eap_eke_common.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768
  1. /*
  2. * EAP server/peer: EAP-EKE shared routines
  3. * Copyright (c) 2011-2013, Jouni Malinen <j@w1.fi>
  4. *
  5. * This software may be distributed under the terms of the BSD license.
  6. * See README for more details.
  7. */
  8. #include "includes.h"
  9. #include "common.h"
  10. #include "crypto/aes.h"
  11. #include "crypto/aes_wrap.h"
  12. #include "crypto/crypto.h"
  13. #include "crypto/dh_groups.h"
  14. #include "crypto/random.h"
  15. #include "crypto/sha1.h"
  16. #include "crypto/sha256.h"
  17. #include "eap_common/eap_defs.h"
  18. #include "eap_eke_common.h"
  19. static int eap_eke_dh_len(u8 group)
  20. {
  21. switch (group) {
  22. case EAP_EKE_DHGROUP_EKE_2:
  23. return 128;
  24. case EAP_EKE_DHGROUP_EKE_5:
  25. return 192;
  26. case EAP_EKE_DHGROUP_EKE_14:
  27. return 256;
  28. case EAP_EKE_DHGROUP_EKE_15:
  29. return 384;
  30. case EAP_EKE_DHGROUP_EKE_16:
  31. return 512;
  32. }
  33. return -1;
  34. }
  35. static int eap_eke_dhcomp_len(u8 dhgroup, u8 encr)
  36. {
  37. int dhlen;
  38. dhlen = eap_eke_dh_len(dhgroup);
  39. if (dhlen < 0)
  40. return -1;
  41. if (encr != EAP_EKE_ENCR_AES128_CBC)
  42. return -1;
  43. return AES_BLOCK_SIZE + dhlen;
  44. }
  45. static const struct dh_group * eap_eke_dh_group(u8 group)
  46. {
  47. switch (group) {
  48. case EAP_EKE_DHGROUP_EKE_2:
  49. return dh_groups_get(2);
  50. case EAP_EKE_DHGROUP_EKE_5:
  51. return dh_groups_get(5);
  52. case EAP_EKE_DHGROUP_EKE_14:
  53. return dh_groups_get(14);
  54. case EAP_EKE_DHGROUP_EKE_15:
  55. return dh_groups_get(15);
  56. case EAP_EKE_DHGROUP_EKE_16:
  57. return dh_groups_get(16);
  58. }
  59. return NULL;
  60. }
  61. static int eap_eke_dh_generator(u8 group)
  62. {
  63. switch (group) {
  64. case EAP_EKE_DHGROUP_EKE_2:
  65. return 5;
  66. case EAP_EKE_DHGROUP_EKE_5:
  67. return 31;
  68. case EAP_EKE_DHGROUP_EKE_14:
  69. return 11;
  70. case EAP_EKE_DHGROUP_EKE_15:
  71. return 5;
  72. case EAP_EKE_DHGROUP_EKE_16:
  73. return 5;
  74. }
  75. return -1;
  76. }
  77. static int eap_eke_pnonce_len(u8 mac)
  78. {
  79. int mac_len;
  80. if (mac == EAP_EKE_MAC_HMAC_SHA1)
  81. mac_len = SHA1_MAC_LEN;
  82. else if (mac == EAP_EKE_MAC_HMAC_SHA2_256)
  83. mac_len = SHA256_MAC_LEN;
  84. else
  85. return -1;
  86. return AES_BLOCK_SIZE + 16 + mac_len;
  87. }
  88. static int eap_eke_pnonce_ps_len(u8 mac)
  89. {
  90. int mac_len;
  91. if (mac == EAP_EKE_MAC_HMAC_SHA1)
  92. mac_len = SHA1_MAC_LEN;
  93. else if (mac == EAP_EKE_MAC_HMAC_SHA2_256)
  94. mac_len = SHA256_MAC_LEN;
  95. else
  96. return -1;
  97. return AES_BLOCK_SIZE + 2 * 16 + mac_len;
  98. }
  99. static int eap_eke_prf_len(u8 prf)
  100. {
  101. if (prf == EAP_EKE_PRF_HMAC_SHA1)
  102. return 20;
  103. if (prf == EAP_EKE_PRF_HMAC_SHA2_256)
  104. return 32;
  105. return -1;
  106. }
  107. static int eap_eke_nonce_len(u8 prf)
  108. {
  109. int prf_len;
  110. prf_len = eap_eke_prf_len(prf);
  111. if (prf_len < 0)
  112. return -1;
  113. if (prf_len > 2 * 16)
  114. return (prf_len + 1) / 2;
  115. return 16;
  116. }
  117. static int eap_eke_auth_len(u8 prf)
  118. {
  119. switch (prf) {
  120. case EAP_EKE_PRF_HMAC_SHA1:
  121. return SHA1_MAC_LEN;
  122. case EAP_EKE_PRF_HMAC_SHA2_256:
  123. return SHA256_MAC_LEN;
  124. }
  125. return -1;
  126. }
  127. int eap_eke_dh_init(u8 group, u8 *ret_priv, u8 *ret_pub)
  128. {
  129. int generator;
  130. u8 gen;
  131. const struct dh_group *dh;
  132. size_t pub_len, i;
  133. generator = eap_eke_dh_generator(group);
  134. if (generator < 0 || generator > 255)
  135. return -1;
  136. gen = generator;
  137. dh = eap_eke_dh_group(group);
  138. if (dh == NULL)
  139. return -1;
  140. /* x = random number 2 .. p-1 */
  141. if (random_get_bytes(ret_priv, dh->prime_len))
  142. return -1;
  143. if (os_memcmp(ret_priv, dh->prime, dh->prime_len) > 0) {
  144. /* Make sure private value is smaller than prime */
  145. ret_priv[0] = 0;
  146. }
  147. for (i = 0; i < dh->prime_len - 1; i++) {
  148. if (ret_priv[i])
  149. break;
  150. }
  151. if (i == dh->prime_len - 1 && (ret_priv[i] == 0 || ret_priv[i] == 1))
  152. return -1;
  153. wpa_hexdump_key(MSG_DEBUG, "EAP-EKE: DH private value",
  154. ret_priv, dh->prime_len);
  155. /* y = g ^ x (mod p) */
  156. pub_len = dh->prime_len;
  157. if (crypto_mod_exp(&gen, 1, ret_priv, dh->prime_len,
  158. dh->prime, dh->prime_len, ret_pub, &pub_len) < 0)
  159. return -1;
  160. if (pub_len < dh->prime_len) {
  161. size_t pad = dh->prime_len - pub_len;
  162. os_memmove(ret_pub + pad, ret_pub, pub_len);
  163. os_memset(ret_pub, 0, pad);
  164. }
  165. wpa_hexdump(MSG_DEBUG, "EAP-EKE: DH public value",
  166. ret_pub, dh->prime_len);
  167. return 0;
  168. }
  169. static int eap_eke_prf(u8 prf, const u8 *key, size_t key_len, const u8 *data,
  170. size_t data_len, const u8 *data2, size_t data2_len,
  171. u8 *res)
  172. {
  173. const u8 *addr[2];
  174. size_t len[2];
  175. size_t num_elem = 1;
  176. addr[0] = data;
  177. len[0] = data_len;
  178. if (data2) {
  179. num_elem++;
  180. addr[1] = data2;
  181. len[1] = data2_len;
  182. }
  183. if (prf == EAP_EKE_PRF_HMAC_SHA1)
  184. return hmac_sha1_vector(key, key_len, num_elem, addr, len, res);
  185. if (prf == EAP_EKE_PRF_HMAC_SHA2_256)
  186. return hmac_sha256_vector(key, key_len, num_elem, addr, len,
  187. res);
  188. return -1;
  189. }
  190. static int eap_eke_prf_hmac_sha1(const u8 *key, size_t key_len, const u8 *data,
  191. size_t data_len, u8 *res, size_t len)
  192. {
  193. u8 hash[SHA1_MAC_LEN];
  194. u8 idx;
  195. const u8 *addr[3];
  196. size_t vlen[3];
  197. int ret;
  198. idx = 0;
  199. addr[0] = hash;
  200. vlen[0] = SHA1_MAC_LEN;
  201. addr[1] = data;
  202. vlen[1] = data_len;
  203. addr[2] = &idx;
  204. vlen[2] = 1;
  205. while (len > 0) {
  206. idx++;
  207. if (idx == 1)
  208. ret = hmac_sha1_vector(key, key_len, 2, &addr[1],
  209. &vlen[1], hash);
  210. else
  211. ret = hmac_sha1_vector(key, key_len, 3, addr, vlen,
  212. hash);
  213. if (ret < 0)
  214. return -1;
  215. if (len > SHA1_MAC_LEN) {
  216. os_memcpy(res, hash, SHA1_MAC_LEN);
  217. res += SHA1_MAC_LEN;
  218. len -= SHA1_MAC_LEN;
  219. } else {
  220. os_memcpy(res, hash, len);
  221. len = 0;
  222. }
  223. }
  224. return 0;
  225. }
  226. static int eap_eke_prf_hmac_sha256(const u8 *key, size_t key_len, const u8 *data,
  227. size_t data_len, u8 *res, size_t len)
  228. {
  229. u8 hash[SHA256_MAC_LEN];
  230. u8 idx;
  231. const u8 *addr[3];
  232. size_t vlen[3];
  233. int ret;
  234. idx = 0;
  235. addr[0] = hash;
  236. vlen[0] = SHA256_MAC_LEN;
  237. addr[1] = data;
  238. vlen[1] = data_len;
  239. addr[2] = &idx;
  240. vlen[2] = 1;
  241. while (len > 0) {
  242. idx++;
  243. if (idx == 1)
  244. ret = hmac_sha256_vector(key, key_len, 2, &addr[1],
  245. &vlen[1], hash);
  246. else
  247. ret = hmac_sha256_vector(key, key_len, 3, addr, vlen,
  248. hash);
  249. if (ret < 0)
  250. return -1;
  251. if (len > SHA256_MAC_LEN) {
  252. os_memcpy(res, hash, SHA256_MAC_LEN);
  253. res += SHA256_MAC_LEN;
  254. len -= SHA256_MAC_LEN;
  255. } else {
  256. os_memcpy(res, hash, len);
  257. len = 0;
  258. }
  259. }
  260. return 0;
  261. }
  262. static int eap_eke_prfplus(u8 prf, const u8 *key, size_t key_len,
  263. const u8 *data, size_t data_len, u8 *res, size_t len)
  264. {
  265. if (prf == EAP_EKE_PRF_HMAC_SHA1)
  266. return eap_eke_prf_hmac_sha1(key, key_len, data, data_len, res,
  267. len);
  268. if (prf == EAP_EKE_PRF_HMAC_SHA2_256)
  269. return eap_eke_prf_hmac_sha256(key, key_len, data, data_len,
  270. res, len);
  271. return -1;
  272. }
  273. int eap_eke_derive_key(struct eap_eke_session *sess,
  274. const u8 *password, size_t password_len,
  275. const u8 *id_s, size_t id_s_len, const u8 *id_p,
  276. size_t id_p_len, u8 *key)
  277. {
  278. u8 zeros[EAP_EKE_MAX_HASH_LEN];
  279. u8 temp[EAP_EKE_MAX_HASH_LEN];
  280. size_t key_len = 16; /* Only AES-128-CBC is used here */
  281. u8 *id;
  282. /* temp = prf(0+, password) */
  283. os_memset(zeros, 0, sess->prf_len);
  284. if (eap_eke_prf(sess->prf, zeros, sess->prf_len,
  285. password, password_len, NULL, 0, temp) < 0)
  286. return -1;
  287. wpa_hexdump_key(MSG_DEBUG, "EAP-EKE: temp = prf(0+, password)",
  288. temp, sess->prf_len);
  289. /* key = prf+(temp, ID_S | ID_P) */
  290. id = os_malloc(id_s_len + id_p_len);
  291. if (id == NULL)
  292. return -1;
  293. os_memcpy(id, id_s, id_s_len);
  294. os_memcpy(id + id_s_len, id_p, id_p_len);
  295. wpa_hexdump_ascii(MSG_DEBUG, "EAP-EKE: ID_S | ID_P",
  296. id, id_s_len + id_p_len);
  297. if (eap_eke_prfplus(sess->prf, temp, sess->prf_len,
  298. id, id_s_len + id_p_len, key, key_len) < 0) {
  299. os_free(id);
  300. return -1;
  301. }
  302. os_free(id);
  303. wpa_hexdump_key(MSG_DEBUG, "EAP-EKE: key = prf+(temp, ID_S | ID_P)",
  304. key, key_len);
  305. return 0;
  306. }
  307. int eap_eke_dhcomp(struct eap_eke_session *sess, const u8 *key, const u8 *dhpub,
  308. u8 *ret_dhcomp)
  309. {
  310. u8 pub[EAP_EKE_MAX_DH_LEN];
  311. int dh_len;
  312. u8 iv[AES_BLOCK_SIZE];
  313. dh_len = eap_eke_dh_len(sess->dhgroup);
  314. if (dh_len < 0)
  315. return -1;
  316. /*
  317. * DHComponent = Encr(key, y)
  318. *
  319. * All defined DH groups use primes that have length devisible by 16, so
  320. * no need to do extra padding for y (= pub).
  321. */
  322. if (sess->encr != EAP_EKE_ENCR_AES128_CBC)
  323. return -1;
  324. if (random_get_bytes(iv, AES_BLOCK_SIZE))
  325. return -1;
  326. wpa_hexdump(MSG_DEBUG, "EAP-EKE: IV for Encr(key, y)",
  327. iv, AES_BLOCK_SIZE);
  328. os_memcpy(pub, dhpub, dh_len);
  329. if (aes_128_cbc_encrypt(key, iv, pub, dh_len) < 0)
  330. return -1;
  331. os_memcpy(ret_dhcomp, iv, AES_BLOCK_SIZE);
  332. os_memcpy(ret_dhcomp + AES_BLOCK_SIZE, pub, dh_len);
  333. wpa_hexdump(MSG_DEBUG, "EAP-EKE: DHComponent = Encr(key, y)",
  334. ret_dhcomp, AES_BLOCK_SIZE + dh_len);
  335. return 0;
  336. }
  337. int eap_eke_shared_secret(struct eap_eke_session *sess, const u8 *key,
  338. const u8 *dhpriv, const u8 *peer_dhcomp)
  339. {
  340. u8 zeros[EAP_EKE_MAX_HASH_LEN];
  341. u8 peer_pub[EAP_EKE_MAX_DH_LEN];
  342. u8 modexp[EAP_EKE_MAX_DH_LEN];
  343. size_t len;
  344. const struct dh_group *dh;
  345. if (sess->encr != EAP_EKE_ENCR_AES128_CBC)
  346. return -1;
  347. dh = eap_eke_dh_group(sess->dhgroup);
  348. if (dh == NULL)
  349. return -1;
  350. /* Decrypt peer DHComponent */
  351. os_memcpy(peer_pub, peer_dhcomp + AES_BLOCK_SIZE, dh->prime_len);
  352. if (aes_128_cbc_decrypt(key, peer_dhcomp, peer_pub, dh->prime_len) < 0) {
  353. wpa_printf(MSG_INFO, "EAP-EKE: Failed to decrypt DHComponent");
  354. return -1;
  355. }
  356. wpa_hexdump_key(MSG_DEBUG, "EAP-EKE: Decrypted peer DH pubkey",
  357. peer_pub, dh->prime_len);
  358. /* SharedSecret = prf(0+, g ^ (x_s * x_p) (mod p)) */
  359. len = dh->prime_len;
  360. if (crypto_mod_exp(peer_pub, dh->prime_len, dhpriv, dh->prime_len,
  361. dh->prime, dh->prime_len, modexp, &len) < 0)
  362. return -1;
  363. if (len < dh->prime_len) {
  364. size_t pad = dh->prime_len - len;
  365. os_memmove(modexp + pad, modexp, len);
  366. os_memset(modexp, 0, pad);
  367. }
  368. os_memset(zeros, 0, sess->auth_len);
  369. if (eap_eke_prf(sess->prf, zeros, sess->auth_len, modexp, dh->prime_len,
  370. NULL, 0, sess->shared_secret) < 0)
  371. return -1;
  372. wpa_hexdump_key(MSG_DEBUG, "EAP-EKE: SharedSecret",
  373. sess->shared_secret, sess->auth_len);
  374. return 0;
  375. }
  376. int eap_eke_derive_ke_ki(struct eap_eke_session *sess,
  377. const u8 *id_s, size_t id_s_len,
  378. const u8 *id_p, size_t id_p_len)
  379. {
  380. u8 buf[EAP_EKE_MAX_KE_LEN + EAP_EKE_MAX_KI_LEN];
  381. size_t ke_len, ki_len;
  382. u8 *data;
  383. size_t data_len;
  384. const char *label = "EAP-EKE Keys";
  385. size_t label_len;
  386. /*
  387. * Ke | Ki = prf+(SharedSecret, "EAP-EKE Keys" | ID_S | ID_P)
  388. * Ke = encryption key
  389. * Ki = integrity protection key
  390. * Length of each key depends on the selected algorithms.
  391. */
  392. if (sess->encr == EAP_EKE_ENCR_AES128_CBC)
  393. ke_len = 16;
  394. else
  395. return -1;
  396. if (sess->mac == EAP_EKE_PRF_HMAC_SHA1)
  397. ki_len = 20;
  398. else if (sess->mac == EAP_EKE_PRF_HMAC_SHA2_256)
  399. ki_len = 32;
  400. else
  401. return -1;
  402. label_len = os_strlen(label);
  403. data_len = label_len + id_s_len + id_p_len;
  404. data = os_malloc(data_len);
  405. if (data == NULL)
  406. return -1;
  407. os_memcpy(data, label, label_len);
  408. os_memcpy(data + label_len, id_s, id_s_len);
  409. os_memcpy(data + label_len + id_s_len, id_p, id_p_len);
  410. if (eap_eke_prfplus(sess->prf, sess->shared_secret, sess->prf_len,
  411. data, data_len, buf, ke_len + ki_len) < 0) {
  412. os_free(data);
  413. return -1;
  414. }
  415. os_memcpy(sess->ke, buf, ke_len);
  416. wpa_hexdump_key(MSG_DEBUG, "EAP-EKE: Ke", sess->ke, ke_len);
  417. os_memcpy(sess->ki, buf + ke_len, ki_len);
  418. wpa_hexdump_key(MSG_DEBUG, "EAP-EKE: Ki", sess->ki, ki_len);
  419. os_free(data);
  420. return 0;
  421. }
  422. int eap_eke_derive_ka(struct eap_eke_session *sess,
  423. const u8 *id_s, size_t id_s_len,
  424. const u8 *id_p, size_t id_p_len,
  425. const u8 *nonce_p, const u8 *nonce_s)
  426. {
  427. u8 *data, *pos;
  428. size_t data_len;
  429. const char *label = "EAP-EKE Ka";
  430. size_t label_len;
  431. /*
  432. * Ka = prf+(SharedSecret, "EAP-EKE Ka" | ID_S | ID_P | Nonce_P |
  433. * Nonce_S)
  434. * Ka = authentication key
  435. * Length of the key depends on the selected algorithms.
  436. */
  437. label_len = os_strlen(label);
  438. data_len = label_len + id_s_len + id_p_len + 2 * sess->nonce_len;
  439. data = os_malloc(data_len);
  440. if (data == NULL)
  441. return -1;
  442. pos = data;
  443. os_memcpy(pos, label, label_len);
  444. pos += label_len;
  445. os_memcpy(pos, id_s, id_s_len);
  446. pos += id_s_len;
  447. os_memcpy(pos, id_p, id_p_len);
  448. pos += id_p_len;
  449. os_memcpy(pos, nonce_p, sess->nonce_len);
  450. pos += sess->nonce_len;
  451. os_memcpy(pos, nonce_s, sess->nonce_len);
  452. if (eap_eke_prfplus(sess->prf, sess->shared_secret, sess->prf_len,
  453. data, data_len, sess->ka, sess->prf_len) < 0) {
  454. os_free(data);
  455. return -1;
  456. }
  457. os_free(data);
  458. wpa_hexdump_key(MSG_DEBUG, "EAP-EKE: Ka", sess->ka, sess->prf_len);
  459. return 0;
  460. }
  461. int eap_eke_derive_msk(struct eap_eke_session *sess,
  462. const u8 *id_s, size_t id_s_len,
  463. const u8 *id_p, size_t id_p_len,
  464. const u8 *nonce_p, const u8 *nonce_s,
  465. u8 *msk, u8 *emsk)
  466. {
  467. u8 *data, *pos;
  468. size_t data_len;
  469. const char *label = "EAP-EKE Exported Keys";
  470. size_t label_len;
  471. u8 buf[EAP_MSK_LEN + EAP_EMSK_LEN];
  472. /*
  473. * MSK | EMSK = prf+(SharedSecret, "EAP-EKE Exported Keys" | ID_S |
  474. * ID_P | Nonce_P | Nonce_S)
  475. */
  476. label_len = os_strlen(label);
  477. data_len = label_len + id_s_len + id_p_len + 2 * sess->nonce_len;
  478. data = os_malloc(data_len);
  479. if (data == NULL)
  480. return -1;
  481. pos = data;
  482. os_memcpy(pos, label, label_len);
  483. pos += label_len;
  484. os_memcpy(pos, id_s, id_s_len);
  485. pos += id_s_len;
  486. os_memcpy(pos, id_p, id_p_len);
  487. pos += id_p_len;
  488. os_memcpy(pos, nonce_p, sess->nonce_len);
  489. pos += sess->nonce_len;
  490. os_memcpy(pos, nonce_s, sess->nonce_len);
  491. if (eap_eke_prfplus(sess->prf, sess->shared_secret, sess->prf_len,
  492. data, data_len, buf, EAP_MSK_LEN + EAP_EMSK_LEN) <
  493. 0) {
  494. os_free(data);
  495. return -1;
  496. }
  497. os_free(data);
  498. os_memcpy(msk, buf, EAP_MSK_LEN);
  499. os_memcpy(emsk, buf + EAP_MSK_LEN, EAP_EMSK_LEN);
  500. os_memset(buf, 0, sizeof(buf));
  501. wpa_hexdump_key(MSG_DEBUG, "EAP-EKE: MSK", msk, EAP_MSK_LEN);
  502. wpa_hexdump_key(MSG_DEBUG, "EAP-EKE: EMSK", msk, EAP_EMSK_LEN);
  503. return 0;
  504. }
  505. static int eap_eke_mac(u8 mac, const u8 *key, const u8 *data, size_t data_len,
  506. u8 *res)
  507. {
  508. if (mac == EAP_EKE_MAC_HMAC_SHA1)
  509. return hmac_sha1(key, SHA1_MAC_LEN, data, data_len, res);
  510. if (mac == EAP_EKE_MAC_HMAC_SHA2_256)
  511. return hmac_sha256(key, SHA256_MAC_LEN, data, data_len, res);
  512. return -1;
  513. }
  514. int eap_eke_prot(struct eap_eke_session *sess,
  515. const u8 *data, size_t data_len,
  516. u8 *prot, size_t *prot_len)
  517. {
  518. size_t block_size, icv_len, pad;
  519. u8 *pos, *iv, *e;
  520. if (sess->encr == EAP_EKE_ENCR_AES128_CBC)
  521. block_size = AES_BLOCK_SIZE;
  522. else
  523. return -1;
  524. if (sess->mac == EAP_EKE_PRF_HMAC_SHA1)
  525. icv_len = SHA1_MAC_LEN;
  526. else if (sess->mac == EAP_EKE_PRF_HMAC_SHA2_256)
  527. icv_len = SHA256_MAC_LEN;
  528. else
  529. return -1;
  530. pad = data_len % block_size;
  531. if (pad)
  532. pad = block_size - pad;
  533. if (*prot_len < block_size + data_len + pad + icv_len) {
  534. wpa_printf(MSG_INFO, "EAP-EKE: Not enough room for Prot() data");
  535. }
  536. pos = prot;
  537. if (random_get_bytes(pos, block_size))
  538. return -1;
  539. iv = pos;
  540. wpa_hexdump(MSG_DEBUG, "EAP-EKE: IV for Prot()", iv, block_size);
  541. pos += block_size;
  542. e = pos;
  543. os_memcpy(pos, data, data_len);
  544. pos += data_len;
  545. if (pad) {
  546. if (random_get_bytes(pos, pad))
  547. return -1;
  548. pos += pad;
  549. }
  550. if (aes_128_cbc_encrypt(sess->ke, iv, e, data_len + pad) < 0)
  551. return -1;
  552. if (eap_eke_mac(sess->mac, sess->ki, e, data_len + pad, pos) < 0)
  553. return -1;
  554. pos += icv_len;
  555. *prot_len = pos - prot;
  556. return 0;
  557. }
  558. int eap_eke_decrypt_prot(struct eap_eke_session *sess,
  559. const u8 *prot, size_t prot_len,
  560. u8 *data, size_t *data_len)
  561. {
  562. size_t block_size, icv_len;
  563. u8 icv[EAP_EKE_MAX_HASH_LEN];
  564. if (sess->encr == EAP_EKE_ENCR_AES128_CBC)
  565. block_size = AES_BLOCK_SIZE;
  566. else
  567. return -1;
  568. if (sess->mac == EAP_EKE_PRF_HMAC_SHA1)
  569. icv_len = SHA1_MAC_LEN;
  570. else if (sess->mac == EAP_EKE_PRF_HMAC_SHA2_256)
  571. icv_len = SHA256_MAC_LEN;
  572. else
  573. return -1;
  574. if (prot_len < 2 * block_size + icv_len)
  575. return -1;
  576. if ((prot_len - icv_len) % block_size)
  577. return -1;
  578. if (eap_eke_mac(sess->mac, sess->ki, prot + block_size,
  579. prot_len - block_size - icv_len, icv) < 0)
  580. return -1;
  581. if (os_memcmp_const(icv, prot + prot_len - icv_len, icv_len) != 0) {
  582. wpa_printf(MSG_INFO, "EAP-EKE: ICV mismatch in Prot() data");
  583. return -1;
  584. }
  585. if (*data_len < prot_len - block_size - icv_len) {
  586. wpa_printf(MSG_INFO, "EAP-EKE: Not enough room for decrypted Prot() data");
  587. return -1;
  588. }
  589. *data_len = prot_len - block_size - icv_len;
  590. os_memcpy(data, prot + block_size, *data_len);
  591. if (aes_128_cbc_decrypt(sess->ke, prot, data, *data_len) < 0) {
  592. wpa_printf(MSG_INFO, "EAP-EKE: Failed to decrypt Prot() data");
  593. return -1;
  594. }
  595. wpa_hexdump_key(MSG_DEBUG, "EAP-EKE: Decrypted Prot() data",
  596. data, *data_len);
  597. return 0;
  598. }
  599. int eap_eke_auth(struct eap_eke_session *sess, const char *label,
  600. const struct wpabuf *msgs, u8 *auth)
  601. {
  602. wpa_printf(MSG_DEBUG, "EAP-EKE: Auth(%s)", label);
  603. wpa_hexdump_key(MSG_DEBUG, "EAP-EKE: Ka for Auth",
  604. sess->ka, sess->auth_len);
  605. wpa_hexdump_buf(MSG_MSGDUMP, "EAP-EKE: Messages for Auth", msgs);
  606. return eap_eke_prf(sess->prf, sess->ka, sess->auth_len,
  607. (const u8 *) label, os_strlen(label),
  608. wpabuf_head(msgs), wpabuf_len(msgs), auth);
  609. }
  610. int eap_eke_session_init(struct eap_eke_session *sess, u8 dhgroup, u8 encr,
  611. u8 prf, u8 mac)
  612. {
  613. sess->dhgroup = dhgroup;
  614. sess->encr = encr;
  615. sess->prf = prf;
  616. sess->mac = mac;
  617. sess->prf_len = eap_eke_prf_len(prf);
  618. if (sess->prf_len < 0)
  619. return -1;
  620. sess->nonce_len = eap_eke_nonce_len(prf);
  621. if (sess->nonce_len < 0)
  622. return -1;
  623. sess->auth_len = eap_eke_auth_len(prf);
  624. if (sess->auth_len < 0)
  625. return -1;
  626. sess->dhcomp_len = eap_eke_dhcomp_len(sess->dhgroup, sess->encr);
  627. if (sess->dhcomp_len < 0)
  628. return -1;
  629. sess->pnonce_len = eap_eke_pnonce_len(sess->mac);
  630. if (sess->pnonce_len < 0)
  631. return -1;
  632. sess->pnonce_ps_len = eap_eke_pnonce_ps_len(sess->mac);
  633. if (sess->pnonce_ps_len < 0)
  634. return -1;
  635. return 0;
  636. }
  637. void eap_eke_session_clean(struct eap_eke_session *sess)
  638. {
  639. os_memset(sess->shared_secret, 0, EAP_EKE_MAX_HASH_LEN);
  640. os_memset(sess->ke, 0, EAP_EKE_MAX_KE_LEN);
  641. os_memset(sess->ki, 0, EAP_EKE_MAX_KI_LEN);
  642. os_memset(sess->ka, 0, EAP_EKE_MAX_KA_LEN);
  643. }