ap.c 37 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430
  1. /*
  2. * WPA Supplicant - Basic AP mode support routines
  3. * Copyright (c) 2003-2009, Jouni Malinen <j@w1.fi>
  4. * Copyright (c) 2009, Atheros Communications
  5. *
  6. * This software may be distributed under the terms of the BSD license.
  7. * See README for more details.
  8. */
  9. #include "utils/includes.h"
  10. #include "utils/common.h"
  11. #include "utils/eloop.h"
  12. #include "utils/uuid.h"
  13. #include "common/ieee802_11_defs.h"
  14. #include "common/wpa_ctrl.h"
  15. #include "eapol_supp/eapol_supp_sm.h"
  16. #include "crypto/dh_group5.h"
  17. #include "ap/hostapd.h"
  18. #include "ap/ap_config.h"
  19. #include "ap/ap_drv_ops.h"
  20. #ifdef NEED_AP_MLME
  21. #include "ap/ieee802_11.h"
  22. #endif /* NEED_AP_MLME */
  23. #include "ap/beacon.h"
  24. #include "ap/ieee802_1x.h"
  25. #include "ap/wps_hostapd.h"
  26. #include "ap/ctrl_iface_ap.h"
  27. #include "ap/dfs.h"
  28. #include "wps/wps.h"
  29. #include "common/ieee802_11_defs.h"
  30. #include "config_ssid.h"
  31. #include "config.h"
  32. #include "wpa_supplicant_i.h"
  33. #include "driver_i.h"
  34. #include "p2p_supplicant.h"
  35. #include "ap.h"
  36. #include "ap/sta_info.h"
  37. #include "notify.h"
  38. #ifdef CONFIG_WPS
  39. static void wpas_wps_ap_pin_timeout(void *eloop_data, void *user_ctx);
  40. #endif /* CONFIG_WPS */
  41. #ifdef CONFIG_IEEE80211N
  42. static void wpas_conf_ap_vht(struct wpa_supplicant *wpa_s,
  43. struct hostapd_config *conf,
  44. struct hostapd_hw_modes *mode)
  45. {
  46. #ifdef CONFIG_P2P
  47. u8 center_chan = 0;
  48. u8 channel = conf->channel;
  49. if (!conf->secondary_channel)
  50. goto no_vht;
  51. switch (conf->vht_oper_chwidth) {
  52. case VHT_CHANWIDTH_80MHZ:
  53. case VHT_CHANWIDTH_80P80MHZ:
  54. center_chan = wpas_p2p_get_vht80_center(wpa_s, mode, channel);
  55. break;
  56. case VHT_CHANWIDTH_160MHZ:
  57. center_chan = wpas_p2p_get_vht160_center(wpa_s, mode, channel);
  58. break;
  59. default:
  60. /*
  61. * conf->vht_oper_chwidth might not be set for non-P2P GO cases,
  62. * try oper_cwidth 160 MHz first then VHT 80 MHz, if 160 MHz is
  63. * not supported.
  64. */
  65. conf->vht_oper_chwidth = VHT_CHANWIDTH_160MHZ;
  66. center_chan = wpas_p2p_get_vht160_center(wpa_s, mode, channel);
  67. if (!center_chan) {
  68. conf->vht_oper_chwidth = VHT_CHANWIDTH_80MHZ;
  69. center_chan = wpas_p2p_get_vht80_center(wpa_s, mode,
  70. channel);
  71. }
  72. break;
  73. }
  74. if (!center_chan)
  75. goto no_vht;
  76. conf->vht_oper_centr_freq_seg0_idx = center_chan;
  77. return;
  78. no_vht:
  79. conf->vht_oper_centr_freq_seg0_idx =
  80. channel + conf->secondary_channel * 2;
  81. #else /* CONFIG_P2P */
  82. conf->vht_oper_centr_freq_seg0_idx =
  83. conf->channel + conf->secondary_channel * 2;
  84. #endif /* CONFIG_P2P */
  85. conf->vht_oper_chwidth = VHT_CHANWIDTH_USE_HT;
  86. }
  87. #endif /* CONFIG_IEEE80211N */
  88. int wpa_supplicant_conf_ap_ht(struct wpa_supplicant *wpa_s,
  89. struct wpa_ssid *ssid,
  90. struct hostapd_config *conf)
  91. {
  92. conf->hw_mode = ieee80211_freq_to_chan(ssid->frequency,
  93. &conf->channel);
  94. if (conf->hw_mode == NUM_HOSTAPD_MODES) {
  95. wpa_printf(MSG_ERROR, "Unsupported AP mode frequency: %d MHz",
  96. ssid->frequency);
  97. return -1;
  98. }
  99. /* TODO: enable HT40 if driver supports it;
  100. * drop to 11b if driver does not support 11g */
  101. #ifdef CONFIG_IEEE80211N
  102. /*
  103. * Enable HT20 if the driver supports it, by setting conf->ieee80211n
  104. * and a mask of allowed capabilities within conf->ht_capab.
  105. * Using default config settings for: conf->ht_op_mode_fixed,
  106. * conf->secondary_channel, conf->require_ht
  107. */
  108. if (wpa_s->hw.modes) {
  109. struct hostapd_hw_modes *mode = NULL;
  110. int i, no_ht = 0;
  111. for (i = 0; i < wpa_s->hw.num_modes; i++) {
  112. if (wpa_s->hw.modes[i].mode == conf->hw_mode) {
  113. mode = &wpa_s->hw.modes[i];
  114. break;
  115. }
  116. }
  117. #ifdef CONFIG_HT_OVERRIDES
  118. if (ssid->disable_ht) {
  119. conf->ieee80211n = 0;
  120. conf->ht_capab = 0;
  121. no_ht = 1;
  122. }
  123. #endif /* CONFIG_HT_OVERRIDES */
  124. if (!no_ht && mode && mode->ht_capab) {
  125. conf->ieee80211n = 1;
  126. #ifdef CONFIG_P2P
  127. if (conf->hw_mode == HOSTAPD_MODE_IEEE80211A &&
  128. (mode->ht_capab &
  129. HT_CAP_INFO_SUPP_CHANNEL_WIDTH_SET) &&
  130. ssid->ht40)
  131. conf->secondary_channel =
  132. wpas_p2p_get_ht40_mode(wpa_s, mode,
  133. conf->channel);
  134. if (conf->secondary_channel)
  135. conf->ht_capab |=
  136. HT_CAP_INFO_SUPP_CHANNEL_WIDTH_SET;
  137. #endif /* CONFIG_P2P */
  138. /*
  139. * white-list capabilities that won't cause issues
  140. * to connecting stations, while leaving the current
  141. * capabilities intact (currently disabled SMPS).
  142. */
  143. conf->ht_capab |= mode->ht_capab &
  144. (HT_CAP_INFO_GREEN_FIELD |
  145. HT_CAP_INFO_SHORT_GI20MHZ |
  146. HT_CAP_INFO_SHORT_GI40MHZ |
  147. HT_CAP_INFO_RX_STBC_MASK |
  148. HT_CAP_INFO_TX_STBC |
  149. HT_CAP_INFO_MAX_AMSDU_SIZE);
  150. if (mode->vht_capab && ssid->vht) {
  151. conf->ieee80211ac = 1;
  152. wpas_conf_ap_vht(wpa_s, conf, mode);
  153. }
  154. }
  155. }
  156. if (conf->secondary_channel) {
  157. struct wpa_supplicant *iface;
  158. for (iface = wpa_s->global->ifaces; iface; iface = iface->next)
  159. {
  160. if (iface == wpa_s ||
  161. iface->wpa_state < WPA_AUTHENTICATING ||
  162. (int) iface->assoc_freq != ssid->frequency)
  163. continue;
  164. /*
  165. * Do not allow 40 MHz co-ex PRI/SEC switch to force us
  166. * to change our PRI channel since we have an existing,
  167. * concurrent connection on that channel and doing
  168. * multi-channel concurrency is likely to cause more
  169. * harm than using different PRI/SEC selection in
  170. * environment with multiple BSSes on these two channels
  171. * with mixed 20 MHz or PRI channel selection.
  172. */
  173. conf->no_pri_sec_switch = 1;
  174. }
  175. }
  176. #endif /* CONFIG_IEEE80211N */
  177. return 0;
  178. }
  179. static int wpa_supplicant_conf_ap(struct wpa_supplicant *wpa_s,
  180. struct wpa_ssid *ssid,
  181. struct hostapd_config *conf)
  182. {
  183. struct hostapd_bss_config *bss = conf->bss[0];
  184. conf->driver = wpa_s->driver;
  185. os_strlcpy(bss->iface, wpa_s->ifname, sizeof(bss->iface));
  186. if (wpa_supplicant_conf_ap_ht(wpa_s, ssid, conf))
  187. return -1;
  188. #ifdef CONFIG_ACS
  189. if (ssid->acs) {
  190. /* Setting channel to 0 in order to enable ACS */
  191. conf->channel = 0;
  192. wpa_printf(MSG_DEBUG, "Use automatic channel selection");
  193. }
  194. #endif /* CONFIG_ACS */
  195. if (ieee80211_is_dfs(ssid->frequency) && wpa_s->conf->country[0]) {
  196. conf->ieee80211h = 1;
  197. conf->ieee80211d = 1;
  198. conf->country[0] = wpa_s->conf->country[0];
  199. conf->country[1] = wpa_s->conf->country[1];
  200. }
  201. #ifdef CONFIG_P2P
  202. if (conf->hw_mode == HOSTAPD_MODE_IEEE80211G &&
  203. (ssid->mode == WPAS_MODE_P2P_GO ||
  204. ssid->mode == WPAS_MODE_P2P_GROUP_FORMATION)) {
  205. /* Remove 802.11b rates from supported and basic rate sets */
  206. int *list = os_malloc(4 * sizeof(int));
  207. if (list) {
  208. list[0] = 60;
  209. list[1] = 120;
  210. list[2] = 240;
  211. list[3] = -1;
  212. }
  213. conf->basic_rates = list;
  214. list = os_malloc(9 * sizeof(int));
  215. if (list) {
  216. list[0] = 60;
  217. list[1] = 90;
  218. list[2] = 120;
  219. list[3] = 180;
  220. list[4] = 240;
  221. list[5] = 360;
  222. list[6] = 480;
  223. list[7] = 540;
  224. list[8] = -1;
  225. }
  226. conf->supported_rates = list;
  227. }
  228. bss->isolate = !wpa_s->conf->p2p_intra_bss;
  229. bss->force_per_enrollee_psk = wpa_s->global->p2p_per_sta_psk;
  230. if (ssid->p2p_group) {
  231. os_memcpy(bss->ip_addr_go, wpa_s->parent->conf->ip_addr_go, 4);
  232. os_memcpy(bss->ip_addr_mask, wpa_s->parent->conf->ip_addr_mask,
  233. 4);
  234. os_memcpy(bss->ip_addr_start,
  235. wpa_s->parent->conf->ip_addr_start, 4);
  236. os_memcpy(bss->ip_addr_end, wpa_s->parent->conf->ip_addr_end,
  237. 4);
  238. }
  239. #endif /* CONFIG_P2P */
  240. if (ssid->ssid_len == 0) {
  241. wpa_printf(MSG_ERROR, "No SSID configured for AP mode");
  242. return -1;
  243. }
  244. os_memcpy(bss->ssid.ssid, ssid->ssid, ssid->ssid_len);
  245. bss->ssid.ssid_len = ssid->ssid_len;
  246. bss->ssid.ssid_set = 1;
  247. bss->ignore_broadcast_ssid = ssid->ignore_broadcast_ssid;
  248. if (ssid->auth_alg)
  249. bss->auth_algs = ssid->auth_alg;
  250. if (wpa_key_mgmt_wpa_psk(ssid->key_mgmt))
  251. bss->wpa = ssid->proto;
  252. bss->wpa_key_mgmt = ssid->key_mgmt;
  253. bss->wpa_pairwise = ssid->pairwise_cipher;
  254. if (ssid->psk_set) {
  255. bin_clear_free(bss->ssid.wpa_psk, sizeof(*bss->ssid.wpa_psk));
  256. bss->ssid.wpa_psk = os_zalloc(sizeof(struct hostapd_wpa_psk));
  257. if (bss->ssid.wpa_psk == NULL)
  258. return -1;
  259. os_memcpy(bss->ssid.wpa_psk->psk, ssid->psk, PMK_LEN);
  260. bss->ssid.wpa_psk->group = 1;
  261. } else if (ssid->passphrase) {
  262. bss->ssid.wpa_passphrase = os_strdup(ssid->passphrase);
  263. } else if (ssid->wep_key_len[0] || ssid->wep_key_len[1] ||
  264. ssid->wep_key_len[2] || ssid->wep_key_len[3]) {
  265. struct hostapd_wep_keys *wep = &bss->ssid.wep;
  266. int i;
  267. for (i = 0; i < NUM_WEP_KEYS; i++) {
  268. if (ssid->wep_key_len[i] == 0)
  269. continue;
  270. wep->key[i] = os_malloc(ssid->wep_key_len[i]);
  271. if (wep->key[i] == NULL)
  272. return -1;
  273. os_memcpy(wep->key[i], ssid->wep_key[i],
  274. ssid->wep_key_len[i]);
  275. wep->len[i] = ssid->wep_key_len[i];
  276. }
  277. wep->idx = ssid->wep_tx_keyidx;
  278. wep->keys_set = 1;
  279. }
  280. if (ssid->ap_max_inactivity)
  281. bss->ap_max_inactivity = ssid->ap_max_inactivity;
  282. if (ssid->dtim_period)
  283. bss->dtim_period = ssid->dtim_period;
  284. else if (wpa_s->conf->dtim_period)
  285. bss->dtim_period = wpa_s->conf->dtim_period;
  286. if (ssid->beacon_int)
  287. conf->beacon_int = ssid->beacon_int;
  288. else if (wpa_s->conf->beacon_int)
  289. conf->beacon_int = wpa_s->conf->beacon_int;
  290. #ifdef CONFIG_P2P
  291. if (ssid->mode == WPAS_MODE_P2P_GO ||
  292. ssid->mode == WPAS_MODE_P2P_GROUP_FORMATION) {
  293. if (wpa_s->conf->p2p_go_ctwindow > conf->beacon_int) {
  294. wpa_printf(MSG_INFO,
  295. "CTWindow (%d) is bigger than beacon interval (%d) - avoid configuring it",
  296. wpa_s->conf->p2p_go_ctwindow,
  297. conf->beacon_int);
  298. conf->p2p_go_ctwindow = 0;
  299. } else {
  300. conf->p2p_go_ctwindow = wpa_s->conf->p2p_go_ctwindow;
  301. }
  302. }
  303. #endif /* CONFIG_P2P */
  304. if ((bss->wpa & 2) && bss->rsn_pairwise == 0)
  305. bss->rsn_pairwise = bss->wpa_pairwise;
  306. bss->wpa_group = wpa_select_ap_group_cipher(bss->wpa, bss->wpa_pairwise,
  307. bss->rsn_pairwise);
  308. if (bss->wpa && bss->ieee802_1x)
  309. bss->ssid.security_policy = SECURITY_WPA;
  310. else if (bss->wpa)
  311. bss->ssid.security_policy = SECURITY_WPA_PSK;
  312. else if (bss->ieee802_1x) {
  313. int cipher = WPA_CIPHER_NONE;
  314. bss->ssid.security_policy = SECURITY_IEEE_802_1X;
  315. bss->ssid.wep.default_len = bss->default_wep_key_len;
  316. if (bss->default_wep_key_len)
  317. cipher = bss->default_wep_key_len >= 13 ?
  318. WPA_CIPHER_WEP104 : WPA_CIPHER_WEP40;
  319. bss->wpa_group = cipher;
  320. bss->wpa_pairwise = cipher;
  321. bss->rsn_pairwise = cipher;
  322. } else if (bss->ssid.wep.keys_set) {
  323. int cipher = WPA_CIPHER_WEP40;
  324. if (bss->ssid.wep.len[0] >= 13)
  325. cipher = WPA_CIPHER_WEP104;
  326. bss->ssid.security_policy = SECURITY_STATIC_WEP;
  327. bss->wpa_group = cipher;
  328. bss->wpa_pairwise = cipher;
  329. bss->rsn_pairwise = cipher;
  330. } else {
  331. bss->ssid.security_policy = SECURITY_PLAINTEXT;
  332. bss->wpa_group = WPA_CIPHER_NONE;
  333. bss->wpa_pairwise = WPA_CIPHER_NONE;
  334. bss->rsn_pairwise = WPA_CIPHER_NONE;
  335. }
  336. if (bss->wpa_group_rekey < 86400 && (bss->wpa & 2) &&
  337. (bss->wpa_group == WPA_CIPHER_CCMP ||
  338. bss->wpa_group == WPA_CIPHER_GCMP ||
  339. bss->wpa_group == WPA_CIPHER_CCMP_256 ||
  340. bss->wpa_group == WPA_CIPHER_GCMP_256)) {
  341. /*
  342. * Strong ciphers do not need frequent rekeying, so increase
  343. * the default GTK rekeying period to 24 hours.
  344. */
  345. bss->wpa_group_rekey = 86400;
  346. }
  347. #ifdef CONFIG_IEEE80211W
  348. if (ssid->ieee80211w != MGMT_FRAME_PROTECTION_DEFAULT)
  349. bss->ieee80211w = ssid->ieee80211w;
  350. #endif /* CONFIG_IEEE80211W */
  351. #ifdef CONFIG_WPS
  352. /*
  353. * Enable WPS by default for open and WPA/WPA2-Personal network, but
  354. * require user interaction to actually use it. Only the internal
  355. * Registrar is supported.
  356. */
  357. if (bss->ssid.security_policy != SECURITY_WPA_PSK &&
  358. bss->ssid.security_policy != SECURITY_PLAINTEXT)
  359. goto no_wps;
  360. if (bss->ssid.security_policy == SECURITY_WPA_PSK &&
  361. (!(bss->rsn_pairwise & (WPA_CIPHER_CCMP | WPA_CIPHER_GCMP)) ||
  362. !(bss->wpa & 2)))
  363. goto no_wps; /* WPS2 does not allow WPA/TKIP-only
  364. * configuration */
  365. bss->eap_server = 1;
  366. if (!ssid->ignore_broadcast_ssid)
  367. bss->wps_state = 2;
  368. bss->ap_setup_locked = 2;
  369. if (wpa_s->conf->config_methods)
  370. bss->config_methods = os_strdup(wpa_s->conf->config_methods);
  371. os_memcpy(bss->device_type, wpa_s->conf->device_type,
  372. WPS_DEV_TYPE_LEN);
  373. if (wpa_s->conf->device_name) {
  374. bss->device_name = os_strdup(wpa_s->conf->device_name);
  375. bss->friendly_name = os_strdup(wpa_s->conf->device_name);
  376. }
  377. if (wpa_s->conf->manufacturer)
  378. bss->manufacturer = os_strdup(wpa_s->conf->manufacturer);
  379. if (wpa_s->conf->model_name)
  380. bss->model_name = os_strdup(wpa_s->conf->model_name);
  381. if (wpa_s->conf->model_number)
  382. bss->model_number = os_strdup(wpa_s->conf->model_number);
  383. if (wpa_s->conf->serial_number)
  384. bss->serial_number = os_strdup(wpa_s->conf->serial_number);
  385. if (is_nil_uuid(wpa_s->conf->uuid))
  386. os_memcpy(bss->uuid, wpa_s->wps->uuid, WPS_UUID_LEN);
  387. else
  388. os_memcpy(bss->uuid, wpa_s->conf->uuid, WPS_UUID_LEN);
  389. os_memcpy(bss->os_version, wpa_s->conf->os_version, 4);
  390. bss->pbc_in_m1 = wpa_s->conf->pbc_in_m1;
  391. no_wps:
  392. #endif /* CONFIG_WPS */
  393. if (wpa_s->max_stations &&
  394. wpa_s->max_stations < wpa_s->conf->max_num_sta)
  395. bss->max_num_sta = wpa_s->max_stations;
  396. else
  397. bss->max_num_sta = wpa_s->conf->max_num_sta;
  398. bss->disassoc_low_ack = wpa_s->conf->disassoc_low_ack;
  399. if (wpa_s->conf->ap_vendor_elements) {
  400. bss->vendor_elements =
  401. wpabuf_dup(wpa_s->conf->ap_vendor_elements);
  402. }
  403. return 0;
  404. }
  405. static void ap_public_action_rx(void *ctx, const u8 *buf, size_t len, int freq)
  406. {
  407. #ifdef CONFIG_P2P
  408. struct wpa_supplicant *wpa_s = ctx;
  409. const struct ieee80211_mgmt *mgmt;
  410. mgmt = (const struct ieee80211_mgmt *) buf;
  411. if (len < IEEE80211_HDRLEN + 1)
  412. return;
  413. if (mgmt->u.action.category != WLAN_ACTION_PUBLIC)
  414. return;
  415. wpas_p2p_rx_action(wpa_s, mgmt->da, mgmt->sa, mgmt->bssid,
  416. mgmt->u.action.category,
  417. buf + IEEE80211_HDRLEN + 1,
  418. len - IEEE80211_HDRLEN - 1, freq);
  419. #endif /* CONFIG_P2P */
  420. }
  421. static void ap_wps_event_cb(void *ctx, enum wps_event event,
  422. union wps_event_data *data)
  423. {
  424. #ifdef CONFIG_P2P
  425. struct wpa_supplicant *wpa_s = ctx;
  426. if (event == WPS_EV_FAIL) {
  427. struct wps_event_fail *fail = &data->fail;
  428. if (wpa_s->parent && wpa_s->parent != wpa_s &&
  429. wpa_s == wpa_s->global->p2p_group_formation) {
  430. /*
  431. * src/ap/wps_hostapd.c has already sent this on the
  432. * main interface, so only send on the parent interface
  433. * here if needed.
  434. */
  435. wpa_msg(wpa_s->parent, MSG_INFO, WPS_EVENT_FAIL
  436. "msg=%d config_error=%d",
  437. fail->msg, fail->config_error);
  438. }
  439. wpas_p2p_wps_failed(wpa_s, fail);
  440. }
  441. #endif /* CONFIG_P2P */
  442. }
  443. static void ap_sta_authorized_cb(void *ctx, const u8 *mac_addr,
  444. int authorized, const u8 *p2p_dev_addr)
  445. {
  446. wpas_notify_sta_authorized(ctx, mac_addr, authorized, p2p_dev_addr);
  447. }
  448. #ifdef CONFIG_P2P
  449. static void ap_new_psk_cb(void *ctx, const u8 *mac_addr, const u8 *p2p_dev_addr,
  450. const u8 *psk, size_t psk_len)
  451. {
  452. struct wpa_supplicant *wpa_s = ctx;
  453. if (wpa_s->ap_iface == NULL || wpa_s->current_ssid == NULL)
  454. return;
  455. wpas_p2p_new_psk_cb(wpa_s, mac_addr, p2p_dev_addr, psk, psk_len);
  456. }
  457. #endif /* CONFIG_P2P */
  458. static int ap_vendor_action_rx(void *ctx, const u8 *buf, size_t len, int freq)
  459. {
  460. #ifdef CONFIG_P2P
  461. struct wpa_supplicant *wpa_s = ctx;
  462. const struct ieee80211_mgmt *mgmt;
  463. mgmt = (const struct ieee80211_mgmt *) buf;
  464. if (len < IEEE80211_HDRLEN + 1)
  465. return -1;
  466. wpas_p2p_rx_action(wpa_s, mgmt->da, mgmt->sa, mgmt->bssid,
  467. mgmt->u.action.category,
  468. buf + IEEE80211_HDRLEN + 1,
  469. len - IEEE80211_HDRLEN - 1, freq);
  470. #endif /* CONFIG_P2P */
  471. return 0;
  472. }
  473. static int ap_probe_req_rx(void *ctx, const u8 *sa, const u8 *da,
  474. const u8 *bssid, const u8 *ie, size_t ie_len,
  475. int ssi_signal)
  476. {
  477. struct wpa_supplicant *wpa_s = ctx;
  478. unsigned int freq = 0;
  479. if (wpa_s->ap_iface)
  480. freq = wpa_s->ap_iface->freq;
  481. return wpas_p2p_probe_req_rx(wpa_s, sa, da, bssid, ie, ie_len,
  482. freq, ssi_signal);
  483. }
  484. static void ap_wps_reg_success_cb(void *ctx, const u8 *mac_addr,
  485. const u8 *uuid_e)
  486. {
  487. struct wpa_supplicant *wpa_s = ctx;
  488. wpas_p2p_wps_success(wpa_s, mac_addr, 1);
  489. }
  490. static void wpas_ap_configured_cb(void *ctx)
  491. {
  492. struct wpa_supplicant *wpa_s = ctx;
  493. #ifdef CONFIG_ACS
  494. if (wpa_s->current_ssid && wpa_s->current_ssid->acs)
  495. wpa_s->assoc_freq = wpa_s->ap_iface->freq;
  496. #endif /* CONFIG_ACS */
  497. wpa_supplicant_set_state(wpa_s, WPA_COMPLETED);
  498. if (wpa_s->ap_configured_cb)
  499. wpa_s->ap_configured_cb(wpa_s->ap_configured_cb_ctx,
  500. wpa_s->ap_configured_cb_data);
  501. }
  502. int wpa_supplicant_create_ap(struct wpa_supplicant *wpa_s,
  503. struct wpa_ssid *ssid)
  504. {
  505. struct wpa_driver_associate_params params;
  506. struct hostapd_iface *hapd_iface;
  507. struct hostapd_config *conf;
  508. size_t i;
  509. if (ssid->ssid == NULL || ssid->ssid_len == 0) {
  510. wpa_printf(MSG_ERROR, "No SSID configured for AP mode");
  511. return -1;
  512. }
  513. wpa_supplicant_ap_deinit(wpa_s);
  514. wpa_printf(MSG_DEBUG, "Setting up AP (SSID='%s')",
  515. wpa_ssid_txt(ssid->ssid, ssid->ssid_len));
  516. os_memset(&params, 0, sizeof(params));
  517. params.ssid = ssid->ssid;
  518. params.ssid_len = ssid->ssid_len;
  519. switch (ssid->mode) {
  520. case WPAS_MODE_AP:
  521. case WPAS_MODE_P2P_GO:
  522. case WPAS_MODE_P2P_GROUP_FORMATION:
  523. params.mode = IEEE80211_MODE_AP;
  524. break;
  525. default:
  526. return -1;
  527. }
  528. if (ssid->frequency == 0)
  529. ssid->frequency = 2462; /* default channel 11 */
  530. params.freq.freq = ssid->frequency;
  531. params.wpa_proto = ssid->proto;
  532. if (ssid->key_mgmt & WPA_KEY_MGMT_PSK)
  533. wpa_s->key_mgmt = WPA_KEY_MGMT_PSK;
  534. else
  535. wpa_s->key_mgmt = WPA_KEY_MGMT_NONE;
  536. params.key_mgmt_suite = wpa_s->key_mgmt;
  537. wpa_s->pairwise_cipher = wpa_pick_pairwise_cipher(ssid->pairwise_cipher,
  538. 1);
  539. if (wpa_s->pairwise_cipher < 0) {
  540. wpa_printf(MSG_WARNING, "WPA: Failed to select pairwise "
  541. "cipher.");
  542. return -1;
  543. }
  544. params.pairwise_suite = wpa_s->pairwise_cipher;
  545. params.group_suite = params.pairwise_suite;
  546. #ifdef CONFIG_P2P
  547. if (ssid->mode == WPAS_MODE_P2P_GO ||
  548. ssid->mode == WPAS_MODE_P2P_GROUP_FORMATION)
  549. params.p2p = 1;
  550. #endif /* CONFIG_P2P */
  551. if (wpa_s->parent->set_ap_uapsd)
  552. params.uapsd = wpa_s->parent->ap_uapsd;
  553. else if (params.p2p && (wpa_s->drv_flags & WPA_DRIVER_FLAGS_AP_UAPSD))
  554. params.uapsd = 1; /* mandatory for P2P GO */
  555. else
  556. params.uapsd = -1;
  557. if (ieee80211_is_dfs(params.freq.freq))
  558. params.freq.freq = 0; /* set channel after CAC */
  559. if (wpa_drv_associate(wpa_s, &params) < 0) {
  560. wpa_msg(wpa_s, MSG_INFO, "Failed to start AP functionality");
  561. return -1;
  562. }
  563. wpa_s->ap_iface = hapd_iface = os_zalloc(sizeof(*wpa_s->ap_iface));
  564. if (hapd_iface == NULL)
  565. return -1;
  566. hapd_iface->owner = wpa_s;
  567. hapd_iface->drv_flags = wpa_s->drv_flags;
  568. hapd_iface->smps_modes = wpa_s->drv_smps_modes;
  569. hapd_iface->probe_resp_offloads = wpa_s->probe_resp_offloads;
  570. hapd_iface->extended_capa = wpa_s->extended_capa;
  571. hapd_iface->extended_capa_mask = wpa_s->extended_capa_mask;
  572. hapd_iface->extended_capa_len = wpa_s->extended_capa_len;
  573. wpa_s->ap_iface->conf = conf = hostapd_config_defaults();
  574. if (conf == NULL) {
  575. wpa_supplicant_ap_deinit(wpa_s);
  576. return -1;
  577. }
  578. /* Use the maximum oper channel width if it's given. */
  579. if (ssid->max_oper_chwidth)
  580. conf->vht_oper_chwidth = ssid->max_oper_chwidth;
  581. ieee80211_freq_to_chan(ssid->vht_center_freq2,
  582. &conf->vht_oper_centr_freq_seg1_idx);
  583. os_memcpy(wpa_s->ap_iface->conf->wmm_ac_params,
  584. wpa_s->conf->wmm_ac_params,
  585. sizeof(wpa_s->conf->wmm_ac_params));
  586. if (params.uapsd > 0) {
  587. conf->bss[0]->wmm_enabled = 1;
  588. conf->bss[0]->wmm_uapsd = 1;
  589. }
  590. if (wpa_supplicant_conf_ap(wpa_s, ssid, conf)) {
  591. wpa_printf(MSG_ERROR, "Failed to create AP configuration");
  592. wpa_supplicant_ap_deinit(wpa_s);
  593. return -1;
  594. }
  595. #ifdef CONFIG_P2P
  596. if (ssid->mode == WPAS_MODE_P2P_GO)
  597. conf->bss[0]->p2p = P2P_ENABLED | P2P_GROUP_OWNER;
  598. else if (ssid->mode == WPAS_MODE_P2P_GROUP_FORMATION)
  599. conf->bss[0]->p2p = P2P_ENABLED | P2P_GROUP_OWNER |
  600. P2P_GROUP_FORMATION;
  601. #endif /* CONFIG_P2P */
  602. hapd_iface->num_bss = conf->num_bss;
  603. hapd_iface->bss = os_calloc(conf->num_bss,
  604. sizeof(struct hostapd_data *));
  605. if (hapd_iface->bss == NULL) {
  606. wpa_supplicant_ap_deinit(wpa_s);
  607. return -1;
  608. }
  609. for (i = 0; i < conf->num_bss; i++) {
  610. hapd_iface->bss[i] =
  611. hostapd_alloc_bss_data(hapd_iface, conf,
  612. conf->bss[i]);
  613. if (hapd_iface->bss[i] == NULL) {
  614. wpa_supplicant_ap_deinit(wpa_s);
  615. return -1;
  616. }
  617. hapd_iface->bss[i]->msg_ctx = wpa_s;
  618. hapd_iface->bss[i]->msg_ctx_parent = wpa_s->parent;
  619. hapd_iface->bss[i]->public_action_cb = ap_public_action_rx;
  620. hapd_iface->bss[i]->public_action_cb_ctx = wpa_s;
  621. hapd_iface->bss[i]->vendor_action_cb = ap_vendor_action_rx;
  622. hapd_iface->bss[i]->vendor_action_cb_ctx = wpa_s;
  623. hostapd_register_probereq_cb(hapd_iface->bss[i],
  624. ap_probe_req_rx, wpa_s);
  625. hapd_iface->bss[i]->wps_reg_success_cb = ap_wps_reg_success_cb;
  626. hapd_iface->bss[i]->wps_reg_success_cb_ctx = wpa_s;
  627. hapd_iface->bss[i]->wps_event_cb = ap_wps_event_cb;
  628. hapd_iface->bss[i]->wps_event_cb_ctx = wpa_s;
  629. hapd_iface->bss[i]->sta_authorized_cb = ap_sta_authorized_cb;
  630. hapd_iface->bss[i]->sta_authorized_cb_ctx = wpa_s;
  631. #ifdef CONFIG_P2P
  632. hapd_iface->bss[i]->new_psk_cb = ap_new_psk_cb;
  633. hapd_iface->bss[i]->new_psk_cb_ctx = wpa_s;
  634. hapd_iface->bss[i]->p2p = wpa_s->global->p2p;
  635. hapd_iface->bss[i]->p2p_group = wpas_p2p_group_init(wpa_s,
  636. ssid);
  637. #endif /* CONFIG_P2P */
  638. hapd_iface->bss[i]->setup_complete_cb = wpas_ap_configured_cb;
  639. hapd_iface->bss[i]->setup_complete_cb_ctx = wpa_s;
  640. #ifdef CONFIG_TESTING_OPTIONS
  641. hapd_iface->bss[i]->ext_eapol_frame_io =
  642. wpa_s->ext_eapol_frame_io;
  643. #endif /* CONFIG_TESTING_OPTIONS */
  644. }
  645. os_memcpy(hapd_iface->bss[0]->own_addr, wpa_s->own_addr, ETH_ALEN);
  646. hapd_iface->bss[0]->driver = wpa_s->driver;
  647. hapd_iface->bss[0]->drv_priv = wpa_s->drv_priv;
  648. wpa_s->current_ssid = ssid;
  649. eapol_sm_notify_config(wpa_s->eapol, NULL, NULL);
  650. os_memcpy(wpa_s->bssid, wpa_s->own_addr, ETH_ALEN);
  651. wpa_s->assoc_freq = ssid->frequency;
  652. if (hostapd_setup_interface(wpa_s->ap_iface)) {
  653. wpa_printf(MSG_ERROR, "Failed to initialize AP interface");
  654. wpa_supplicant_ap_deinit(wpa_s);
  655. return -1;
  656. }
  657. return 0;
  658. }
  659. void wpa_supplicant_ap_deinit(struct wpa_supplicant *wpa_s)
  660. {
  661. #ifdef CONFIG_WPS
  662. eloop_cancel_timeout(wpas_wps_ap_pin_timeout, wpa_s, NULL);
  663. #endif /* CONFIG_WPS */
  664. if (wpa_s->ap_iface == NULL)
  665. return;
  666. wpa_s->current_ssid = NULL;
  667. eapol_sm_notify_config(wpa_s->eapol, NULL, NULL);
  668. wpa_s->assoc_freq = 0;
  669. wpas_p2p_ap_deinit(wpa_s);
  670. wpa_s->ap_iface->driver_ap_teardown =
  671. !!(wpa_s->drv_flags & WPA_DRIVER_FLAGS_AP_TEARDOWN_SUPPORT);
  672. hostapd_interface_deinit(wpa_s->ap_iface);
  673. hostapd_interface_free(wpa_s->ap_iface);
  674. wpa_s->ap_iface = NULL;
  675. wpa_drv_deinit_ap(wpa_s);
  676. wpa_msg(wpa_s, MSG_INFO, WPA_EVENT_DISCONNECTED "bssid=" MACSTR
  677. " reason=%d locally_generated=1",
  678. MAC2STR(wpa_s->own_addr), WLAN_REASON_DEAUTH_LEAVING);
  679. }
  680. void ap_tx_status(void *ctx, const u8 *addr,
  681. const u8 *buf, size_t len, int ack)
  682. {
  683. #ifdef NEED_AP_MLME
  684. struct wpa_supplicant *wpa_s = ctx;
  685. hostapd_tx_status(wpa_s->ap_iface->bss[0], addr, buf, len, ack);
  686. #endif /* NEED_AP_MLME */
  687. }
  688. void ap_eapol_tx_status(void *ctx, const u8 *dst,
  689. const u8 *data, size_t len, int ack)
  690. {
  691. #ifdef NEED_AP_MLME
  692. struct wpa_supplicant *wpa_s = ctx;
  693. if (!wpa_s->ap_iface)
  694. return;
  695. hostapd_tx_status(wpa_s->ap_iface->bss[0], dst, data, len, ack);
  696. #endif /* NEED_AP_MLME */
  697. }
  698. void ap_client_poll_ok(void *ctx, const u8 *addr)
  699. {
  700. #ifdef NEED_AP_MLME
  701. struct wpa_supplicant *wpa_s = ctx;
  702. if (wpa_s->ap_iface)
  703. hostapd_client_poll_ok(wpa_s->ap_iface->bss[0], addr);
  704. #endif /* NEED_AP_MLME */
  705. }
  706. void ap_rx_from_unknown_sta(void *ctx, const u8 *addr, int wds)
  707. {
  708. #ifdef NEED_AP_MLME
  709. struct wpa_supplicant *wpa_s = ctx;
  710. ieee802_11_rx_from_unknown(wpa_s->ap_iface->bss[0], addr, wds);
  711. #endif /* NEED_AP_MLME */
  712. }
  713. void ap_mgmt_rx(void *ctx, struct rx_mgmt *rx_mgmt)
  714. {
  715. #ifdef NEED_AP_MLME
  716. struct wpa_supplicant *wpa_s = ctx;
  717. struct hostapd_frame_info fi;
  718. os_memset(&fi, 0, sizeof(fi));
  719. fi.datarate = rx_mgmt->datarate;
  720. fi.ssi_signal = rx_mgmt->ssi_signal;
  721. ieee802_11_mgmt(wpa_s->ap_iface->bss[0], rx_mgmt->frame,
  722. rx_mgmt->frame_len, &fi);
  723. #endif /* NEED_AP_MLME */
  724. }
  725. void ap_mgmt_tx_cb(void *ctx, const u8 *buf, size_t len, u16 stype, int ok)
  726. {
  727. #ifdef NEED_AP_MLME
  728. struct wpa_supplicant *wpa_s = ctx;
  729. ieee802_11_mgmt_cb(wpa_s->ap_iface->bss[0], buf, len, stype, ok);
  730. #endif /* NEED_AP_MLME */
  731. }
  732. void wpa_supplicant_ap_rx_eapol(struct wpa_supplicant *wpa_s,
  733. const u8 *src_addr, const u8 *buf, size_t len)
  734. {
  735. ieee802_1x_receive(wpa_s->ap_iface->bss[0], src_addr, buf, len);
  736. }
  737. #ifdef CONFIG_WPS
  738. int wpa_supplicant_ap_wps_pbc(struct wpa_supplicant *wpa_s, const u8 *bssid,
  739. const u8 *p2p_dev_addr)
  740. {
  741. if (!wpa_s->ap_iface)
  742. return -1;
  743. return hostapd_wps_button_pushed(wpa_s->ap_iface->bss[0],
  744. p2p_dev_addr);
  745. }
  746. int wpa_supplicant_ap_wps_cancel(struct wpa_supplicant *wpa_s)
  747. {
  748. struct wps_registrar *reg;
  749. int reg_sel = 0, wps_sta = 0;
  750. if (!wpa_s->ap_iface || !wpa_s->ap_iface->bss[0]->wps)
  751. return -1;
  752. reg = wpa_s->ap_iface->bss[0]->wps->registrar;
  753. reg_sel = wps_registrar_wps_cancel(reg);
  754. wps_sta = ap_for_each_sta(wpa_s->ap_iface->bss[0],
  755. ap_sta_wps_cancel, NULL);
  756. if (!reg_sel && !wps_sta) {
  757. wpa_printf(MSG_DEBUG, "No WPS operation in progress at this "
  758. "time");
  759. return -1;
  760. }
  761. /*
  762. * There are 2 cases to return wps cancel as success:
  763. * 1. When wps cancel was initiated but no connection has been
  764. * established with client yet.
  765. * 2. Client is in the middle of exchanging WPS messages.
  766. */
  767. return 0;
  768. }
  769. int wpa_supplicant_ap_wps_pin(struct wpa_supplicant *wpa_s, const u8 *bssid,
  770. const char *pin, char *buf, size_t buflen,
  771. int timeout)
  772. {
  773. int ret, ret_len = 0;
  774. if (!wpa_s->ap_iface)
  775. return -1;
  776. if (pin == NULL) {
  777. unsigned int rpin = wps_generate_pin();
  778. ret_len = os_snprintf(buf, buflen, "%08d", rpin);
  779. if (os_snprintf_error(buflen, ret_len))
  780. return -1;
  781. pin = buf;
  782. } else if (buf) {
  783. ret_len = os_snprintf(buf, buflen, "%s", pin);
  784. if (os_snprintf_error(buflen, ret_len))
  785. return -1;
  786. }
  787. ret = hostapd_wps_add_pin(wpa_s->ap_iface->bss[0], bssid, "any", pin,
  788. timeout);
  789. if (ret)
  790. return -1;
  791. return ret_len;
  792. }
  793. static void wpas_wps_ap_pin_timeout(void *eloop_data, void *user_ctx)
  794. {
  795. struct wpa_supplicant *wpa_s = eloop_data;
  796. wpa_printf(MSG_DEBUG, "WPS: AP PIN timed out");
  797. wpas_wps_ap_pin_disable(wpa_s);
  798. }
  799. static void wpas_wps_ap_pin_enable(struct wpa_supplicant *wpa_s, int timeout)
  800. {
  801. struct hostapd_data *hapd;
  802. if (wpa_s->ap_iface == NULL)
  803. return;
  804. hapd = wpa_s->ap_iface->bss[0];
  805. wpa_printf(MSG_DEBUG, "WPS: Enabling AP PIN (timeout=%d)", timeout);
  806. hapd->ap_pin_failures = 0;
  807. eloop_cancel_timeout(wpas_wps_ap_pin_timeout, wpa_s, NULL);
  808. if (timeout > 0)
  809. eloop_register_timeout(timeout, 0,
  810. wpas_wps_ap_pin_timeout, wpa_s, NULL);
  811. }
  812. void wpas_wps_ap_pin_disable(struct wpa_supplicant *wpa_s)
  813. {
  814. struct hostapd_data *hapd;
  815. if (wpa_s->ap_iface == NULL)
  816. return;
  817. wpa_printf(MSG_DEBUG, "WPS: Disabling AP PIN");
  818. hapd = wpa_s->ap_iface->bss[0];
  819. os_free(hapd->conf->ap_pin);
  820. hapd->conf->ap_pin = NULL;
  821. eloop_cancel_timeout(wpas_wps_ap_pin_timeout, wpa_s, NULL);
  822. }
  823. const char * wpas_wps_ap_pin_random(struct wpa_supplicant *wpa_s, int timeout)
  824. {
  825. struct hostapd_data *hapd;
  826. unsigned int pin;
  827. char pin_txt[9];
  828. if (wpa_s->ap_iface == NULL)
  829. return NULL;
  830. hapd = wpa_s->ap_iface->bss[0];
  831. pin = wps_generate_pin();
  832. os_snprintf(pin_txt, sizeof(pin_txt), "%08u", pin);
  833. os_free(hapd->conf->ap_pin);
  834. hapd->conf->ap_pin = os_strdup(pin_txt);
  835. if (hapd->conf->ap_pin == NULL)
  836. return NULL;
  837. wpas_wps_ap_pin_enable(wpa_s, timeout);
  838. return hapd->conf->ap_pin;
  839. }
  840. const char * wpas_wps_ap_pin_get(struct wpa_supplicant *wpa_s)
  841. {
  842. struct hostapd_data *hapd;
  843. if (wpa_s->ap_iface == NULL)
  844. return NULL;
  845. hapd = wpa_s->ap_iface->bss[0];
  846. return hapd->conf->ap_pin;
  847. }
  848. int wpas_wps_ap_pin_set(struct wpa_supplicant *wpa_s, const char *pin,
  849. int timeout)
  850. {
  851. struct hostapd_data *hapd;
  852. char pin_txt[9];
  853. int ret;
  854. if (wpa_s->ap_iface == NULL)
  855. return -1;
  856. hapd = wpa_s->ap_iface->bss[0];
  857. ret = os_snprintf(pin_txt, sizeof(pin_txt), "%s", pin);
  858. if (os_snprintf_error(sizeof(pin_txt), ret))
  859. return -1;
  860. os_free(hapd->conf->ap_pin);
  861. hapd->conf->ap_pin = os_strdup(pin_txt);
  862. if (hapd->conf->ap_pin == NULL)
  863. return -1;
  864. wpas_wps_ap_pin_enable(wpa_s, timeout);
  865. return 0;
  866. }
  867. void wpa_supplicant_ap_pwd_auth_fail(struct wpa_supplicant *wpa_s)
  868. {
  869. struct hostapd_data *hapd;
  870. if (wpa_s->ap_iface == NULL)
  871. return;
  872. hapd = wpa_s->ap_iface->bss[0];
  873. /*
  874. * Registrar failed to prove its knowledge of the AP PIN. Disable AP
  875. * PIN if this happens multiple times to slow down brute force attacks.
  876. */
  877. hapd->ap_pin_failures++;
  878. wpa_printf(MSG_DEBUG, "WPS: AP PIN authentication failure number %u",
  879. hapd->ap_pin_failures);
  880. if (hapd->ap_pin_failures < 3)
  881. return;
  882. wpa_printf(MSG_DEBUG, "WPS: Disable AP PIN");
  883. hapd->ap_pin_failures = 0;
  884. os_free(hapd->conf->ap_pin);
  885. hapd->conf->ap_pin = NULL;
  886. }
  887. #ifdef CONFIG_WPS_NFC
  888. struct wpabuf * wpas_ap_wps_nfc_config_token(struct wpa_supplicant *wpa_s,
  889. int ndef)
  890. {
  891. struct hostapd_data *hapd;
  892. if (wpa_s->ap_iface == NULL)
  893. return NULL;
  894. hapd = wpa_s->ap_iface->bss[0];
  895. return hostapd_wps_nfc_config_token(hapd, ndef);
  896. }
  897. struct wpabuf * wpas_ap_wps_nfc_handover_sel(struct wpa_supplicant *wpa_s,
  898. int ndef)
  899. {
  900. struct hostapd_data *hapd;
  901. if (wpa_s->ap_iface == NULL)
  902. return NULL;
  903. hapd = wpa_s->ap_iface->bss[0];
  904. return hostapd_wps_nfc_hs_cr(hapd, ndef);
  905. }
  906. int wpas_ap_wps_nfc_report_handover(struct wpa_supplicant *wpa_s,
  907. const struct wpabuf *req,
  908. const struct wpabuf *sel)
  909. {
  910. struct hostapd_data *hapd;
  911. if (wpa_s->ap_iface == NULL)
  912. return -1;
  913. hapd = wpa_s->ap_iface->bss[0];
  914. return hostapd_wps_nfc_report_handover(hapd, req, sel);
  915. }
  916. #endif /* CONFIG_WPS_NFC */
  917. #endif /* CONFIG_WPS */
  918. #ifdef CONFIG_CTRL_IFACE
  919. int ap_ctrl_iface_sta_first(struct wpa_supplicant *wpa_s,
  920. char *buf, size_t buflen)
  921. {
  922. struct hostapd_data *hapd;
  923. if (wpa_s->ap_iface)
  924. hapd = wpa_s->ap_iface->bss[0];
  925. else if (wpa_s->ifmsh)
  926. hapd = wpa_s->ifmsh->bss[0];
  927. else
  928. return -1;
  929. return hostapd_ctrl_iface_sta_first(hapd, buf, buflen);
  930. }
  931. int ap_ctrl_iface_sta(struct wpa_supplicant *wpa_s, const char *txtaddr,
  932. char *buf, size_t buflen)
  933. {
  934. struct hostapd_data *hapd;
  935. if (wpa_s->ap_iface)
  936. hapd = wpa_s->ap_iface->bss[0];
  937. else if (wpa_s->ifmsh)
  938. hapd = wpa_s->ifmsh->bss[0];
  939. else
  940. return -1;
  941. return hostapd_ctrl_iface_sta(hapd, txtaddr, buf, buflen);
  942. }
  943. int ap_ctrl_iface_sta_next(struct wpa_supplicant *wpa_s, const char *txtaddr,
  944. char *buf, size_t buflen)
  945. {
  946. struct hostapd_data *hapd;
  947. if (wpa_s->ap_iface)
  948. hapd = wpa_s->ap_iface->bss[0];
  949. else if (wpa_s->ifmsh)
  950. hapd = wpa_s->ifmsh->bss[0];
  951. else
  952. return -1;
  953. return hostapd_ctrl_iface_sta_next(hapd, txtaddr, buf, buflen);
  954. }
  955. int ap_ctrl_iface_sta_disassociate(struct wpa_supplicant *wpa_s,
  956. const char *txtaddr)
  957. {
  958. if (wpa_s->ap_iface == NULL)
  959. return -1;
  960. return hostapd_ctrl_iface_disassociate(wpa_s->ap_iface->bss[0],
  961. txtaddr);
  962. }
  963. int ap_ctrl_iface_sta_deauthenticate(struct wpa_supplicant *wpa_s,
  964. const char *txtaddr)
  965. {
  966. if (wpa_s->ap_iface == NULL)
  967. return -1;
  968. return hostapd_ctrl_iface_deauthenticate(wpa_s->ap_iface->bss[0],
  969. txtaddr);
  970. }
  971. int ap_ctrl_iface_wpa_get_status(struct wpa_supplicant *wpa_s, char *buf,
  972. size_t buflen, int verbose)
  973. {
  974. char *pos = buf, *end = buf + buflen;
  975. int ret;
  976. struct hostapd_bss_config *conf;
  977. if (wpa_s->ap_iface == NULL)
  978. return -1;
  979. conf = wpa_s->ap_iface->bss[0]->conf;
  980. if (conf->wpa == 0)
  981. return 0;
  982. ret = os_snprintf(pos, end - pos,
  983. "pairwise_cipher=%s\n"
  984. "group_cipher=%s\n"
  985. "key_mgmt=%s\n",
  986. wpa_cipher_txt(conf->rsn_pairwise),
  987. wpa_cipher_txt(conf->wpa_group),
  988. wpa_key_mgmt_txt(conf->wpa_key_mgmt,
  989. conf->wpa));
  990. if (os_snprintf_error(end - pos, ret))
  991. return pos - buf;
  992. pos += ret;
  993. return pos - buf;
  994. }
  995. #endif /* CONFIG_CTRL_IFACE */
  996. int wpa_supplicant_ap_update_beacon(struct wpa_supplicant *wpa_s)
  997. {
  998. struct hostapd_iface *iface = wpa_s->ap_iface;
  999. struct wpa_ssid *ssid = wpa_s->current_ssid;
  1000. struct hostapd_data *hapd;
  1001. if (ssid == NULL || wpa_s->ap_iface == NULL ||
  1002. ssid->mode == WPAS_MODE_INFRA ||
  1003. ssid->mode == WPAS_MODE_IBSS)
  1004. return -1;
  1005. #ifdef CONFIG_P2P
  1006. if (ssid->mode == WPAS_MODE_P2P_GO)
  1007. iface->conf->bss[0]->p2p = P2P_ENABLED | P2P_GROUP_OWNER;
  1008. else if (ssid->mode == WPAS_MODE_P2P_GROUP_FORMATION)
  1009. iface->conf->bss[0]->p2p = P2P_ENABLED | P2P_GROUP_OWNER |
  1010. P2P_GROUP_FORMATION;
  1011. #endif /* CONFIG_P2P */
  1012. hapd = iface->bss[0];
  1013. if (hapd->drv_priv == NULL)
  1014. return -1;
  1015. ieee802_11_set_beacons(iface);
  1016. hostapd_set_ap_wps_ie(hapd);
  1017. return 0;
  1018. }
  1019. int ap_switch_channel(struct wpa_supplicant *wpa_s,
  1020. struct csa_settings *settings)
  1021. {
  1022. #ifdef NEED_AP_MLME
  1023. if (!wpa_s->ap_iface || !wpa_s->ap_iface->bss[0])
  1024. return -1;
  1025. return hostapd_switch_channel(wpa_s->ap_iface->bss[0], settings);
  1026. #else /* NEED_AP_MLME */
  1027. return -1;
  1028. #endif /* NEED_AP_MLME */
  1029. }
  1030. #ifdef CONFIG_CTRL_IFACE
  1031. int ap_ctrl_iface_chanswitch(struct wpa_supplicant *wpa_s, const char *pos)
  1032. {
  1033. struct csa_settings settings;
  1034. int ret = hostapd_parse_csa_settings(pos, &settings);
  1035. if (ret)
  1036. return ret;
  1037. return ap_switch_channel(wpa_s, &settings);
  1038. }
  1039. #endif /* CONFIG_CTRL_IFACE */
  1040. void wpas_ap_ch_switch(struct wpa_supplicant *wpa_s, int freq, int ht,
  1041. int offset, int width, int cf1, int cf2)
  1042. {
  1043. if (!wpa_s->ap_iface)
  1044. return;
  1045. wpa_s->assoc_freq = freq;
  1046. if (wpa_s->current_ssid)
  1047. wpa_s->current_ssid->frequency = freq;
  1048. hostapd_event_ch_switch(wpa_s->ap_iface->bss[0], freq, ht,
  1049. offset, width, cf1, cf2);
  1050. }
  1051. int wpa_supplicant_ap_mac_addr_filter(struct wpa_supplicant *wpa_s,
  1052. const u8 *addr)
  1053. {
  1054. struct hostapd_data *hapd;
  1055. struct hostapd_bss_config *conf;
  1056. if (!wpa_s->ap_iface)
  1057. return -1;
  1058. if (addr)
  1059. wpa_printf(MSG_DEBUG, "AP: Set MAC address filter: " MACSTR,
  1060. MAC2STR(addr));
  1061. else
  1062. wpa_printf(MSG_DEBUG, "AP: Clear MAC address filter");
  1063. hapd = wpa_s->ap_iface->bss[0];
  1064. conf = hapd->conf;
  1065. os_free(conf->accept_mac);
  1066. conf->accept_mac = NULL;
  1067. conf->num_accept_mac = 0;
  1068. os_free(conf->deny_mac);
  1069. conf->deny_mac = NULL;
  1070. conf->num_deny_mac = 0;
  1071. if (addr == NULL) {
  1072. conf->macaddr_acl = ACCEPT_UNLESS_DENIED;
  1073. return 0;
  1074. }
  1075. conf->macaddr_acl = DENY_UNLESS_ACCEPTED;
  1076. conf->accept_mac = os_zalloc(sizeof(struct mac_acl_entry));
  1077. if (conf->accept_mac == NULL)
  1078. return -1;
  1079. os_memcpy(conf->accept_mac[0].addr, addr, ETH_ALEN);
  1080. conf->num_accept_mac = 1;
  1081. return 0;
  1082. }
  1083. #ifdef CONFIG_WPS_NFC
  1084. int wpas_ap_wps_add_nfc_pw(struct wpa_supplicant *wpa_s, u16 pw_id,
  1085. const struct wpabuf *pw, const u8 *pubkey_hash)
  1086. {
  1087. struct hostapd_data *hapd;
  1088. struct wps_context *wps;
  1089. if (!wpa_s->ap_iface)
  1090. return -1;
  1091. hapd = wpa_s->ap_iface->bss[0];
  1092. wps = hapd->wps;
  1093. if (wpa_s->parent->conf->wps_nfc_dh_pubkey == NULL ||
  1094. wpa_s->parent->conf->wps_nfc_dh_privkey == NULL) {
  1095. wpa_printf(MSG_DEBUG, "P2P: No NFC DH key known");
  1096. return -1;
  1097. }
  1098. dh5_free(wps->dh_ctx);
  1099. wpabuf_free(wps->dh_pubkey);
  1100. wpabuf_free(wps->dh_privkey);
  1101. wps->dh_privkey = wpabuf_dup(
  1102. wpa_s->parent->conf->wps_nfc_dh_privkey);
  1103. wps->dh_pubkey = wpabuf_dup(
  1104. wpa_s->parent->conf->wps_nfc_dh_pubkey);
  1105. if (wps->dh_privkey == NULL || wps->dh_pubkey == NULL) {
  1106. wps->dh_ctx = NULL;
  1107. wpabuf_free(wps->dh_pubkey);
  1108. wps->dh_pubkey = NULL;
  1109. wpabuf_free(wps->dh_privkey);
  1110. wps->dh_privkey = NULL;
  1111. return -1;
  1112. }
  1113. wps->dh_ctx = dh5_init_fixed(wps->dh_privkey, wps->dh_pubkey);
  1114. if (wps->dh_ctx == NULL)
  1115. return -1;
  1116. return wps_registrar_add_nfc_pw_token(hapd->wps->registrar, pubkey_hash,
  1117. pw_id,
  1118. pw ? wpabuf_head(pw) : NULL,
  1119. pw ? wpabuf_len(pw) : 0, 1);
  1120. }
  1121. #endif /* CONFIG_WPS_NFC */
  1122. #ifdef CONFIG_CTRL_IFACE
  1123. int wpas_ap_stop_ap(struct wpa_supplicant *wpa_s)
  1124. {
  1125. struct hostapd_data *hapd;
  1126. if (!wpa_s->ap_iface)
  1127. return -1;
  1128. hapd = wpa_s->ap_iface->bss[0];
  1129. return hostapd_ctrl_iface_stop_ap(hapd);
  1130. }
  1131. #endif /* CONFIG_CTRL_IFACE */
  1132. #ifdef NEED_AP_MLME
  1133. void wpas_event_dfs_radar_detected(struct wpa_supplicant *wpa_s,
  1134. struct dfs_event *radar)
  1135. {
  1136. if (!wpa_s->ap_iface || !wpa_s->ap_iface->bss[0])
  1137. return;
  1138. wpa_printf(MSG_DEBUG, "DFS radar detected on %d MHz", radar->freq);
  1139. hostapd_dfs_radar_detected(wpa_s->ap_iface, radar->freq,
  1140. radar->ht_enabled, radar->chan_offset,
  1141. radar->chan_width,
  1142. radar->cf1, radar->cf2);
  1143. }
  1144. void wpas_event_dfs_cac_started(struct wpa_supplicant *wpa_s,
  1145. struct dfs_event *radar)
  1146. {
  1147. if (!wpa_s->ap_iface || !wpa_s->ap_iface->bss[0])
  1148. return;
  1149. wpa_printf(MSG_DEBUG, "DFS CAC started on %d MHz", radar->freq);
  1150. hostapd_dfs_start_cac(wpa_s->ap_iface, radar->freq,
  1151. radar->ht_enabled, radar->chan_offset,
  1152. radar->chan_width, radar->cf1, radar->cf2);
  1153. }
  1154. void wpas_event_dfs_cac_finished(struct wpa_supplicant *wpa_s,
  1155. struct dfs_event *radar)
  1156. {
  1157. if (!wpa_s->ap_iface || !wpa_s->ap_iface->bss[0])
  1158. return;
  1159. wpa_printf(MSG_DEBUG, "DFS CAC finished on %d MHz", radar->freq);
  1160. hostapd_dfs_complete_cac(wpa_s->ap_iface, 1, radar->freq,
  1161. radar->ht_enabled, radar->chan_offset,
  1162. radar->chan_width, radar->cf1, radar->cf2);
  1163. }
  1164. void wpas_event_dfs_cac_aborted(struct wpa_supplicant *wpa_s,
  1165. struct dfs_event *radar)
  1166. {
  1167. if (!wpa_s->ap_iface || !wpa_s->ap_iface->bss[0])
  1168. return;
  1169. wpa_printf(MSG_DEBUG, "DFS CAC aborted on %d MHz", radar->freq);
  1170. hostapd_dfs_complete_cac(wpa_s->ap_iface, 0, radar->freq,
  1171. radar->ht_enabled, radar->chan_offset,
  1172. radar->chan_width, radar->cf1, radar->cf2);
  1173. }
  1174. void wpas_event_dfs_cac_nop_finished(struct wpa_supplicant *wpa_s,
  1175. struct dfs_event *radar)
  1176. {
  1177. if (!wpa_s->ap_iface || !wpa_s->ap_iface->bss[0])
  1178. return;
  1179. wpa_printf(MSG_DEBUG, "DFS NOP finished on %d MHz", radar->freq);
  1180. hostapd_dfs_nop_finished(wpa_s->ap_iface, radar->freq,
  1181. radar->ht_enabled, radar->chan_offset,
  1182. radar->chan_width, radar->cf1, radar->cf2);
  1183. }
  1184. #endif /* NEED_AP_MLME */
  1185. void ap_periodic(struct wpa_supplicant *wpa_s)
  1186. {
  1187. if (wpa_s->ap_iface)
  1188. hostapd_periodic_iface(wpa_s->ap_iface);
  1189. }