ap.c 26 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996
  1. /*
  2. * WPA Supplicant - Basic AP mode support routines
  3. * Copyright (c) 2003-2009, Jouni Malinen <j@w1.fi>
  4. * Copyright (c) 2009, Atheros Communications
  5. *
  6. * This software may be distributed under the terms of the BSD license.
  7. * See README for more details.
  8. */
  9. #include "utils/includes.h"
  10. #include "utils/common.h"
  11. #include "utils/eloop.h"
  12. #include "utils/uuid.h"
  13. #include "common/ieee802_11_defs.h"
  14. #include "common/wpa_ctrl.h"
  15. #include "ap/hostapd.h"
  16. #include "ap/ap_config.h"
  17. #include "ap/ap_drv_ops.h"
  18. #ifdef NEED_AP_MLME
  19. #include "ap/ieee802_11.h"
  20. #endif /* NEED_AP_MLME */
  21. #include "ap/beacon.h"
  22. #include "ap/ieee802_1x.h"
  23. #include "ap/wps_hostapd.h"
  24. #include "ap/ctrl_iface_ap.h"
  25. #include "wps/wps.h"
  26. #include "common/ieee802_11_defs.h"
  27. #include "config_ssid.h"
  28. #include "config.h"
  29. #include "wpa_supplicant_i.h"
  30. #include "driver_i.h"
  31. #include "p2p_supplicant.h"
  32. #include "ap.h"
  33. #include "ap/sta_info.h"
  34. #include "notify.h"
  35. #ifdef CONFIG_WPS
  36. static void wpas_wps_ap_pin_timeout(void *eloop_data, void *user_ctx);
  37. #endif /* CONFIG_WPS */
  38. static int wpa_supplicant_conf_ap(struct wpa_supplicant *wpa_s,
  39. struct wpa_ssid *ssid,
  40. struct hostapd_config *conf)
  41. {
  42. struct hostapd_bss_config *bss = &conf->bss[0];
  43. int pairwise;
  44. conf->driver = wpa_s->driver;
  45. os_strlcpy(bss->iface, wpa_s->ifname, sizeof(bss->iface));
  46. if (ssid->frequency == 0) {
  47. /* default channel 11 */
  48. conf->hw_mode = HOSTAPD_MODE_IEEE80211G;
  49. conf->channel = 11;
  50. } else if (ssid->frequency >= 2412 && ssid->frequency <= 2472) {
  51. conf->hw_mode = HOSTAPD_MODE_IEEE80211G;
  52. conf->channel = (ssid->frequency - 2407) / 5;
  53. } else if ((ssid->frequency >= 5180 && ssid->frequency <= 5240) ||
  54. (ssid->frequency >= 5745 && ssid->frequency <= 5825)) {
  55. conf->hw_mode = HOSTAPD_MODE_IEEE80211A;
  56. conf->channel = (ssid->frequency - 5000) / 5;
  57. } else {
  58. wpa_printf(MSG_ERROR, "Unsupported AP mode frequency: %d MHz",
  59. ssid->frequency);
  60. return -1;
  61. }
  62. /* TODO: enable HT40 if driver supports it;
  63. * drop to 11b if driver does not support 11g */
  64. #ifdef CONFIG_IEEE80211N
  65. /*
  66. * Enable HT20 if the driver supports it, by setting conf->ieee80211n
  67. * and a mask of allowed capabilities within conf->ht_capab.
  68. * Using default config settings for: conf->ht_op_mode_fixed,
  69. * conf->secondary_channel, conf->require_ht
  70. */
  71. if (wpa_s->hw.modes) {
  72. struct hostapd_hw_modes *mode = NULL;
  73. int i;
  74. for (i = 0; i < wpa_s->hw.num_modes; i++) {
  75. if (wpa_s->hw.modes[i].mode == conf->hw_mode) {
  76. mode = &wpa_s->hw.modes[i];
  77. break;
  78. }
  79. }
  80. if (mode && mode->ht_capab) {
  81. conf->ieee80211n = 1;
  82. /*
  83. * white-list capabilities that won't cause issues
  84. * to connecting stations, while leaving the current
  85. * capabilities intact (currently disabled SMPS).
  86. */
  87. conf->ht_capab |= mode->ht_capab &
  88. (HT_CAP_INFO_GREEN_FIELD |
  89. HT_CAP_INFO_SHORT_GI20MHZ |
  90. HT_CAP_INFO_SHORT_GI40MHZ |
  91. HT_CAP_INFO_RX_STBC_MASK |
  92. HT_CAP_INFO_MAX_AMSDU_SIZE);
  93. }
  94. }
  95. #endif /* CONFIG_IEEE80211N */
  96. #ifdef CONFIG_P2P
  97. if (conf->hw_mode == HOSTAPD_MODE_IEEE80211G) {
  98. /* Remove 802.11b rates from supported and basic rate sets */
  99. int *list = os_malloc(4 * sizeof(int));
  100. if (list) {
  101. list[0] = 60;
  102. list[1] = 120;
  103. list[2] = 240;
  104. list[3] = -1;
  105. }
  106. conf->basic_rates = list;
  107. list = os_malloc(9 * sizeof(int));
  108. if (list) {
  109. list[0] = 60;
  110. list[1] = 90;
  111. list[2] = 120;
  112. list[3] = 180;
  113. list[4] = 240;
  114. list[5] = 360;
  115. list[6] = 480;
  116. list[7] = 540;
  117. list[8] = -1;
  118. }
  119. conf->supported_rates = list;
  120. }
  121. bss->isolate = !wpa_s->conf->p2p_intra_bss;
  122. #endif /* CONFIG_P2P */
  123. if (ssid->ssid_len == 0) {
  124. wpa_printf(MSG_ERROR, "No SSID configured for AP mode");
  125. return -1;
  126. }
  127. os_memcpy(bss->ssid.ssid, ssid->ssid, ssid->ssid_len);
  128. bss->ssid.ssid[ssid->ssid_len] = '\0';
  129. bss->ssid.ssid_len = ssid->ssid_len;
  130. bss->ssid.ssid_set = 1;
  131. bss->ignore_broadcast_ssid = ssid->ignore_broadcast_ssid;
  132. if (ssid->auth_alg)
  133. bss->auth_algs = ssid->auth_alg;
  134. if (wpa_key_mgmt_wpa_psk(ssid->key_mgmt))
  135. bss->wpa = ssid->proto;
  136. bss->wpa_key_mgmt = ssid->key_mgmt;
  137. bss->wpa_pairwise = ssid->pairwise_cipher;
  138. if (ssid->passphrase) {
  139. bss->ssid.wpa_passphrase = os_strdup(ssid->passphrase);
  140. } else if (ssid->psk_set) {
  141. os_free(bss->ssid.wpa_psk);
  142. bss->ssid.wpa_psk = os_zalloc(sizeof(struct hostapd_wpa_psk));
  143. if (bss->ssid.wpa_psk == NULL)
  144. return -1;
  145. os_memcpy(bss->ssid.wpa_psk->psk, ssid->psk, PMK_LEN);
  146. bss->ssid.wpa_psk->group = 1;
  147. } else if (ssid->wep_key_len[0] || ssid->wep_key_len[1] ||
  148. ssid->wep_key_len[2] || ssid->wep_key_len[3]) {
  149. struct hostapd_wep_keys *wep = &bss->ssid.wep;
  150. int i;
  151. for (i = 0; i < NUM_WEP_KEYS; i++) {
  152. if (ssid->wep_key_len[i] == 0)
  153. continue;
  154. wep->key[i] = os_malloc(ssid->wep_key_len[i]);
  155. if (wep->key[i] == NULL)
  156. return -1;
  157. os_memcpy(wep->key[i], ssid->wep_key[i],
  158. ssid->wep_key_len[i]);
  159. wep->len[i] = ssid->wep_key_len[i];
  160. }
  161. wep->idx = ssid->wep_tx_keyidx;
  162. wep->keys_set = 1;
  163. }
  164. /* Select group cipher based on the enabled pairwise cipher suites */
  165. pairwise = 0;
  166. if (bss->wpa & 1)
  167. pairwise |= bss->wpa_pairwise;
  168. if (bss->wpa & 2) {
  169. if (bss->rsn_pairwise == 0)
  170. bss->rsn_pairwise = bss->wpa_pairwise;
  171. pairwise |= bss->rsn_pairwise;
  172. }
  173. if (pairwise & WPA_CIPHER_TKIP)
  174. bss->wpa_group = WPA_CIPHER_TKIP;
  175. else
  176. bss->wpa_group = WPA_CIPHER_CCMP;
  177. if (bss->wpa && bss->ieee802_1x)
  178. bss->ssid.security_policy = SECURITY_WPA;
  179. else if (bss->wpa)
  180. bss->ssid.security_policy = SECURITY_WPA_PSK;
  181. else if (bss->ieee802_1x) {
  182. int cipher = WPA_CIPHER_NONE;
  183. bss->ssid.security_policy = SECURITY_IEEE_802_1X;
  184. bss->ssid.wep.default_len = bss->default_wep_key_len;
  185. if (bss->default_wep_key_len)
  186. cipher = bss->default_wep_key_len >= 13 ?
  187. WPA_CIPHER_WEP104 : WPA_CIPHER_WEP40;
  188. bss->wpa_group = cipher;
  189. bss->wpa_pairwise = cipher;
  190. bss->rsn_pairwise = cipher;
  191. } else if (bss->ssid.wep.keys_set) {
  192. int cipher = WPA_CIPHER_WEP40;
  193. if (bss->ssid.wep.len[0] >= 13)
  194. cipher = WPA_CIPHER_WEP104;
  195. bss->ssid.security_policy = SECURITY_STATIC_WEP;
  196. bss->wpa_group = cipher;
  197. bss->wpa_pairwise = cipher;
  198. bss->rsn_pairwise = cipher;
  199. } else {
  200. bss->ssid.security_policy = SECURITY_PLAINTEXT;
  201. bss->wpa_group = WPA_CIPHER_NONE;
  202. bss->wpa_pairwise = WPA_CIPHER_NONE;
  203. bss->rsn_pairwise = WPA_CIPHER_NONE;
  204. }
  205. #ifdef CONFIG_WPS
  206. /*
  207. * Enable WPS by default for open and WPA/WPA2-Personal network, but
  208. * require user interaction to actually use it. Only the internal
  209. * Registrar is supported.
  210. */
  211. if (bss->ssid.security_policy != SECURITY_WPA_PSK &&
  212. bss->ssid.security_policy != SECURITY_PLAINTEXT)
  213. goto no_wps;
  214. #ifdef CONFIG_WPS2
  215. if (bss->ssid.security_policy == SECURITY_WPA_PSK &&
  216. (!(pairwise & WPA_CIPHER_CCMP) || !(bss->wpa & 2)))
  217. goto no_wps; /* WPS2 does not allow WPA/TKIP-only
  218. * configuration */
  219. #endif /* CONFIG_WPS2 */
  220. bss->eap_server = 1;
  221. if (!ssid->ignore_broadcast_ssid)
  222. bss->wps_state = 2;
  223. bss->ap_setup_locked = 2;
  224. if (wpa_s->conf->config_methods)
  225. bss->config_methods = os_strdup(wpa_s->conf->config_methods);
  226. os_memcpy(bss->device_type, wpa_s->conf->device_type,
  227. WPS_DEV_TYPE_LEN);
  228. if (wpa_s->conf->device_name) {
  229. bss->device_name = os_strdup(wpa_s->conf->device_name);
  230. bss->friendly_name = os_strdup(wpa_s->conf->device_name);
  231. }
  232. if (wpa_s->conf->manufacturer)
  233. bss->manufacturer = os_strdup(wpa_s->conf->manufacturer);
  234. if (wpa_s->conf->model_name)
  235. bss->model_name = os_strdup(wpa_s->conf->model_name);
  236. if (wpa_s->conf->model_number)
  237. bss->model_number = os_strdup(wpa_s->conf->model_number);
  238. if (wpa_s->conf->serial_number)
  239. bss->serial_number = os_strdup(wpa_s->conf->serial_number);
  240. if (is_nil_uuid(wpa_s->conf->uuid))
  241. os_memcpy(bss->uuid, wpa_s->wps->uuid, WPS_UUID_LEN);
  242. else
  243. os_memcpy(bss->uuid, wpa_s->conf->uuid, WPS_UUID_LEN);
  244. os_memcpy(bss->os_version, wpa_s->conf->os_version, 4);
  245. no_wps:
  246. #endif /* CONFIG_WPS */
  247. if (wpa_s->max_stations &&
  248. wpa_s->max_stations < wpa_s->conf->max_num_sta)
  249. bss->max_num_sta = wpa_s->max_stations;
  250. else
  251. bss->max_num_sta = wpa_s->conf->max_num_sta;
  252. bss->disassoc_low_ack = wpa_s->conf->disassoc_low_ack;
  253. return 0;
  254. }
  255. static void ap_public_action_rx(void *ctx, const u8 *buf, size_t len, int freq)
  256. {
  257. #ifdef CONFIG_P2P
  258. struct wpa_supplicant *wpa_s = ctx;
  259. const struct ieee80211_mgmt *mgmt;
  260. size_t hdr_len;
  261. mgmt = (const struct ieee80211_mgmt *) buf;
  262. hdr_len = (const u8 *) &mgmt->u.action.u.vs_public_action.action - buf;
  263. if (hdr_len > len)
  264. return;
  265. wpas_p2p_rx_action(wpa_s, mgmt->da, mgmt->sa, mgmt->bssid,
  266. mgmt->u.action.category,
  267. &mgmt->u.action.u.vs_public_action.action,
  268. len - hdr_len, freq);
  269. #endif /* CONFIG_P2P */
  270. }
  271. static void ap_wps_event_cb(void *ctx, enum wps_event event,
  272. union wps_event_data *data)
  273. {
  274. #ifdef CONFIG_P2P
  275. struct wpa_supplicant *wpa_s = ctx;
  276. if (event == WPS_EV_FAIL) {
  277. struct wps_event_fail *fail = &data->fail;
  278. if (wpa_s->parent && wpa_s->parent != wpa_s &&
  279. wpa_s == wpa_s->global->p2p_group_formation) {
  280. /*
  281. * src/ap/wps_hostapd.c has already sent this on the
  282. * main interface, so only send on the parent interface
  283. * here if needed.
  284. */
  285. wpa_msg(wpa_s->parent, MSG_INFO, WPS_EVENT_FAIL
  286. "msg=%d config_error=%d",
  287. fail->msg, fail->config_error);
  288. }
  289. wpas_p2p_wps_failed(wpa_s, fail);
  290. }
  291. #endif /* CONFIG_P2P */
  292. }
  293. static void ap_sta_authorized_cb(void *ctx, const u8 *mac_addr,
  294. int authorized, const u8 *p2p_dev_addr)
  295. {
  296. wpas_notify_sta_authorized(ctx, mac_addr, authorized, p2p_dev_addr);
  297. }
  298. static int ap_vendor_action_rx(void *ctx, const u8 *buf, size_t len, int freq)
  299. {
  300. #ifdef CONFIG_P2P
  301. struct wpa_supplicant *wpa_s = ctx;
  302. const struct ieee80211_mgmt *mgmt;
  303. size_t hdr_len;
  304. mgmt = (const struct ieee80211_mgmt *) buf;
  305. hdr_len = (const u8 *) &mgmt->u.action.u.vs_public_action.action - buf;
  306. if (hdr_len > len)
  307. return -1;
  308. wpas_p2p_rx_action(wpa_s, mgmt->da, mgmt->sa, mgmt->bssid,
  309. mgmt->u.action.category,
  310. &mgmt->u.action.u.vs_public_action.action,
  311. len - hdr_len, freq);
  312. #endif /* CONFIG_P2P */
  313. return 0;
  314. }
  315. static int ap_probe_req_rx(void *ctx, const u8 *sa, const u8 *da,
  316. const u8 *bssid, const u8 *ie, size_t ie_len)
  317. {
  318. #ifdef CONFIG_P2P
  319. struct wpa_supplicant *wpa_s = ctx;
  320. return wpas_p2p_probe_req_rx(wpa_s, sa, da, bssid, ie, ie_len);
  321. #else /* CONFIG_P2P */
  322. return 0;
  323. #endif /* CONFIG_P2P */
  324. }
  325. static void ap_wps_reg_success_cb(void *ctx, const u8 *mac_addr,
  326. const u8 *uuid_e)
  327. {
  328. #ifdef CONFIG_P2P
  329. struct wpa_supplicant *wpa_s = ctx;
  330. wpas_p2p_wps_success(wpa_s, mac_addr, 1);
  331. #endif /* CONFIG_P2P */
  332. }
  333. static void wpas_ap_configured_cb(void *ctx)
  334. {
  335. struct wpa_supplicant *wpa_s = ctx;
  336. wpa_supplicant_set_state(wpa_s, WPA_COMPLETED);
  337. if (wpa_s->ap_configured_cb)
  338. wpa_s->ap_configured_cb(wpa_s->ap_configured_cb_ctx,
  339. wpa_s->ap_configured_cb_data);
  340. }
  341. int wpa_supplicant_create_ap(struct wpa_supplicant *wpa_s,
  342. struct wpa_ssid *ssid)
  343. {
  344. struct wpa_driver_associate_params params;
  345. struct hostapd_iface *hapd_iface;
  346. struct hostapd_config *conf;
  347. size_t i;
  348. if (ssid->ssid == NULL || ssid->ssid_len == 0) {
  349. wpa_printf(MSG_ERROR, "No SSID configured for AP mode");
  350. return -1;
  351. }
  352. wpa_supplicant_ap_deinit(wpa_s);
  353. wpa_printf(MSG_DEBUG, "Setting up AP (SSID='%s')",
  354. wpa_ssid_txt(ssid->ssid, ssid->ssid_len));
  355. os_memset(&params, 0, sizeof(params));
  356. params.ssid = ssid->ssid;
  357. params.ssid_len = ssid->ssid_len;
  358. switch (ssid->mode) {
  359. case WPAS_MODE_INFRA:
  360. params.mode = IEEE80211_MODE_INFRA;
  361. break;
  362. case WPAS_MODE_IBSS:
  363. params.mode = IEEE80211_MODE_IBSS;
  364. break;
  365. case WPAS_MODE_AP:
  366. case WPAS_MODE_P2P_GO:
  367. case WPAS_MODE_P2P_GROUP_FORMATION:
  368. params.mode = IEEE80211_MODE_AP;
  369. break;
  370. }
  371. params.freq = ssid->frequency;
  372. params.wpa_proto = ssid->proto;
  373. if (ssid->key_mgmt & WPA_KEY_MGMT_PSK)
  374. wpa_s->key_mgmt = WPA_KEY_MGMT_PSK;
  375. else
  376. wpa_s->key_mgmt = WPA_KEY_MGMT_NONE;
  377. params.key_mgmt_suite = key_mgmt2driver(wpa_s->key_mgmt);
  378. if (ssid->pairwise_cipher & WPA_CIPHER_CCMP)
  379. wpa_s->pairwise_cipher = WPA_CIPHER_CCMP;
  380. else if (ssid->pairwise_cipher & WPA_CIPHER_TKIP)
  381. wpa_s->pairwise_cipher = WPA_CIPHER_TKIP;
  382. else if (ssid->pairwise_cipher & WPA_CIPHER_NONE)
  383. wpa_s->pairwise_cipher = WPA_CIPHER_NONE;
  384. else {
  385. wpa_printf(MSG_WARNING, "WPA: Failed to select pairwise "
  386. "cipher.");
  387. return -1;
  388. }
  389. params.pairwise_suite = cipher_suite2driver(wpa_s->pairwise_cipher);
  390. params.group_suite = params.pairwise_suite;
  391. #ifdef CONFIG_P2P
  392. if (ssid->mode == WPAS_MODE_P2P_GO ||
  393. ssid->mode == WPAS_MODE_P2P_GROUP_FORMATION)
  394. params.p2p = 1;
  395. #endif /* CONFIG_P2P */
  396. if (wpa_s->parent->set_ap_uapsd)
  397. params.uapsd = wpa_s->parent->ap_uapsd;
  398. else
  399. params.uapsd = -1;
  400. if (wpa_drv_associate(wpa_s, &params) < 0) {
  401. wpa_msg(wpa_s, MSG_INFO, "Failed to start AP functionality");
  402. return -1;
  403. }
  404. wpa_s->ap_iface = hapd_iface = os_zalloc(sizeof(*wpa_s->ap_iface));
  405. if (hapd_iface == NULL)
  406. return -1;
  407. hapd_iface->owner = wpa_s;
  408. hapd_iface->drv_flags = wpa_s->drv_flags;
  409. hapd_iface->probe_resp_offloads = wpa_s->probe_resp_offloads;
  410. wpa_s->ap_iface->conf = conf = hostapd_config_defaults();
  411. if (conf == NULL) {
  412. wpa_supplicant_ap_deinit(wpa_s);
  413. return -1;
  414. }
  415. if (params.uapsd > 0) {
  416. conf->bss->wmm_enabled = 1;
  417. conf->bss->wmm_uapsd = 1;
  418. }
  419. if (wpa_supplicant_conf_ap(wpa_s, ssid, conf)) {
  420. wpa_printf(MSG_ERROR, "Failed to create AP configuration");
  421. wpa_supplicant_ap_deinit(wpa_s);
  422. return -1;
  423. }
  424. #ifdef CONFIG_P2P
  425. if (ssid->mode == WPAS_MODE_P2P_GO)
  426. conf->bss[0].p2p = P2P_ENABLED | P2P_GROUP_OWNER;
  427. else if (ssid->mode == WPAS_MODE_P2P_GROUP_FORMATION)
  428. conf->bss[0].p2p = P2P_ENABLED | P2P_GROUP_OWNER |
  429. P2P_GROUP_FORMATION;
  430. #endif /* CONFIG_P2P */
  431. hapd_iface->num_bss = conf->num_bss;
  432. hapd_iface->bss = os_zalloc(conf->num_bss *
  433. sizeof(struct hostapd_data *));
  434. if (hapd_iface->bss == NULL) {
  435. wpa_supplicant_ap_deinit(wpa_s);
  436. return -1;
  437. }
  438. for (i = 0; i < conf->num_bss; i++) {
  439. hapd_iface->bss[i] =
  440. hostapd_alloc_bss_data(hapd_iface, conf,
  441. &conf->bss[i]);
  442. if (hapd_iface->bss[i] == NULL) {
  443. wpa_supplicant_ap_deinit(wpa_s);
  444. return -1;
  445. }
  446. hapd_iface->bss[i]->msg_ctx = wpa_s;
  447. hapd_iface->bss[i]->msg_ctx_parent = wpa_s->parent;
  448. hapd_iface->bss[i]->public_action_cb = ap_public_action_rx;
  449. hapd_iface->bss[i]->public_action_cb_ctx = wpa_s;
  450. hapd_iface->bss[i]->vendor_action_cb = ap_vendor_action_rx;
  451. hapd_iface->bss[i]->vendor_action_cb_ctx = wpa_s;
  452. hostapd_register_probereq_cb(hapd_iface->bss[i],
  453. ap_probe_req_rx, wpa_s);
  454. hapd_iface->bss[i]->wps_reg_success_cb = ap_wps_reg_success_cb;
  455. hapd_iface->bss[i]->wps_reg_success_cb_ctx = wpa_s;
  456. hapd_iface->bss[i]->wps_event_cb = ap_wps_event_cb;
  457. hapd_iface->bss[i]->wps_event_cb_ctx = wpa_s;
  458. hapd_iface->bss[i]->sta_authorized_cb = ap_sta_authorized_cb;
  459. hapd_iface->bss[i]->sta_authorized_cb_ctx = wpa_s;
  460. #ifdef CONFIG_P2P
  461. hapd_iface->bss[i]->p2p = wpa_s->global->p2p;
  462. hapd_iface->bss[i]->p2p_group = wpas_p2p_group_init(
  463. wpa_s, ssid->p2p_persistent_group,
  464. ssid->mode == WPAS_MODE_P2P_GROUP_FORMATION);
  465. #endif /* CONFIG_P2P */
  466. hapd_iface->bss[i]->setup_complete_cb = wpas_ap_configured_cb;
  467. hapd_iface->bss[i]->setup_complete_cb_ctx = wpa_s;
  468. }
  469. os_memcpy(hapd_iface->bss[0]->own_addr, wpa_s->own_addr, ETH_ALEN);
  470. hapd_iface->bss[0]->driver = wpa_s->driver;
  471. hapd_iface->bss[0]->drv_priv = wpa_s->drv_priv;
  472. wpa_s->current_ssid = ssid;
  473. os_memcpy(wpa_s->bssid, wpa_s->own_addr, ETH_ALEN);
  474. wpa_s->assoc_freq = ssid->frequency;
  475. if (hostapd_setup_interface(wpa_s->ap_iface)) {
  476. wpa_printf(MSG_ERROR, "Failed to initialize AP interface");
  477. wpa_supplicant_ap_deinit(wpa_s);
  478. return -1;
  479. }
  480. return 0;
  481. }
  482. void wpa_supplicant_ap_deinit(struct wpa_supplicant *wpa_s)
  483. {
  484. #ifdef CONFIG_WPS
  485. eloop_cancel_timeout(wpas_wps_ap_pin_timeout, wpa_s, NULL);
  486. #endif /* CONFIG_WPS */
  487. if (wpa_s->ap_iface == NULL)
  488. return;
  489. wpa_s->current_ssid = NULL;
  490. wpa_s->assoc_freq = 0;
  491. wpa_s->reassociated_connection = 0;
  492. #ifdef CONFIG_P2P
  493. if (wpa_s->ap_iface->bss)
  494. wpa_s->ap_iface->bss[0]->p2p_group = NULL;
  495. wpas_p2p_group_deinit(wpa_s);
  496. #endif /* CONFIG_P2P */
  497. hostapd_interface_deinit(wpa_s->ap_iface);
  498. hostapd_interface_free(wpa_s->ap_iface);
  499. wpa_s->ap_iface = NULL;
  500. wpa_drv_deinit_ap(wpa_s);
  501. }
  502. void ap_tx_status(void *ctx, const u8 *addr,
  503. const u8 *buf, size_t len, int ack)
  504. {
  505. #ifdef NEED_AP_MLME
  506. struct wpa_supplicant *wpa_s = ctx;
  507. hostapd_tx_status(wpa_s->ap_iface->bss[0], addr, buf, len, ack);
  508. #endif /* NEED_AP_MLME */
  509. }
  510. void ap_eapol_tx_status(void *ctx, const u8 *dst,
  511. const u8 *data, size_t len, int ack)
  512. {
  513. #ifdef NEED_AP_MLME
  514. struct wpa_supplicant *wpa_s = ctx;
  515. hostapd_tx_status(wpa_s->ap_iface->bss[0], dst, data, len, ack);
  516. #endif /* NEED_AP_MLME */
  517. }
  518. void ap_client_poll_ok(void *ctx, const u8 *addr)
  519. {
  520. #ifdef NEED_AP_MLME
  521. struct wpa_supplicant *wpa_s = ctx;
  522. if (wpa_s->ap_iface)
  523. hostapd_client_poll_ok(wpa_s->ap_iface->bss[0], addr);
  524. #endif /* NEED_AP_MLME */
  525. }
  526. void ap_rx_from_unknown_sta(void *ctx, const u8 *addr, int wds)
  527. {
  528. #ifdef NEED_AP_MLME
  529. struct wpa_supplicant *wpa_s = ctx;
  530. ieee802_11_rx_from_unknown(wpa_s->ap_iface->bss[0], addr, wds);
  531. #endif /* NEED_AP_MLME */
  532. }
  533. void ap_mgmt_rx(void *ctx, struct rx_mgmt *rx_mgmt)
  534. {
  535. #ifdef NEED_AP_MLME
  536. struct wpa_supplicant *wpa_s = ctx;
  537. struct hostapd_frame_info fi;
  538. os_memset(&fi, 0, sizeof(fi));
  539. fi.datarate = rx_mgmt->datarate;
  540. fi.ssi_signal = rx_mgmt->ssi_signal;
  541. ieee802_11_mgmt(wpa_s->ap_iface->bss[0], rx_mgmt->frame,
  542. rx_mgmt->frame_len, &fi);
  543. #endif /* NEED_AP_MLME */
  544. }
  545. void ap_mgmt_tx_cb(void *ctx, const u8 *buf, size_t len, u16 stype, int ok)
  546. {
  547. #ifdef NEED_AP_MLME
  548. struct wpa_supplicant *wpa_s = ctx;
  549. ieee802_11_mgmt_cb(wpa_s->ap_iface->bss[0], buf, len, stype, ok);
  550. #endif /* NEED_AP_MLME */
  551. }
  552. void wpa_supplicant_ap_rx_eapol(struct wpa_supplicant *wpa_s,
  553. const u8 *src_addr, const u8 *buf, size_t len)
  554. {
  555. ieee802_1x_receive(wpa_s->ap_iface->bss[0], src_addr, buf, len);
  556. }
  557. #ifdef CONFIG_WPS
  558. int wpa_supplicant_ap_wps_pbc(struct wpa_supplicant *wpa_s, const u8 *bssid,
  559. const u8 *p2p_dev_addr)
  560. {
  561. if (!wpa_s->ap_iface)
  562. return -1;
  563. return hostapd_wps_button_pushed(wpa_s->ap_iface->bss[0],
  564. p2p_dev_addr);
  565. }
  566. static int wpa_supplicant_ap_wps_sta_cancel(struct hostapd_data *hapd,
  567. struct sta_info *sta, void *ctx)
  568. {
  569. if (sta && (sta->flags & WLAN_STA_WPS)) {
  570. ap_sta_deauthenticate(hapd, sta,
  571. WLAN_REASON_PREV_AUTH_NOT_VALID);
  572. wpa_printf(MSG_DEBUG, "WPS: %s: Deauth sta=" MACSTR,
  573. __func__, MAC2STR(sta->addr));
  574. return 1;
  575. }
  576. return 0;
  577. }
  578. int wpa_supplicant_ap_wps_cancel(struct wpa_supplicant *wpa_s)
  579. {
  580. struct wps_registrar *reg;
  581. int reg_sel = 0, wps_sta = 0;
  582. if (!wpa_s->ap_iface || !wpa_s->ap_iface->bss[0]->wps)
  583. return -1;
  584. reg = wpa_s->ap_iface->bss[0]->wps->registrar;
  585. reg_sel = wps_registrar_wps_cancel(reg);
  586. wps_sta = ap_for_each_sta(wpa_s->ap_iface->bss[0],
  587. wpa_supplicant_ap_wps_sta_cancel, NULL);
  588. if (!reg_sel && !wps_sta) {
  589. wpa_printf(MSG_DEBUG, "No WPS operation in progress at this "
  590. "time");
  591. return -1;
  592. }
  593. /*
  594. * There are 2 cases to return wps cancel as success:
  595. * 1. When wps cancel was initiated but no connection has been
  596. * established with client yet.
  597. * 2. Client is in the middle of exchanging WPS messages.
  598. */
  599. return 0;
  600. }
  601. int wpa_supplicant_ap_wps_pin(struct wpa_supplicant *wpa_s, const u8 *bssid,
  602. const char *pin, char *buf, size_t buflen)
  603. {
  604. int ret, ret_len = 0;
  605. if (!wpa_s->ap_iface)
  606. return -1;
  607. if (pin == NULL) {
  608. unsigned int rpin = wps_generate_pin();
  609. ret_len = os_snprintf(buf, buflen, "%08d", rpin);
  610. pin = buf;
  611. } else
  612. ret_len = os_snprintf(buf, buflen, "%s", pin);
  613. ret = hostapd_wps_add_pin(wpa_s->ap_iface->bss[0], bssid, "any", pin,
  614. 0);
  615. if (ret)
  616. return -1;
  617. return ret_len;
  618. }
  619. static void wpas_wps_ap_pin_timeout(void *eloop_data, void *user_ctx)
  620. {
  621. struct wpa_supplicant *wpa_s = eloop_data;
  622. wpa_printf(MSG_DEBUG, "WPS: AP PIN timed out");
  623. wpas_wps_ap_pin_disable(wpa_s);
  624. }
  625. static void wpas_wps_ap_pin_enable(struct wpa_supplicant *wpa_s, int timeout)
  626. {
  627. struct hostapd_data *hapd;
  628. if (wpa_s->ap_iface == NULL)
  629. return;
  630. hapd = wpa_s->ap_iface->bss[0];
  631. wpa_printf(MSG_DEBUG, "WPS: Enabling AP PIN (timeout=%d)", timeout);
  632. hapd->ap_pin_failures = 0;
  633. eloop_cancel_timeout(wpas_wps_ap_pin_timeout, wpa_s, NULL);
  634. if (timeout > 0)
  635. eloop_register_timeout(timeout, 0,
  636. wpas_wps_ap_pin_timeout, wpa_s, NULL);
  637. }
  638. void wpas_wps_ap_pin_disable(struct wpa_supplicant *wpa_s)
  639. {
  640. struct hostapd_data *hapd;
  641. if (wpa_s->ap_iface == NULL)
  642. return;
  643. wpa_printf(MSG_DEBUG, "WPS: Disabling AP PIN");
  644. hapd = wpa_s->ap_iface->bss[0];
  645. os_free(hapd->conf->ap_pin);
  646. hapd->conf->ap_pin = NULL;
  647. eloop_cancel_timeout(wpas_wps_ap_pin_timeout, wpa_s, NULL);
  648. }
  649. const char * wpas_wps_ap_pin_random(struct wpa_supplicant *wpa_s, int timeout)
  650. {
  651. struct hostapd_data *hapd;
  652. unsigned int pin;
  653. char pin_txt[9];
  654. if (wpa_s->ap_iface == NULL)
  655. return NULL;
  656. hapd = wpa_s->ap_iface->bss[0];
  657. pin = wps_generate_pin();
  658. os_snprintf(pin_txt, sizeof(pin_txt), "%08u", pin);
  659. os_free(hapd->conf->ap_pin);
  660. hapd->conf->ap_pin = os_strdup(pin_txt);
  661. if (hapd->conf->ap_pin == NULL)
  662. return NULL;
  663. wpas_wps_ap_pin_enable(wpa_s, timeout);
  664. return hapd->conf->ap_pin;
  665. }
  666. const char * wpas_wps_ap_pin_get(struct wpa_supplicant *wpa_s)
  667. {
  668. struct hostapd_data *hapd;
  669. if (wpa_s->ap_iface == NULL)
  670. return NULL;
  671. hapd = wpa_s->ap_iface->bss[0];
  672. return hapd->conf->ap_pin;
  673. }
  674. int wpas_wps_ap_pin_set(struct wpa_supplicant *wpa_s, const char *pin,
  675. int timeout)
  676. {
  677. struct hostapd_data *hapd;
  678. char pin_txt[9];
  679. int ret;
  680. if (wpa_s->ap_iface == NULL)
  681. return -1;
  682. hapd = wpa_s->ap_iface->bss[0];
  683. ret = os_snprintf(pin_txt, sizeof(pin_txt), "%s", pin);
  684. if (ret < 0 || ret >= (int) sizeof(pin_txt))
  685. return -1;
  686. os_free(hapd->conf->ap_pin);
  687. hapd->conf->ap_pin = os_strdup(pin_txt);
  688. if (hapd->conf->ap_pin == NULL)
  689. return -1;
  690. wpas_wps_ap_pin_enable(wpa_s, timeout);
  691. return 0;
  692. }
  693. void wpa_supplicant_ap_pwd_auth_fail(struct wpa_supplicant *wpa_s)
  694. {
  695. struct hostapd_data *hapd;
  696. if (wpa_s->ap_iface == NULL)
  697. return;
  698. hapd = wpa_s->ap_iface->bss[0];
  699. /*
  700. * Registrar failed to prove its knowledge of the AP PIN. Disable AP
  701. * PIN if this happens multiple times to slow down brute force attacks.
  702. */
  703. hapd->ap_pin_failures++;
  704. wpa_printf(MSG_DEBUG, "WPS: AP PIN authentication failure number %u",
  705. hapd->ap_pin_failures);
  706. if (hapd->ap_pin_failures < 3)
  707. return;
  708. wpa_printf(MSG_DEBUG, "WPS: Disable AP PIN");
  709. hapd->ap_pin_failures = 0;
  710. os_free(hapd->conf->ap_pin);
  711. hapd->conf->ap_pin = NULL;
  712. }
  713. #endif /* CONFIG_WPS */
  714. #ifdef CONFIG_CTRL_IFACE
  715. int ap_ctrl_iface_sta_first(struct wpa_supplicant *wpa_s,
  716. char *buf, size_t buflen)
  717. {
  718. if (wpa_s->ap_iface == NULL)
  719. return -1;
  720. return hostapd_ctrl_iface_sta_first(wpa_s->ap_iface->bss[0],
  721. buf, buflen);
  722. }
  723. int ap_ctrl_iface_sta(struct wpa_supplicant *wpa_s, const char *txtaddr,
  724. char *buf, size_t buflen)
  725. {
  726. if (wpa_s->ap_iface == NULL)
  727. return -1;
  728. return hostapd_ctrl_iface_sta(wpa_s->ap_iface->bss[0], txtaddr,
  729. buf, buflen);
  730. }
  731. int ap_ctrl_iface_sta_next(struct wpa_supplicant *wpa_s, const char *txtaddr,
  732. char *buf, size_t buflen)
  733. {
  734. if (wpa_s->ap_iface == NULL)
  735. return -1;
  736. return hostapd_ctrl_iface_sta_next(wpa_s->ap_iface->bss[0], txtaddr,
  737. buf, buflen);
  738. }
  739. int ap_ctrl_iface_sta_disassociate(struct wpa_supplicant *wpa_s,
  740. const char *txtaddr)
  741. {
  742. if (wpa_s->ap_iface == NULL)
  743. return -1;
  744. return hostapd_ctrl_iface_disassociate(wpa_s->ap_iface->bss[0],
  745. txtaddr);
  746. }
  747. int ap_ctrl_iface_sta_deauthenticate(struct wpa_supplicant *wpa_s,
  748. const char *txtaddr)
  749. {
  750. if (wpa_s->ap_iface == NULL)
  751. return -1;
  752. return hostapd_ctrl_iface_deauthenticate(wpa_s->ap_iface->bss[0],
  753. txtaddr);
  754. }
  755. int ap_ctrl_iface_wpa_get_status(struct wpa_supplicant *wpa_s, char *buf,
  756. size_t buflen, int verbose)
  757. {
  758. char *pos = buf, *end = buf + buflen;
  759. int ret;
  760. struct hostapd_bss_config *conf;
  761. if (wpa_s->ap_iface == NULL)
  762. return -1;
  763. conf = wpa_s->ap_iface->bss[0]->conf;
  764. if (conf->wpa == 0)
  765. return 0;
  766. ret = os_snprintf(pos, end - pos,
  767. "pairwise_cipher=%s\n"
  768. "group_cipher=%s\n"
  769. "key_mgmt=%s\n",
  770. wpa_cipher_txt(conf->rsn_pairwise),
  771. wpa_cipher_txt(conf->wpa_group),
  772. wpa_key_mgmt_txt(conf->wpa_key_mgmt,
  773. conf->wpa));
  774. if (ret < 0 || ret >= end - pos)
  775. return pos - buf;
  776. pos += ret;
  777. return pos - buf;
  778. }
  779. #endif /* CONFIG_CTRL_IFACE */
  780. int wpa_supplicant_ap_update_beacon(struct wpa_supplicant *wpa_s)
  781. {
  782. struct hostapd_iface *iface = wpa_s->ap_iface;
  783. struct wpa_ssid *ssid = wpa_s->current_ssid;
  784. struct hostapd_data *hapd;
  785. if (ssid == NULL || wpa_s->ap_iface == NULL ||
  786. ssid->mode == WPAS_MODE_INFRA ||
  787. ssid->mode == WPAS_MODE_IBSS)
  788. return -1;
  789. #ifdef CONFIG_P2P
  790. if (ssid->mode == WPAS_MODE_P2P_GO)
  791. iface->conf->bss[0].p2p = P2P_ENABLED | P2P_GROUP_OWNER;
  792. else if (ssid->mode == WPAS_MODE_P2P_GROUP_FORMATION)
  793. iface->conf->bss[0].p2p = P2P_ENABLED | P2P_GROUP_OWNER |
  794. P2P_GROUP_FORMATION;
  795. #endif /* CONFIG_P2P */
  796. hapd = iface->bss[0];
  797. if (hapd->drv_priv == NULL)
  798. return -1;
  799. ieee802_11_set_beacons(iface);
  800. hostapd_set_ap_wps_ie(hapd);
  801. return 0;
  802. }
  803. int wpa_supplicant_ap_mac_addr_filter(struct wpa_supplicant *wpa_s,
  804. const u8 *addr)
  805. {
  806. struct hostapd_data *hapd;
  807. struct hostapd_bss_config *conf;
  808. if (!wpa_s->ap_iface)
  809. return -1;
  810. if (addr)
  811. wpa_printf(MSG_DEBUG, "AP: Set MAC address filter: " MACSTR,
  812. MAC2STR(addr));
  813. else
  814. wpa_printf(MSG_DEBUG, "AP: Clear MAC address filter");
  815. hapd = wpa_s->ap_iface->bss[0];
  816. conf = hapd->conf;
  817. os_free(conf->accept_mac);
  818. conf->accept_mac = NULL;
  819. conf->num_accept_mac = 0;
  820. os_free(conf->deny_mac);
  821. conf->deny_mac = NULL;
  822. conf->num_deny_mac = 0;
  823. if (addr == NULL) {
  824. conf->macaddr_acl = ACCEPT_UNLESS_DENIED;
  825. return 0;
  826. }
  827. conf->macaddr_acl = DENY_UNLESS_ACCEPTED;
  828. conf->accept_mac = os_zalloc(sizeof(struct mac_acl_entry));
  829. if (conf->accept_mac == NULL)
  830. return -1;
  831. os_memcpy(conf->accept_mac[0].addr, addr, ETH_ALEN);
  832. conf->num_accept_mac = 1;
  833. return 0;
  834. }