_P2P */
  328. }
  329. static void ap_wps_reg_success_cb(void *ctx, const u8 *mac_addr,
  330. const u8 *uuid_e)
  331. {
  332. #ifdef CONFIG_P2P
  333. struct wpa_supplicant *wpa_s = ctx;
  334. wpas_p2p_wps_success(wpa_s, mac_addr, 1);
  335. #endif /* CONFIG_P2P */
  336. }
  337. static void wpas_ap_configured_cb(void *ctx)
  338. {
  339. struct wpa_supplicant *wpa_s = ctx;
  340. wpa_supplicant_set_state(wpa_s, WPA_COMPLETED);
  341. if (wpa_s->ap_configured_cb)
  342. wpa_s->ap_configured_cb(wpa_s->ap_configured_cb_ctx,
  343. wpa_s->ap_configured_cb_data);
  344. }
  345. int wpa_supplicant_create_ap(struct wpa_supplicant *wpa_s,
  346. struct wpa_ssid *ssid)
  347. {
  348. struct wpa_driver_associate_params params;
  349. struct hostapd_iface *hapd_iface;
  350. struct hostapd_config *conf;
  351. size_t i;
  352. if (ssid->ssid == NULL || ssid->ssid_len == 0) {
  353. wpa_printf(MSG_ERROR, "No SSID configured for AP mode");
  354. return -1;
  355. }
  356. wpa_supplicant_ap_deinit(wpa_s);
  357. wpa_printf(MSG_DEBUG, "Setting up AP (SSID='%s')",
  358. wpa_ssid_txt(ssid->ssid, ssid->ssid_len));
  359. os_memset(&params, 0, sizeof(params));
  360. params.ssid = ssid->ssid;
  361. params.ssid_len = ssid->ssid_len;
  362. switch (ssid->mode) {
  363. case WPAS_MODE_INFRA:
  364. params.mode = IEEE80211_MODE_INFRA;
  365. break;
  366. case WPAS_MODE_IBSS:
  367. params.mode = IEEE80211_MODE_IBSS;
  368. break;
  369. case WPAS_MODE_AP:
  370. case WPAS_MODE_P2P_GO:
  371. case WPAS_MODE_P2P_GROUP_FORMATION:
  372. params.mode = IEEE80211_MODE_AP;
  373. break;
  374. }
  375. params.freq = ssid->frequency;
  376. params.wpa_proto = ssid->proto;
  377. if (ssid->key_mgmt & WPA_KEY_MGMT_PSK)
  378. wpa_s->key_mgmt = WPA_KEY_MGMT_PSK;
  379. else
  380. wpa_s->key_mgmt = WPA_KEY_MGMT_NONE;
  381. params.key_mgmt_suite = key_mgmt2driver(wpa_s->key_mgmt);
  382. if (ssid->pairwise_cipher & WPA_CIPHER_CCMP)
  383. wpa_s->pairwise_cipher = WPA_CIPHER_CCMP;
  384. else if (ssid->pairwise_cipher & WPA_CIPHER_TKIP)
  385. wpa_s->pairwise_cipher = WPA_CIPHER_TKIP;
  386. else if (ssid->pairwise_cipher & WPA_CIPHER_NONE)
  387. wpa_s->pairwise_cipher = WPA_CIPHER_NONE;
  388. else {
  389. wpa_printf(MSG_WARNING, "WPA: Failed to select pairwise "
  390. "cipher.");
  391. return -1;
  392. }
  393. params.pairwise_suite = cipher_suite2driver(wpa_s->pairwise_cipher);
  394. params.group_suite = params.pairwise_suite;
  395. #ifdef CONFIG_P2P
  396. if (ssid->mode == WPAS_MODE_P2P_GO ||
  397. ssid->mode == WPAS_MODE_P2P_GROUP_FORMATION)
  398. params.p2p = 1;
  399. #endif /* CONFIG_P2P */
  400. if (wpa_s->parent->set_ap_uapsd)
  401. params.uapsd = wpa_s->parent->ap_uapsd;
  402. else
  403. params.uapsd = -1;
  404. if (wpa_drv_associate(wpa_s, &params) < 0) {
  405. wpa_msg(wpa_s, MSG_INFO, "Failed to start AP functionality");
  406. return -1;
  407. }
  408. wpa_s->ap_iface = hapd_iface = os_zalloc(sizeof(*wpa_s->ap_iface));
  409. if (hapd_iface == NULL)
  410. return -1;
  411. hapd_iface->owner = wpa_s;
  412. hapd_iface->drv_flags = wpa_s->drv_flags;
  413. hapd_iface->probe_resp_offloads = wpa_s->probe_resp_offloads;
  414. wpa_s->ap_iface->conf = conf = hostapd_config_defaults();
  415. if (conf == NULL) {
  416. wpa_supplicant_ap_deinit(wpa_s);
  417. return -1;
  418. }
  419. if (params.uapsd > 0) {
  420. conf->bss->wmm_enabled = 1;
  421. conf->bss->wmm_uapsd = 1;
  422. }
  423. if (wpa_supplicant_conf_ap(wpa_s, ssid, conf)) {
  424. wpa_printf(MSG_ERROR, "Failed to create AP configuration");
  425. wpa_supplicant_ap_deinit(wpa_s);
  426. return -1;
  427. }
  428. #ifdef CONFIG_P2P
  429. if (ssid->mode == WPAS_MODE_P2P_GO)
  430. conf->bss[0].p2p = P2P_ENABLED | P2P_GROUP_OWNER;
  431. else if (ssid->mode == WPAS_MODE_P2P_GROUP_FORMATION)
  432. conf->bss[0].p2p = P2P_ENABLED | P2P_GROUP_OWNER |
  433. P2P_GROUP_FORMATION;
  434. #endif /* CONFIG_P2P */
  435. hapd_iface->num_bss = conf->num_bss;
  436. hapd_iface->bss = os_zalloc(conf->num_bss *
  437. sizeof(struct hostapd_data *));
  438. if (hapd_iface->bss == NULL) {
  439. wpa_supplicant_ap_deinit(wpa_s);
  440. return -1;
  441. }
  442. for (i = 0; i < conf->num_bss; i++) {
  443. hapd_iface->bss[i] =
  444. hostapd_alloc_bss_data(hapd_iface, conf,
  445. &conf->bss[i]);
  446. if (hapd_iface->bss[i] == NULL) {
  447. wpa_supplicant_ap_deinit(wpa_s);
  448. return -1;
  449. }
  450. hapd_iface->bss[i]->msg_ctx = wpa_s;
  451. hapd_iface->bss[i]->msg_ctx_parent = wpa_s->parent;
  452. hapd_iface->bss[i]->public_action_cb = ap_public_action_rx;
  453. hapd_iface->bss[i]->public_action_cb_ctx = wpa_s;
  454. hapd_iface->bss[i]->vendor_action_cb = ap_vendor_action_rx;
  455. hapd_iface->bss[i]->vendor_action_cb_ctx = wpa_s;
  456. hostapd_register_probereq_cb(hapd_iface->bss[i],
  457. ap_probe_req_rx, wpa_s);
  458. hapd_iface->bss[i]->wps_reg_success_cb = ap_wps_reg_success_cb;
  459. hapd_iface->bss[i]->wps_reg_success_cb_ctx = wpa_s;
  460. hapd_iface->bss[i]->wps_event_cb = ap_wps_event_cb;
  461. hapd_iface->bss[i]->wps_event_cb_ctx = wpa_s;
  462. hapd_iface->bss[i]->sta_authorized_cb = ap_sta_authorized_cb;
  463. hapd_iface->bss[i]->sta_authorized_cb_ctx = wpa_s;
  464. #ifdef CONFIG_P2P
  465. hapd_iface->bss[i]->p2p = wpa_s->global->p2p;
  466. hapd_iface->bss[i]->p2p_group = wpas_p2p_group_init(
  467. wpa_s, ssid->p2p_persistent_group,
  468. ssid->mode == WPAS_MODE_P2P_GROUP_FORMATION);
  469. #endif /* CONFIG_P2P */
  470. hapd_iface->bss[i]->setup_complete_cb = wpas_ap_configured_cb;
  471. hapd_iface->bss[i]->setup_complete_cb_ctx = wpa_s;
  472. }
  473. os_memcpy(hapd_iface->bss[0]->own_addr, wpa_s->own_addr, ETH_ALEN);
  474. hapd_iface->bss[0]->driver = wpa_s->driver;
  475. hapd_iface->bss[0]->drv_priv = wpa_s->drv_priv;
  476. wpa_s->current_ssid = ssid;
  477. os_memcpy(wpa_s->bssid, wpa_s->own_addr, ETH_ALEN);
  478. wpa_s->assoc_freq = ssid->frequency;
  479. if (hostapd_setup_interface(wpa_s->ap_iface)) {
  480. wpa_printf(MSG_ERROR, "Failed to initialize AP interface");
  481. wpa_supplicant_ap_deinit(wpa_s);
  482. return -1;
  483. }
  484. return 0;
  485. }
  486. void wpa_supplicant_ap_deinit(struct wpa_supplicant *wpa_s)
  487. {
  488. #ifdef CONFIG_WPS
  489. eloop_cancel_timeout(wpas_wps_ap_pin_timeout, wpa_s, NULL);
  490. #endif /* CONFIG_WPS */
  491. if (wpa_s->ap_iface == NULL)
  492. return;
  493. wpa_s->current_ssid = NULL;
  494. wpa_s->assoc_freq = 0;
  495. wpa_s->reassociated_connection = 0;
  496. #ifdef CONFIG_P2P
  497. if (wpa_s->ap_iface->bss)
  498. wpa_s->ap_iface->bss[0]->p2p_group = NULL;
  499. wpas_p2p_group_deinit(wpa_s);
  500. #endif /* CONFIG_P2P */
  501. hostapd_interface_deinit(wpa_s->ap_iface);
  502. hostapd_interface_free(wpa_s->ap_iface);
  503. wpa_s->ap_iface = NULL;
  504. wpa_drv_deinit_ap(wpa_s);
  505. }
  506. void ap_tx_status(void *ctx, const u8 *addr,
  507. const u8 *buf, size_t len, int ack)
  508. {
  509. #ifdef NEED_AP_MLME
  510. struct wpa_supplicant *wpa_s = ctx;
  511. hostapd_tx_status(wpa_s->ap_iface->bss[0], addr, buf, len, ack);
  512. #endif /* NEED_AP_MLME */
  513. }
  514. void ap_eapol_tx_status(void *ctx, const u8 *dst,
  515. const u8 *data, size_t len, int ack)
  516. {
  517. #ifdef NEED_AP_MLME
  518. struct wpa_supplicant *wpa_s = ctx;
  519. hostapd_tx_status(wpa_s->ap_iface->bss[0], dst, data, len, ack);
  520. #endif /* NEED_AP_MLME */
  521. }
  522. void ap_client_poll_ok(void *ctx, const u8 *addr)
  523. {
  524. #ifdef NEED_AP_MLME
  525. struct wpa_supplicant *wpa_s = ctx;
  526. if (wpa_s->ap_iface)
  527. hostapd_client_poll_ok(wpa_s->ap_iface->bss[0], addr);
  528. #endif /* NEED_AP_MLME */
  529. }
  530. void ap_rx_from_unknown_sta(void *ctx, const u8 *addr, int wds)
  531. {
  532. #ifdef NEED_AP_MLME
  533. struct wpa_supplicant *wpa_s = ctx;
  534. ieee802_11_rx_from_unknown(wpa_s->ap_iface->bss[0], addr, wds);
  535. #endif /* NEED_AP_MLME */
  536. }
  537. void ap_mgmt_rx(void *ctx, struct rx_mgmt *rx_mgmt)
  538. {
  539. #ifdef NEED_AP_MLME
  540. struct wpa_supplicant *wpa_s = ctx;
  541. struct hostapd_frame_info fi;
  542. os_memset(&fi, 0, sizeof(fi));
  543. fi.datarate = rx_mgmt->datarate;
  544. fi.ssi_signal = rx_mgmt->ssi_signal;
  545. ieee802_11_mgmt(wpa_s->ap_iface->bss[0], rx_mgmt->frame,
  546. rx_mgmt->frame_len, &fi);
  547. #endif /* NEED_AP_MLME */
  548. }
  549. void ap_mgmt_tx_cb(void *ctx, const u8 *buf, size_t len, u16 stype, int ok)
  550. {
  551. #ifdef NEED_AP_MLME
  552. struct wpa_supplicant *wpa_s = ctx;
  553. ieee802_11_mgmt_cb(wpa_s->ap_iface->bss[0], buf, len, stype, ok);
  554. #endif /* NEED_AP_MLME */
  555. }
  556. void wpa_supplicant_ap_rx_eapol(struct wpa_supplicant *wpa_s,
  557. const u8 *src_addr, const u8 *buf, size_t len)
  558. {
  559. ieee802_1x_receive(wpa_s->ap_iface->bss[0], src_addr, buf, len);
  560. }
  561. #ifdef CONFIG_WPS
  562. int wpa_supplicant_ap_wps_pbc(struct wpa_supplicant *wpa_s, const u8 *bssid,
  563. const u8 *p2p_dev_addr)
  564. {
  565. if (!wpa_s->ap_iface)
  566. return -1;
  567. return hostapd_wps_button_pushed(wpa_s->ap_iface->bss[0],
  568. p2p_dev_addr);
  569. }
  570. int wpa_supplicant_ap_wps_cancel(struct wpa_supplicant *wpa_s)
  571. {
  572. struct wps_registrar *reg;
  573. int reg_sel = 0, wps_sta = 0;
  574. if (!wpa_s->ap_iface || !wpa_s->ap_iface->bss[0]->wps)
  575. return -1;
  576. reg = wpa_s->ap_iface->bss[0]->wps->registrar;
  577. reg_sel = wps_registrar_wps_cancel(reg);
  578. wps_sta = ap_for_each_sta(wpa_s->ap_iface->bss[0],
  579. ap_sta_wps_cancel, NULL);
  580. if (!reg_sel && !wps_sta) {
  581. wpa_printf(MSG_DEBUG, "No WPS operation in progress at this "
  582. "time");
  583. return -1;
  584. }
  585. /*
  586. * There are 2 cases to return wps cancel as success:
  587. * 1. When wps cancel was initiated but no connection has been
  588. * established with client yet.
  589. * 2. Client is in the middle of exchanging WPS messages.
  590. */
  591. return 0;
  592. }
  593. int wpa_supplicant_ap_wps_pin(struct wpa_supplicant *wpa_s, const u8 *bssid,
  594. const char *pin, char *buf, size_t buflen)
  595. {
  596. int ret, ret_len = 0;
  597. if (!wpa_s->ap_iface)
  598. return -1;
  599. if (pin == NULL) {
  600. unsigned int rpin = wps_generate_pin();
  601. ret_len = os_snprintf(buf, buflen, "%08d", rpin);
  602. pin = buf;
  603. } else
  604. ret_len = os_snprintf(buf, buflen, "%s", pin);
  605. ret = hostapd_wps_add_pin(wpa_s->ap_iface->bss[0], bssid, "any", pin,
  606. 0);
  607. if (ret)
  608. return -1;
  609. return ret_len;
  610. }
  611. static void wpas_wps_ap_pin_timeout(void *eloop_data, void *user_ctx)
  612. {
  613. struct wpa_supplicant *wpa_s = eloop_data;
  614. wpa_printf(MSG_DEBUG, "WPS: AP PIN timed out");
  615. wpas_wps_ap_pin_disable(wpa_s);
  616. }
  617. static void wpas_wps_ap_pin_enable(struct wpa_supplicant *wpa_s, int timeout)
  618. {
  619. struct hostapd_data *hapd;
  620. if (wpa_s->ap_iface == NULL)
  621. return;
  622. hapd = wpa_s->ap_iface->bss[0];
  623. wpa_printf(MSG_DEBUG, "WPS: Enabling AP PIN (timeout=%d)", timeout);
  624. hapd->ap_pin_failures = 0;
  625. eloop_cancel_timeout(wpas_wps_ap_pin_timeout, wpa_s, NULL);
  626. if (timeout > 0)
  627. eloop_register_timeout(timeout, 0,
  628. wpas_wps_ap_pin_timeout, wpa_s, NULL);
  629. }
  630. void wpas_wps_ap_pin_disable(struct wpa_supplicant *wpa_s)
  631. {
  632. struct hostapd_data *hapd;
  633. if (wpa_s->ap_iface == NULL)
  634. return;
  635. wpa_printf(MSG_DEBUG, "WPS: Disabling AP PIN");
  636. hapd = wpa_s->ap_iface->bss[0];
  637. os_free(hapd->conf->ap_pin);
  638. hapd->conf->ap_pin = NULL;
  639. eloop_cancel_timeout(wpas_wps_ap_pin_timeout, wpa_s, NULL);
  640. }
  641. const char * wpas_wps_ap_pin_random(struct wpa_supplicant *wpa_s, int timeout)
  642. {
  643. struct hostapd_data *hapd;
  644. unsigned int pin;
  645. char pin_txt[9];
  646. if (wpa_s->ap_iface == NULL)
  647. return NULL;
  648. hapd = wpa_s->ap_iface->bss[0];
  649. pin = wps_generate_pin();
  650. os_snprintf(pin_txt, sizeof(pin_txt), "%08u", pin);
  651. os_free(hapd->conf->ap_pin);
  652. hapd->conf->ap_pin = os_strdup(pin_txt);
  653. if (hapd->conf->ap_pin == NULL)
  654. return NULL;
  655. wpas_wps_ap_pin_enable(wpa_s, timeout);
  656. return hapd->conf->ap_pin;
  657. }
  658. const char * wpas_wps_ap_pin_get(struct wpa_supplicant *wpa_s)
  659. {
  660. struct hostapd_data *hapd;
  661. if (wpa_s->ap_iface == NULL)
  662. return NULL;
  663. hapd = wpa_s->ap_iface->bss[0];
  664. return hapd->conf->ap_pin;
  665. }
  666. int wpas_wps_ap_pin_set(struct wpa_supplicant *wpa_s, const char *pin,
  667. int timeout)
  668. {
  669. struct hostapd_data *hapd;
  670. char pin_txt[9];
  671. int ret;
  672. if (wpa_s->ap_iface == NULL)
  673. return -1;
  674. hapd = wpa_s->ap_iface->bss[0];
  675. ret = os_snprintf(pin_txt, sizeof(pin_txt), "%s", pin);
  676. if (ret < 0 || ret >= (int) sizeof(pin_txt))
  677. return -1;
  678. os_free(hapd->conf->ap_pin);
  679. hapd->conf->ap_pin = os_strdup(pin_txt);
  680. if (hapd->conf->ap_pin == NULL)
  681. return -1;
  682. wpas_wps_ap_pin_enable(wpa_s, timeout);
  683. return 0;
  684. }
  685. void wpa_supplicant_ap_pwd_auth_fail(struct wpa_supplicant *wpa_s)
  686. {
  687. struct hostapd_data *hapd;
  688. if (wpa_s->ap_iface == NULL)
  689. return;
  690. hapd = wpa_s->ap_iface->bss[0];
  691. /*
  692. * Registrar failed to prove its knowledge of the AP PIN. Disable AP
  693. * PIN if this happens multiple times to slow down brute force attacks.
  694. */
  695. hapd->ap_pin_failures++;
  696. wpa_printf(MSG_DEBUG, "WPS: AP PIN authentication failure number %u",
  697. hapd->ap_pin_failures);
  698. if (hapd->ap_pin_failures < 3)
  699. return;
  700. wpa_printf(MSG_DEBUG, "WPS: Disable AP PIN");
  701. hapd->ap_pin_failures = 0;
  702. os_free(hapd->conf->ap_pin);
  703. hapd->conf->ap_pin = NULL;
  704. }
  705. #endif /* CONFIG_WPS */
  706. #ifdef CONFIG_CTRL_IFACE
  707. int ap_ctrl_iface_sta_first(struct wpa_supplicant *wpa_s,
  708. char *buf, size_t buflen)
  709. {
  710. if (wpa_s->ap_iface == NULL)
  711. return -1;
  712. return hostapd_ctrl_iface_sta_first(wpa_s->ap_iface->bss[0],
  713. buf, buflen);
  714. }
  715. int ap_ctrl_iface_sta(struct wpa_supplicant *wpa_s, const char *txtaddr,
  716. char *buf, size_t buflen)
  717. {
  718. if (wpa_s->ap_iface == NULL)
  719. return -1;
  720. return hostapd_ctrl_iface_sta(wpa_s->ap_iface->bss[0], txtaddr,
  721. buf, buflen);
  722. }
  723. int ap_ctrl_iface_sta_next(struct wpa_supplicant *wpa_s, const char *txtaddr,
  724. char *buf, size_t buflen)
  725. {
  726. if (wpa_s->ap_iface == NULL)
  727. return -1;
  728. return hostapd_ctrl_iface_sta_next(wpa_s->ap_iface->bss[0], txtaddr,
  729. buf, buflen);
  730. }
  731. int ap_ctrl_iface_sta_disassociate(struct wpa_supplicant *wpa_s,
  732. const char *txtaddr)
  733. {
  734. if (wpa_s->ap_iface == NULL)
  735. return -1;
  736. return hostapd_ctrl_iface_disassociate(wpa_s->ap_iface->bss[0],
  737. txtaddr);
  738. }
  739. int ap_ctrl_iface_sta_deauthenticate(struct wpa_supplicant *wpa_s,
  740. const char *txtaddr)
  741. {
  742. if (wpa_s->ap_iface == NULL)
  743. return -1;
  744. return hostapd_ctrl_iface_deauthenticate(wpa_s->ap_iface->bss[0],
  745. txtaddr);
  746. }
  747. int ap_ctrl_iface_wpa_get_status(struct wpa_supplicant *wpa_s, char *buf,
  748. size_t buflen, int verbose)
  749. {
  750. char *pos = buf, *end = buf + buflen;
  751. int ret;
  752. struct hostapd_bss_config *conf;
  753. if (wpa_s->ap_iface == NULL)
  754. return -1;
  755. conf = wpa_s->ap_iface->bss[0]->conf;
  756. if (conf->wpa == 0)
  757. return 0;
  758. ret = os_snprintf(pos, end - pos,
  759. "pairwise_cipher=%s\n"
  760. "group_cipher=%s\n"
  761. "key_mgmt=%s\n",
  762. wpa_cipher_txt(conf->rsn_pairwise),
  763. wpa_cipher_txt(conf->wpa_group),
  764. wpa_key_mgmt_txt(conf->wpa_key_mgmt,
  765. conf->wpa));
  766. if (ret < 0 || ret >= end - pos)
  767. return pos - buf;
  768. pos += ret;
  769. return pos - buf;
  770. }
  771. #endif /* CONFIG_CTRL_IFACE */
  772. int wpa_supplicant_ap_update_beacon(struct wpa_supplicant *wpa_s)
  773. {
  774. struct hostapd_iface *iface = wpa_s->ap_iface;
  775. struct wpa_ssid *ssid = wpa_s->current_ssid;
  776. struct hostapd_data *hapd;
  777. if (ssid == NULL || wpa_s->ap_iface == NULL ||
  778. ssid->mode == WPAS_MODE_INFRA ||
  779. ssid->mode == WPAS_MODE_IBSS)
  780. return -1;
  781. #ifdef CONFIG_P2P
  782. if (ssid->mode == WPAS_MODE_P2P_GO)
  783. iface->conf->bss[0].p2p = P2P_ENABLED | P2P_GROUP_OWNER;
  784. else if (ssid->mode == WPAS_MODE_P2P_GROUP_FORMATION)
  785. iface->conf->bss[0].p2p = P2P_ENABLED | P2P_GROUP_OWNER |
  786. P2P_GROUP_FORMATION;
  787. #endif /* CONFIG_P2P */
  788. hapd = iface->bss[0];
  789. if (hapd->drv_priv == NULL)
  790. return -1;
  791. ieee802_11_set_beacons(iface);
  792. hostapd_set_ap_wps_ie(hapd);
  793. return 0;
  794. }
  795. int wpa_supplicant_ap_mac_addr_filter(struct wpa_supplicant *wpa_s,
  796. const u8 *addr)
  797. {
  798. struct hostapd_data *hapd;
  799. struct hostapd_bss_config *conf;
  800. if (!wpa_s->ap_iface)
  801. return -1;
  802. if (addr)
  803. wpa_printf(MSG_DEBUG, "AP: Set MAC address filter: " MACSTR,
  804. MAC2STR(addr));
  805. else
  806. wpa_printf(MSG_DEBUG, "AP: Clear MAC address filter");
  807. hapd = wpa_s->ap_iface->bss[0];
  808. conf = hapd->conf;
  809. os_free(conf->accept_mac);
  810. conf->accept_mac = NULL;
  811. conf->num_accept_mac = 0;
  812. os_free(conf->deny_mac);
  813. conf->deny_mac = NULL;
  814. conf->num_deny_mac = 0;
  815. if (addr == NULL) {
  816. conf->macaddr_acl = ACCEPT_UNLESS_DENIED;
  817. return 0;
  818. }
  819. conf->macaddr_acl = DENY_UNLESS_ACCEPTED;
  820. conf->accept_mac = os_zalloc(sizeof(struct mac_acl_entry));
  821. if (conf->accept_mac == NULL)
  822. return -1;
  823. os_memcpy(conf->accept_mac[0].addr, addr, ETH_ALEN);
  824. conf->num_accept_mac = 1;
  825. return 0;
  826. }