crypto_openssl.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116
  1. /*
  2. * Wrapper functions for OpenSSL libcrypto
  3. * Copyright (c) 2004-2013, Jouni Malinen <j@w1.fi>
  4. *
  5. * This software may be distributed under the terms of the BSD license.
  6. * See README for more details.
  7. */
  8. #include "includes.h"
  9. #include <openssl/opensslv.h>
  10. #include <openssl/err.h>
  11. #include <openssl/des.h>
  12. #include <openssl/aes.h>
  13. #include <openssl/bn.h>
  14. #include <openssl/evp.h>
  15. #include <openssl/dh.h>
  16. #include <openssl/hmac.h>
  17. #include <openssl/rand.h>
  18. #ifdef CONFIG_OPENSSL_CMAC
  19. #include <openssl/cmac.h>
  20. #endif /* CONFIG_OPENSSL_CMAC */
  21. #ifdef CONFIG_ECC
  22. #include <openssl/ec.h>
  23. #endif /* CONFIG_ECC */
  24. #include "common.h"
  25. #include "wpabuf.h"
  26. #include "dh_group5.h"
  27. #include "crypto.h"
  28. #if OPENSSL_VERSION_NUMBER < 0x00907000
  29. #define DES_key_schedule des_key_schedule
  30. #define DES_cblock des_cblock
  31. #define DES_set_key(key, schedule) des_set_key((key), *(schedule))
  32. #define DES_ecb_encrypt(input, output, ks, enc) \
  33. des_ecb_encrypt((input), (output), *(ks), (enc))
  34. #endif /* openssl < 0.9.7 */
  35. static BIGNUM * get_group5_prime(void)
  36. {
  37. #if OPENSSL_VERSION_NUMBER < 0x00908000
  38. static const unsigned char RFC3526_PRIME_1536[] = {
  39. 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xC9,0x0F,0xDA,0xA2,
  40. 0x21,0x68,0xC2,0x34,0xC4,0xC6,0x62,0x8B,0x80,0xDC,0x1C,0xD1,
  41. 0x29,0x02,0x4E,0x08,0x8A,0x67,0xCC,0x74,0x02,0x0B,0xBE,0xA6,
  42. 0x3B,0x13,0x9B,0x22,0x51,0x4A,0x08,0x79,0x8E,0x34,0x04,0xDD,
  43. 0xEF,0x95,0x19,0xB3,0xCD,0x3A,0x43,0x1B,0x30,0x2B,0x0A,0x6D,
  44. 0xF2,0x5F,0x14,0x37,0x4F,0xE1,0x35,0x6D,0x6D,0x51,0xC2,0x45,
  45. 0xE4,0x85,0xB5,0x76,0x62,0x5E,0x7E,0xC6,0xF4,0x4C,0x42,0xE9,
  46. 0xA6,0x37,0xED,0x6B,0x0B,0xFF,0x5C,0xB6,0xF4,0x06,0xB7,0xED,
  47. 0xEE,0x38,0x6B,0xFB,0x5A,0x89,0x9F,0xA5,0xAE,0x9F,0x24,0x11,
  48. 0x7C,0x4B,0x1F,0xE6,0x49,0x28,0x66,0x51,0xEC,0xE4,0x5B,0x3D,
  49. 0xC2,0x00,0x7C,0xB8,0xA1,0x63,0xBF,0x05,0x98,0xDA,0x48,0x36,
  50. 0x1C,0x55,0xD3,0x9A,0x69,0x16,0x3F,0xA8,0xFD,0x24,0xCF,0x5F,
  51. 0x83,0x65,0x5D,0x23,0xDC,0xA3,0xAD,0x96,0x1C,0x62,0xF3,0x56,
  52. 0x20,0x85,0x52,0xBB,0x9E,0xD5,0x29,0x07,0x70,0x96,0x96,0x6D,
  53. 0x67,0x0C,0x35,0x4E,0x4A,0xBC,0x98,0x04,0xF1,0x74,0x6C,0x08,
  54. 0xCA,0x23,0x73,0x27,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
  55. };
  56. return BN_bin2bn(RFC3526_PRIME_1536, sizeof(RFC3526_PRIME_1536), NULL);
  57. #else /* openssl < 0.9.8 */
  58. return get_rfc3526_prime_1536(NULL);
  59. #endif /* openssl < 0.9.8 */
  60. }
  61. #if OPENSSL_VERSION_NUMBER < 0x00908000
  62. #ifndef OPENSSL_NO_SHA256
  63. #ifndef OPENSSL_FIPS
  64. #define NO_SHA256_WRAPPER
  65. #endif
  66. #endif
  67. #endif /* openssl < 0.9.8 */
  68. #ifdef OPENSSL_NO_SHA256
  69. #define NO_SHA256_WRAPPER
  70. #endif
  71. static int openssl_digest_vector(const EVP_MD *type, size_t num_elem,
  72. const u8 *addr[], const size_t *len, u8 *mac)
  73. {
  74. EVP_MD_CTX ctx;
  75. size_t i;
  76. unsigned int mac_len;
  77. EVP_MD_CTX_init(&ctx);
  78. if (!EVP_DigestInit_ex(&ctx, type, NULL)) {
  79. wpa_printf(MSG_ERROR, "OpenSSL: EVP_DigestInit_ex failed: %s",
  80. ERR_error_string(ERR_get_error(), NULL));
  81. return -1;
  82. }
  83. for (i = 0; i < num_elem; i++) {
  84. if (!EVP_DigestUpdate(&ctx, addr[i], len[i])) {
  85. wpa_printf(MSG_ERROR, "OpenSSL: EVP_DigestUpdate "
  86. "failed: %s",
  87. ERR_error_string(ERR_get_error(), NULL));
  88. return -1;
  89. }
  90. }
  91. if (!EVP_DigestFinal(&ctx, mac, &mac_len)) {
  92. wpa_printf(MSG_ERROR, "OpenSSL: EVP_DigestFinal failed: %s",
  93. ERR_error_string(ERR_get_error(), NULL));
  94. return -1;
  95. }
  96. return 0;
  97. }
  98. int md4_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac)
  99. {
  100. return openssl_digest_vector(EVP_md4(), num_elem, addr, len, mac);
  101. }
  102. void des_encrypt(const u8 *clear, const u8 *key, u8 *cypher)
  103. {
  104. u8 pkey[8], next, tmp;
  105. int i;
  106. DES_key_schedule ks;
  107. /* Add parity bits to the key */
  108. next = 0;
  109. for (i = 0; i < 7; i++) {
  110. tmp = key[i];
  111. pkey[i] = (tmp >> i) | next | 1;
  112. next = tmp << (7 - i);
  113. }
  114. pkey[i] = next | 1;
  115. DES_set_key(&pkey, &ks);
  116. DES_ecb_encrypt((DES_cblock *) clear, (DES_cblock *) cypher, &ks,
  117. DES_ENCRYPT);
  118. }
  119. int rc4_skip(const u8 *key, size_t keylen, size_t skip,
  120. u8 *data, size_t data_len)
  121. {
  122. #ifdef OPENSSL_NO_RC4
  123. return -1;
  124. #else /* OPENSSL_NO_RC4 */
  125. EVP_CIPHER_CTX ctx;
  126. int outl;
  127. int res = -1;
  128. unsigned char skip_buf[16];
  129. EVP_CIPHER_CTX_init(&ctx);
  130. if (!EVP_CIPHER_CTX_set_padding(&ctx, 0) ||
  131. !EVP_CipherInit_ex(&ctx, EVP_rc4(), NULL, NULL, NULL, 1) ||
  132. !EVP_CIPHER_CTX_set_key_length(&ctx, keylen) ||
  133. !EVP_CipherInit_ex(&ctx, NULL, NULL, key, NULL, 1))
  134. goto out;
  135. while (skip >= sizeof(skip_buf)) {
  136. size_t len = skip;
  137. if (len > sizeof(skip_buf))
  138. len = sizeof(skip_buf);
  139. if (!EVP_CipherUpdate(&ctx, skip_buf, &outl, skip_buf, len))
  140. goto out;
  141. skip -= len;
  142. }
  143. if (EVP_CipherUpdate(&ctx, data, &outl, data, data_len))
  144. res = 0;
  145. out:
  146. EVP_CIPHER_CTX_cleanup(&ctx);
  147. return res;
  148. #endif /* OPENSSL_NO_RC4 */
  149. }
  150. int md5_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac)
  151. {
  152. return openssl_digest_vector(EVP_md5(), num_elem, addr, len, mac);
  153. }
  154. int sha1_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac)
  155. {
  156. return openssl_digest_vector(EVP_sha1(), num_elem, addr, len, mac);
  157. }
  158. #ifndef NO_SHA256_WRAPPER
  159. int sha256_vector(size_t num_elem, const u8 *addr[], const size_t *len,
  160. u8 *mac)
  161. {
  162. return openssl_digest_vector(EVP_sha256(), num_elem, addr, len, mac);
  163. }
  164. #endif /* NO_SHA256_WRAPPER */
  165. static const EVP_CIPHER * aes_get_evp_cipher(size_t keylen)
  166. {
  167. switch (keylen) {
  168. case 16:
  169. return EVP_aes_128_ecb();
  170. case 24:
  171. return EVP_aes_192_ecb();
  172. case 32:
  173. return EVP_aes_256_ecb();
  174. }
  175. return NULL;
  176. }
  177. void * aes_encrypt_init(const u8 *key, size_t len)
  178. {
  179. EVP_CIPHER_CTX *ctx;
  180. const EVP_CIPHER *type;
  181. type = aes_get_evp_cipher(len);
  182. if (type == NULL)
  183. return NULL;
  184. ctx = os_malloc(sizeof(*ctx));
  185. if (ctx == NULL)
  186. return NULL;
  187. EVP_CIPHER_CTX_init(ctx);
  188. if (EVP_EncryptInit_ex(ctx, type, NULL, key, NULL) != 1) {
  189. os_free(ctx);
  190. return NULL;
  191. }
  192. EVP_CIPHER_CTX_set_padding(ctx, 0);
  193. return ctx;
  194. }
  195. void aes_encrypt(void *ctx, const u8 *plain, u8 *crypt)
  196. {
  197. EVP_CIPHER_CTX *c = ctx;
  198. int clen = 16;
  199. if (EVP_EncryptUpdate(c, crypt, &clen, plain, 16) != 1) {
  200. wpa_printf(MSG_ERROR, "OpenSSL: EVP_EncryptUpdate failed: %s",
  201. ERR_error_string(ERR_get_error(), NULL));
  202. }
  203. }
  204. void aes_encrypt_deinit(void *ctx)
  205. {
  206. EVP_CIPHER_CTX *c = ctx;
  207. u8 buf[16];
  208. int len = sizeof(buf);
  209. if (EVP_EncryptFinal_ex(c, buf, &len) != 1) {
  210. wpa_printf(MSG_ERROR, "OpenSSL: EVP_EncryptFinal_ex failed: "
  211. "%s", ERR_error_string(ERR_get_error(), NULL));
  212. }
  213. if (len != 0) {
  214. wpa_printf(MSG_ERROR, "OpenSSL: Unexpected padding length %d "
  215. "in AES encrypt", len);
  216. }
  217. EVP_CIPHER_CTX_cleanup(c);
  218. os_free(c);
  219. }
  220. void * aes_decrypt_init(const u8 *key, size_t len)
  221. {
  222. EVP_CIPHER_CTX *ctx;
  223. const EVP_CIPHER *type;
  224. type = aes_get_evp_cipher(len);
  225. if (type == NULL)
  226. return NULL;
  227. ctx = os_malloc(sizeof(*ctx));
  228. if (ctx == NULL)
  229. return NULL;
  230. EVP_CIPHER_CTX_init(ctx);
  231. if (EVP_DecryptInit_ex(ctx, type, NULL, key, NULL) != 1) {
  232. os_free(ctx);
  233. return NULL;
  234. }
  235. EVP_CIPHER_CTX_set_padding(ctx, 0);
  236. return ctx;
  237. }
  238. void aes_decrypt(void *ctx, const u8 *crypt, u8 *plain)
  239. {
  240. EVP_CIPHER_CTX *c = ctx;
  241. int plen = 16;
  242. if (EVP_DecryptUpdate(c, plain, &plen, crypt, 16) != 1) {
  243. wpa_printf(MSG_ERROR, "OpenSSL: EVP_DecryptUpdate failed: %s",
  244. ERR_error_string(ERR_get_error(), NULL));
  245. }
  246. }
  247. void aes_decrypt_deinit(void *ctx)
  248. {
  249. EVP_CIPHER_CTX *c = ctx;
  250. u8 buf[16];
  251. int len = sizeof(buf);
  252. if (EVP_DecryptFinal_ex(c, buf, &len) != 1) {
  253. wpa_printf(MSG_ERROR, "OpenSSL: EVP_DecryptFinal_ex failed: "
  254. "%s", ERR_error_string(ERR_get_error(), NULL));
  255. }
  256. if (len != 0) {
  257. wpa_printf(MSG_ERROR, "OpenSSL: Unexpected padding length %d "
  258. "in AES decrypt", len);
  259. }
  260. EVP_CIPHER_CTX_cleanup(c);
  261. os_free(ctx);
  262. }
  263. int crypto_mod_exp(const u8 *base, size_t base_len,
  264. const u8 *power, size_t power_len,
  265. const u8 *modulus, size_t modulus_len,
  266. u8 *result, size_t *result_len)
  267. {
  268. BIGNUM *bn_base, *bn_exp, *bn_modulus, *bn_result;
  269. int ret = -1;
  270. BN_CTX *ctx;
  271. ctx = BN_CTX_new();
  272. if (ctx == NULL)
  273. return -1;
  274. bn_base = BN_bin2bn(base, base_len, NULL);
  275. bn_exp = BN_bin2bn(power, power_len, NULL);
  276. bn_modulus = BN_bin2bn(modulus, modulus_len, NULL);
  277. bn_result = BN_new();
  278. if (bn_base == NULL || bn_exp == NULL || bn_modulus == NULL ||
  279. bn_result == NULL)
  280. goto error;
  281. if (BN_mod_exp(bn_result, bn_base, bn_exp, bn_modulus, ctx) != 1)
  282. goto error;
  283. *result_len = BN_bn2bin(bn_result, result);
  284. ret = 0;
  285. error:
  286. BN_free(bn_base);
  287. BN_free(bn_exp);
  288. BN_free(bn_modulus);
  289. BN_free(bn_result);
  290. BN_CTX_free(ctx);
  291. return ret;
  292. }
  293. struct crypto_cipher {
  294. EVP_CIPHER_CTX enc;
  295. EVP_CIPHER_CTX dec;
  296. };
  297. struct crypto_cipher * crypto_cipher_init(enum crypto_cipher_alg alg,
  298. const u8 *iv, const u8 *key,
  299. size_t key_len)
  300. {
  301. struct crypto_cipher *ctx;
  302. const EVP_CIPHER *cipher;
  303. ctx = os_zalloc(sizeof(*ctx));
  304. if (ctx == NULL)
  305. return NULL;
  306. switch (alg) {
  307. #ifndef OPENSSL_NO_RC4
  308. case CRYPTO_CIPHER_ALG_RC4:
  309. cipher = EVP_rc4();
  310. break;
  311. #endif /* OPENSSL_NO_RC4 */
  312. #ifndef OPENSSL_NO_AES
  313. case CRYPTO_CIPHER_ALG_AES:
  314. switch (key_len) {
  315. case 16:
  316. cipher = EVP_aes_128_cbc();
  317. break;
  318. case 24:
  319. cipher = EVP_aes_192_cbc();
  320. break;
  321. case 32:
  322. cipher = EVP_aes_256_cbc();
  323. break;
  324. default:
  325. os_free(ctx);
  326. return NULL;
  327. }
  328. break;
  329. #endif /* OPENSSL_NO_AES */
  330. #ifndef OPENSSL_NO_DES
  331. case CRYPTO_CIPHER_ALG_3DES:
  332. cipher = EVP_des_ede3_cbc();
  333. break;
  334. case CRYPTO_CIPHER_ALG_DES:
  335. cipher = EVP_des_cbc();
  336. break;
  337. #endif /* OPENSSL_NO_DES */
  338. #ifndef OPENSSL_NO_RC2
  339. case CRYPTO_CIPHER_ALG_RC2:
  340. cipher = EVP_rc2_ecb();
  341. break;
  342. #endif /* OPENSSL_NO_RC2 */
  343. default:
  344. os_free(ctx);
  345. return NULL;
  346. }
  347. EVP_CIPHER_CTX_init(&ctx->enc);
  348. EVP_CIPHER_CTX_set_padding(&ctx->enc, 0);
  349. if (!EVP_EncryptInit_ex(&ctx->enc, cipher, NULL, NULL, NULL) ||
  350. !EVP_CIPHER_CTX_set_key_length(&ctx->enc, key_len) ||
  351. !EVP_EncryptInit_ex(&ctx->enc, NULL, NULL, key, iv)) {
  352. EVP_CIPHER_CTX_cleanup(&ctx->enc);
  353. os_free(ctx);
  354. return NULL;
  355. }
  356. EVP_CIPHER_CTX_init(&ctx->dec);
  357. EVP_CIPHER_CTX_set_padding(&ctx->dec, 0);
  358. if (!EVP_DecryptInit_ex(&ctx->dec, cipher, NULL, NULL, NULL) ||
  359. !EVP_CIPHER_CTX_set_key_length(&ctx->dec, key_len) ||
  360. !EVP_DecryptInit_ex(&ctx->dec, NULL, NULL, key, iv)) {
  361. EVP_CIPHER_CTX_cleanup(&ctx->enc);
  362. EVP_CIPHER_CTX_cleanup(&ctx->dec);
  363. os_free(ctx);
  364. return NULL;
  365. }
  366. return ctx;
  367. }
  368. int crypto_cipher_encrypt(struct crypto_cipher *ctx, const u8 *plain,
  369. u8 *crypt, size_t len)
  370. {
  371. int outl;
  372. if (!EVP_EncryptUpdate(&ctx->enc, crypt, &outl, plain, len))
  373. return -1;
  374. return 0;
  375. }
  376. int crypto_cipher_decrypt(struct crypto_cipher *ctx, const u8 *crypt,
  377. u8 *plain, size_t len)
  378. {
  379. int outl;
  380. outl = len;
  381. if (!EVP_DecryptUpdate(&ctx->dec, plain, &outl, crypt, len))
  382. return -1;
  383. return 0;
  384. }
  385. void crypto_cipher_deinit(struct crypto_cipher *ctx)
  386. {
  387. EVP_CIPHER_CTX_cleanup(&ctx->enc);
  388. EVP_CIPHER_CTX_cleanup(&ctx->dec);
  389. os_free(ctx);
  390. }
  391. void * dh5_init(struct wpabuf **priv, struct wpabuf **publ)
  392. {
  393. DH *dh;
  394. struct wpabuf *pubkey = NULL, *privkey = NULL;
  395. size_t publen, privlen;
  396. *priv = NULL;
  397. *publ = NULL;
  398. dh = DH_new();
  399. if (dh == NULL)
  400. return NULL;
  401. dh->g = BN_new();
  402. if (dh->g == NULL || BN_set_word(dh->g, 2) != 1)
  403. goto err;
  404. dh->p = get_group5_prime();
  405. if (dh->p == NULL)
  406. goto err;
  407. if (DH_generate_key(dh) != 1)
  408. goto err;
  409. publen = BN_num_bytes(dh->pub_key);
  410. pubkey = wpabuf_alloc(publen);
  411. if (pubkey == NULL)
  412. goto err;
  413. privlen = BN_num_bytes(dh->priv_key);
  414. privkey = wpabuf_alloc(privlen);
  415. if (privkey == NULL)
  416. goto err;
  417. BN_bn2bin(dh->pub_key, wpabuf_put(pubkey, publen));
  418. BN_bn2bin(dh->priv_key, wpabuf_put(privkey, privlen));
  419. *priv = privkey;
  420. *publ = pubkey;
  421. return dh;
  422. err:
  423. wpabuf_free(pubkey);
  424. wpabuf_free(privkey);
  425. DH_free(dh);
  426. return NULL;
  427. }
  428. void * dh5_init_fixed(const struct wpabuf *priv, const struct wpabuf *publ)
  429. {
  430. DH *dh;
  431. dh = DH_new();
  432. if (dh == NULL)
  433. return NULL;
  434. dh->g = BN_new();
  435. if (dh->g == NULL || BN_set_word(dh->g, 2) != 1)
  436. goto err;
  437. dh->p = get_group5_prime();
  438. if (dh->p == NULL)
  439. goto err;
  440. dh->priv_key = BN_bin2bn(wpabuf_head(priv), wpabuf_len(priv), NULL);
  441. if (dh->priv_key == NULL)
  442. goto err;
  443. dh->pub_key = BN_bin2bn(wpabuf_head(publ), wpabuf_len(publ), NULL);
  444. if (dh->pub_key == NULL)
  445. goto err;
  446. if (DH_generate_key(dh) != 1)
  447. goto err;
  448. return dh;
  449. err:
  450. DH_free(dh);
  451. return NULL;
  452. }
  453. struct wpabuf * dh5_derive_shared(void *ctx, const struct wpabuf *peer_public,
  454. const struct wpabuf *own_private)
  455. {
  456. BIGNUM *pub_key;
  457. struct wpabuf *res = NULL;
  458. size_t rlen;
  459. DH *dh = ctx;
  460. int keylen;
  461. if (ctx == NULL)
  462. return NULL;
  463. pub_key = BN_bin2bn(wpabuf_head(peer_public), wpabuf_len(peer_public),
  464. NULL);
  465. if (pub_key == NULL)
  466. return NULL;
  467. rlen = DH_size(dh);
  468. res = wpabuf_alloc(rlen);
  469. if (res == NULL)
  470. goto err;
  471. keylen = DH_compute_key(wpabuf_mhead(res), pub_key, dh);
  472. if (keylen < 0)
  473. goto err;
  474. wpabuf_put(res, keylen);
  475. BN_free(pub_key);
  476. return res;
  477. err:
  478. BN_free(pub_key);
  479. wpabuf_free(res);
  480. return NULL;
  481. }
  482. void dh5_free(void *ctx)
  483. {
  484. DH *dh;
  485. if (ctx == NULL)
  486. return;
  487. dh = ctx;
  488. DH_free(dh);
  489. }
  490. struct crypto_hash {
  491. HMAC_CTX ctx;
  492. };
  493. struct crypto_hash * crypto_hash_init(enum crypto_hash_alg alg, const u8 *key,
  494. size_t key_len)
  495. {
  496. struct crypto_hash *ctx;
  497. const EVP_MD *md;
  498. switch (alg) {
  499. #ifndef OPENSSL_NO_MD5
  500. case CRYPTO_HASH_ALG_HMAC_MD5:
  501. md = EVP_md5();
  502. break;
  503. #endif /* OPENSSL_NO_MD5 */
  504. #ifndef OPENSSL_NO_SHA
  505. case CRYPTO_HASH_ALG_HMAC_SHA1:
  506. md = EVP_sha1();
  507. break;
  508. #endif /* OPENSSL_NO_SHA */
  509. #ifndef OPENSSL_NO_SHA256
  510. #ifdef CONFIG_SHA256
  511. case CRYPTO_HASH_ALG_HMAC_SHA256:
  512. md = EVP_sha256();
  513. break;
  514. #endif /* CONFIG_SHA256 */
  515. #endif /* OPENSSL_NO_SHA256 */
  516. default:
  517. return NULL;
  518. }
  519. ctx = os_zalloc(sizeof(*ctx));
  520. if (ctx == NULL)
  521. return NULL;
  522. HMAC_CTX_init(&ctx->ctx);
  523. #if OPENSSL_VERSION_NUMBER < 0x00909000
  524. HMAC_Init_ex(&ctx->ctx, key, key_len, md, NULL);
  525. #else /* openssl < 0.9.9 */
  526. if (HMAC_Init_ex(&ctx->ctx, key, key_len, md, NULL) != 1) {
  527. os_free(ctx);
  528. return NULL;
  529. }
  530. #endif /* openssl < 0.9.9 */
  531. return ctx;
  532. }
  533. void crypto_hash_update(struct crypto_hash *ctx, const u8 *data, size_t len)
  534. {
  535. if (ctx == NULL)
  536. return;
  537. HMAC_Update(&ctx->ctx, data, len);
  538. }
  539. int crypto_hash_finish(struct crypto_hash *ctx, u8 *mac, size_t *len)
  540. {
  541. unsigned int mdlen;
  542. int res;
  543. if (ctx == NULL)
  544. return -2;
  545. if (mac == NULL || len == NULL) {
  546. os_free(ctx);
  547. return 0;
  548. }
  549. mdlen = *len;
  550. #if OPENSSL_VERSION_NUMBER < 0x00909000
  551. HMAC_Final(&ctx->ctx, mac, &mdlen);
  552. res = 1;
  553. #else /* openssl < 0.9.9 */
  554. res = HMAC_Final(&ctx->ctx, mac, &mdlen);
  555. #endif /* openssl < 0.9.9 */
  556. HMAC_CTX_cleanup(&ctx->ctx);
  557. os_free(ctx);
  558. if (res == 1) {
  559. *len = mdlen;
  560. return 0;
  561. }
  562. return -1;
  563. }
  564. int pbkdf2_sha1(const char *passphrase, const u8 *ssid, size_t ssid_len,
  565. int iterations, u8 *buf, size_t buflen)
  566. {
  567. #if OPENSSL_VERSION_NUMBER < 0x00908000
  568. if (PKCS5_PBKDF2_HMAC_SHA1(passphrase, os_strlen(passphrase),
  569. (unsigned char *) ssid,
  570. ssid_len, 4096, buflen, buf) != 1)
  571. return -1;
  572. #else /* openssl < 0.9.8 */
  573. if (PKCS5_PBKDF2_HMAC_SHA1(passphrase, os_strlen(passphrase), ssid,
  574. ssid_len, 4096, buflen, buf) != 1)
  575. return -1;
  576. #endif /* openssl < 0.9.8 */
  577. return 0;
  578. }
  579. int hmac_sha1_vector(const u8 *key, size_t key_len, size_t num_elem,
  580. const u8 *addr[], const size_t *len, u8 *mac)
  581. {
  582. HMAC_CTX ctx;
  583. size_t i;
  584. unsigned int mdlen;
  585. int res;
  586. HMAC_CTX_init(&ctx);
  587. #if OPENSSL_VERSION_NUMBER < 0x00909000
  588. HMAC_Init_ex(&ctx, key, key_len, EVP_sha1(), NULL);
  589. #else /* openssl < 0.9.9 */
  590. if (HMAC_Init_ex(&ctx, key, key_len, EVP_sha1(), NULL) != 1)
  591. return -1;
  592. #endif /* openssl < 0.9.9 */
  593. for (i = 0; i < num_elem; i++)
  594. HMAC_Update(&ctx, addr[i], len[i]);
  595. mdlen = 20;
  596. #if OPENSSL_VERSION_NUMBER < 0x00909000
  597. HMAC_Final(&ctx, mac, &mdlen);
  598. res = 1;
  599. #else /* openssl < 0.9.9 */
  600. res = HMAC_Final(&ctx, mac, &mdlen);
  601. #endif /* openssl < 0.9.9 */
  602. HMAC_CTX_cleanup(&ctx);
  603. return res == 1 ? 0 : -1;
  604. }
  605. int hmac_sha1(const u8 *key, size_t key_len, const u8 *data, size_t data_len,
  606. u8 *mac)
  607. {
  608. return hmac_sha1_vector(key, key_len, 1, &data, &data_len, mac);
  609. }
  610. #ifdef CONFIG_SHA256
  611. int hmac_sha256_vector(const u8 *key, size_t key_len, size_t num_elem,
  612. const u8 *addr[], const size_t *len, u8 *mac)
  613. {
  614. HMAC_CTX ctx;
  615. size_t i;
  616. unsigned int mdlen;
  617. int res;
  618. HMAC_CTX_init(&ctx);
  619. #if OPENSSL_VERSION_NUMBER < 0x00909000
  620. HMAC_Init_ex(&ctx, key, key_len, EVP_sha256(), NULL);
  621. #else /* openssl < 0.9.9 */
  622. if (HMAC_Init_ex(&ctx, key, key_len, EVP_sha256(), NULL) != 1)
  623. return -1;
  624. #endif /* openssl < 0.9.9 */
  625. for (i = 0; i < num_elem; i++)
  626. HMAC_Update(&ctx, addr[i], len[i]);
  627. mdlen = 32;
  628. #if OPENSSL_VERSION_NUMBER < 0x00909000
  629. HMAC_Final(&ctx, mac, &mdlen);
  630. res = 1;
  631. #else /* openssl < 0.9.9 */
  632. res = HMAC_Final(&ctx, mac, &mdlen);
  633. #endif /* openssl < 0.9.9 */
  634. HMAC_CTX_cleanup(&ctx);
  635. return res == 1 ? 0 : -1;
  636. }
  637. int hmac_sha256(const u8 *key, size_t key_len, const u8 *data,
  638. size_t data_len, u8 *mac)
  639. {
  640. return hmac_sha256_vector(key, key_len, 1, &data, &data_len, mac);
  641. }
  642. #endif /* CONFIG_SHA256 */
  643. int crypto_get_random(void *buf, size_t len)
  644. {
  645. if (RAND_bytes(buf, len) != 1)
  646. return -1;
  647. return 0;
  648. }
  649. #ifdef CONFIG_OPENSSL_CMAC
  650. int omac1_aes_128_vector(const u8 *key, size_t num_elem,
  651. const u8 *addr[], const size_t *len, u8 *mac)
  652. {
  653. CMAC_CTX *ctx;
  654. int ret = -1;
  655. size_t outlen, i;
  656. ctx = CMAC_CTX_new();
  657. if (ctx == NULL)
  658. return -1;
  659. if (!CMAC_Init(ctx, key, 16, EVP_aes_128_cbc(), NULL))
  660. goto fail;
  661. for (i = 0; i < num_elem; i++) {
  662. if (!CMAC_Update(ctx, addr[i], len[i]))
  663. goto fail;
  664. }
  665. if (!CMAC_Final(ctx, mac, &outlen) || outlen != 16)
  666. goto fail;
  667. ret = 0;
  668. fail:
  669. CMAC_CTX_free(ctx);
  670. return ret;
  671. }
  672. int omac1_aes_128(const u8 *key, const u8 *data, size_t data_len, u8 *mac)
  673. {
  674. return omac1_aes_128_vector(key, 1, &data, &data_len, mac);
  675. }
  676. #endif /* CONFIG_OPENSSL_CMAC */
  677. struct crypto_bignum * crypto_bignum_init(void)
  678. {
  679. return (struct crypto_bignum *) BN_new();
  680. }
  681. struct crypto_bignum * crypto_bignum_init_set(const u8 *buf, size_t len)
  682. {
  683. BIGNUM *bn = BN_bin2bn(buf, len, NULL);
  684. return (struct crypto_bignum *) bn;
  685. }
  686. void crypto_bignum_deinit(struct crypto_bignum *n, int clear)
  687. {
  688. if (clear)
  689. BN_clear_free((BIGNUM *) n);
  690. else
  691. BN_free((BIGNUM *) n);
  692. }
  693. int crypto_bignum_to_bin(const struct crypto_bignum *a,
  694. u8 *buf, size_t buflen, size_t padlen)
  695. {
  696. int num_bytes, offset;
  697. if (padlen > buflen)
  698. return -1;
  699. num_bytes = BN_num_bytes((const BIGNUM *) a);
  700. if ((size_t) num_bytes > buflen)
  701. return -1;
  702. if (padlen > (size_t) num_bytes)
  703. offset = padlen - num_bytes;
  704. else
  705. offset = 0;
  706. os_memset(buf, 0, offset);
  707. BN_bn2bin((const BIGNUM *) a, buf + offset);
  708. return num_bytes + offset;
  709. }
  710. int crypto_bignum_add(const struct crypto_bignum *a,
  711. const struct crypto_bignum *b,
  712. struct crypto_bignum *c)
  713. {
  714. return BN_add((BIGNUM *) c, (const BIGNUM *) a, (const BIGNUM *) b) ?
  715. 0 : -1;
  716. }
  717. int crypto_bignum_mod(const struct crypto_bignum *a,
  718. const struct crypto_bignum *b,
  719. struct crypto_bignum *c)
  720. {
  721. int res;
  722. BN_CTX *bnctx;
  723. bnctx = BN_CTX_new();
  724. if (bnctx == NULL)
  725. return -1;
  726. res = BN_mod((BIGNUM *) c, (const BIGNUM *) a, (const BIGNUM *) b,
  727. bnctx);
  728. BN_CTX_free(bnctx);
  729. return res ? 0 : -1;
  730. }
  731. #ifdef CONFIG_ECC
  732. struct crypto_ec {
  733. EC_GROUP *group;
  734. BN_CTX *bnctx;
  735. BIGNUM *prime;
  736. BIGNUM *order;
  737. };
  738. struct crypto_ec * crypto_ec_init(int group)
  739. {
  740. struct crypto_ec *e;
  741. int nid;
  742. /* Map from IANA registry for IKE D-H groups to OpenSSL NID */
  743. switch (group) {
  744. case 19:
  745. nid = NID_X9_62_prime256v1;
  746. break;
  747. case 20:
  748. nid = NID_secp384r1;
  749. break;
  750. case 21:
  751. nid = NID_secp521r1;
  752. break;
  753. case 25:
  754. nid = NID_X9_62_prime192v1;
  755. break;
  756. case 26:
  757. nid = NID_secp224r1;
  758. break;
  759. default:
  760. return NULL;
  761. }
  762. e = os_zalloc(sizeof(*e));
  763. if (e == NULL)
  764. return NULL;
  765. e->bnctx = BN_CTX_new();
  766. e->group = EC_GROUP_new_by_curve_name(nid);
  767. e->prime = BN_new();
  768. e->order = BN_new();
  769. if (e->group == NULL || e->bnctx == NULL || e->prime == NULL ||
  770. e->order == NULL ||
  771. !EC_GROUP_get_curve_GFp(e->group, e->prime, NULL, NULL, e->bnctx) ||
  772. !EC_GROUP_get_order(e->group, e->order, e->bnctx)) {
  773. crypto_ec_deinit(e);
  774. e = NULL;
  775. }
  776. return e;
  777. }
  778. void crypto_ec_deinit(struct crypto_ec *e)
  779. {
  780. if (e == NULL)
  781. return;
  782. BN_free(e->order);
  783. EC_GROUP_free(e->group);
  784. BN_CTX_free(e->bnctx);
  785. os_free(e);
  786. }
  787. struct crypto_ec_point * crypto_ec_point_init(struct crypto_ec *e)
  788. {
  789. if (e == NULL)
  790. return NULL;
  791. return (struct crypto_ec_point *) EC_POINT_new(e->group);
  792. }
  793. size_t crypto_ec_prime_len(struct crypto_ec *e)
  794. {
  795. return BN_num_bytes(e->prime);
  796. }
  797. size_t crypto_ec_prime_len_bits(struct crypto_ec *e)
  798. {
  799. return BN_num_bits(e->prime);
  800. }
  801. const struct crypto_bignum * crypto_ec_get_prime(struct crypto_ec *e)
  802. {
  803. return (const struct crypto_bignum *) e->prime;
  804. }
  805. const struct crypto_bignum * crypto_ec_get_order(struct crypto_ec *e)
  806. {
  807. return (const struct crypto_bignum *) e->order;
  808. }
  809. void crypto_ec_point_deinit(struct crypto_ec_point *p, int clear)
  810. {
  811. if (clear)
  812. EC_POINT_clear_free((EC_POINT *) p);
  813. else
  814. EC_POINT_free((EC_POINT *) p);
  815. }
  816. int crypto_ec_point_to_bin(struct crypto_ec *e,
  817. const struct crypto_ec_point *point, u8 *x, u8 *y)
  818. {
  819. BIGNUM *x_bn, *y_bn;
  820. int ret = -1;
  821. int len = BN_num_bytes(e->prime);
  822. x_bn = BN_new();
  823. y_bn = BN_new();
  824. if (x_bn && y_bn &&
  825. EC_POINT_get_affine_coordinates_GFp(e->group, (EC_POINT *) point,
  826. x_bn, y_bn, e->bnctx)) {
  827. if (x) {
  828. crypto_bignum_to_bin((struct crypto_bignum *) x_bn,
  829. x, len, len);
  830. }
  831. if (y) {
  832. crypto_bignum_to_bin((struct crypto_bignum *) y_bn,
  833. y, len, len);
  834. }
  835. ret = 0;
  836. }
  837. BN_free(x_bn);
  838. BN_free(y_bn);
  839. return ret;
  840. }
  841. struct crypto_ec_point * crypto_ec_point_from_bin(struct crypto_ec *e,
  842. const u8 *val)
  843. {
  844. BIGNUM *x, *y;
  845. EC_POINT *elem;
  846. int len = BN_num_bytes(e->prime);
  847. x = BN_bin2bn(val, len, NULL);
  848. y = BN_bin2bn(val + len, len, NULL);
  849. elem = EC_POINT_new(e->group);
  850. if (x == NULL || y == NULL || elem == NULL) {
  851. BN_free(x);
  852. BN_free(y);
  853. EC_POINT_free(elem);
  854. return NULL;
  855. }
  856. if (!EC_POINT_set_affine_coordinates_GFp(e->group, elem, x, y,
  857. e->bnctx)) {
  858. EC_POINT_free(elem);
  859. elem = NULL;
  860. }
  861. BN_free(x);
  862. BN_free(y);
  863. return (struct crypto_ec_point *) elem;
  864. }
  865. int crypto_ec_point_add(struct crypto_ec *e, const struct crypto_ec_point *a,
  866. const struct crypto_ec_point *b,
  867. struct crypto_ec_point *c)
  868. {
  869. return EC_POINT_add(e->group, (EC_POINT *) c, (const EC_POINT *) a,
  870. (const EC_POINT *) b, e->bnctx) ? 0 : -1;
  871. }
  872. int crypto_ec_point_mul(struct crypto_ec *e, const struct crypto_ec_point *p,
  873. const struct crypto_bignum *b,
  874. struct crypto_ec_point *res)
  875. {
  876. return EC_POINT_mul(e->group, (EC_POINT *) res, NULL,
  877. (const EC_POINT *) p, (const BIGNUM *) b, e->bnctx)
  878. ? 0 : -1;
  879. }
  880. int crypto_ec_point_invert(struct crypto_ec *e, struct crypto_ec_point *p)
  881. {
  882. return EC_POINT_invert(e->group, (EC_POINT *) p, e->bnctx) ? 0 : -1;
  883. }
  884. int crypto_ec_point_solve_y_coord(struct crypto_ec *e,
  885. struct crypto_ec_point *p,
  886. const struct crypto_bignum *x, int y_bit)
  887. {
  888. if (!EC_POINT_set_compressed_coordinates_GFp(e->group, (EC_POINT *) p,
  889. (const BIGNUM *) x, y_bit,
  890. e->bnctx) ||
  891. !EC_POINT_is_on_curve(e->group, (EC_POINT *) p, e->bnctx))
  892. return -1;
  893. return 0;
  894. }
  895. int crypto_ec_point_is_at_infinity(struct crypto_ec *e,
  896. const struct crypto_ec_point *p)
  897. {
  898. return EC_POINT_is_at_infinity(e->group, (const EC_POINT *) p);
  899. }
  900. int crypto_ec_point_is_on_curve(struct crypto_ec *e,
  901. const struct crypto_ec_point *p)
  902. {
  903. return EC_POINT_is_on_curve(e->group, (const EC_POINT *) p, e->bnctx);
  904. }
  905. #endif /* CONFIG_ECC */