wpa_common.c 42 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655
  1. /*
  2. * WPA/RSN - Shared functions for supplicant and authenticator
  3. * Copyright (c) 2002-2015, Jouni Malinen <j@w1.fi>
  4. *
  5. * This software may be distributed under the terms of the BSD license.
  6. * See README for more details.
  7. */
  8. #include "includes.h"
  9. #include "common.h"
  10. #include "crypto/md5.h"
  11. #include "crypto/sha1.h"
  12. #include "crypto/sha256.h"
  13. #include "crypto/sha384.h"
  14. #include "crypto/aes_wrap.h"
  15. #include "crypto/crypto.h"
  16. #include "ieee802_11_defs.h"
  17. #include "defs.h"
  18. #include "wpa_common.h"
  19. static unsigned int wpa_kck_len(int akmp)
  20. {
  21. if (akmp == WPA_KEY_MGMT_IEEE8021X_SUITE_B_192)
  22. return 24;
  23. return 16;
  24. }
  25. static unsigned int wpa_kek_len(int akmp)
  26. {
  27. if (akmp == WPA_KEY_MGMT_IEEE8021X_SUITE_B_192)
  28. return 32;
  29. return 16;
  30. }
  31. unsigned int wpa_mic_len(int akmp)
  32. {
  33. if (akmp == WPA_KEY_MGMT_IEEE8021X_SUITE_B_192)
  34. return 24;
  35. return 16;
  36. }
  37. /**
  38. * wpa_eapol_key_mic - Calculate EAPOL-Key MIC
  39. * @key: EAPOL-Key Key Confirmation Key (KCK)
  40. * @key_len: KCK length in octets
  41. * @akmp: WPA_KEY_MGMT_* used in key derivation
  42. * @ver: Key descriptor version (WPA_KEY_INFO_TYPE_*)
  43. * @buf: Pointer to the beginning of the EAPOL header (version field)
  44. * @len: Length of the EAPOL frame (from EAPOL header to the end of the frame)
  45. * @mic: Pointer to the buffer to which the EAPOL-Key MIC is written
  46. * Returns: 0 on success, -1 on failure
  47. *
  48. * Calculate EAPOL-Key MIC for an EAPOL-Key packet. The EAPOL-Key MIC field has
  49. * to be cleared (all zeroes) when calling this function.
  50. *
  51. * Note: 'IEEE Std 802.11i-2004 - 8.5.2 EAPOL-Key frames' has an error in the
  52. * description of the Key MIC calculation. It includes packet data from the
  53. * beginning of the EAPOL-Key header, not EAPOL header. This incorrect change
  54. * happened during final editing of the standard and the correct behavior is
  55. * defined in the last draft (IEEE 802.11i/D10).
  56. */
  57. int wpa_eapol_key_mic(const u8 *key, size_t key_len, int akmp, int ver,
  58. const u8 *buf, size_t len, u8 *mic)
  59. {
  60. u8 hash[SHA384_MAC_LEN];
  61. switch (ver) {
  62. #ifndef CONFIG_FIPS
  63. case WPA_KEY_INFO_TYPE_HMAC_MD5_RC4:
  64. return hmac_md5(key, key_len, buf, len, mic);
  65. #endif /* CONFIG_FIPS */
  66. case WPA_KEY_INFO_TYPE_HMAC_SHA1_AES:
  67. if (hmac_sha1(key, key_len, buf, len, hash))
  68. return -1;
  69. os_memcpy(mic, hash, MD5_MAC_LEN);
  70. break;
  71. #if defined(CONFIG_IEEE80211R) || defined(CONFIG_IEEE80211W)
  72. case WPA_KEY_INFO_TYPE_AES_128_CMAC:
  73. return omac1_aes_128(key, buf, len, mic);
  74. #endif /* CONFIG_IEEE80211R || CONFIG_IEEE80211W */
  75. case WPA_KEY_INFO_TYPE_AKM_DEFINED:
  76. switch (akmp) {
  77. #ifdef CONFIG_HS20
  78. case WPA_KEY_MGMT_OSEN:
  79. return omac1_aes_128(key, buf, len, mic);
  80. #endif /* CONFIG_HS20 */
  81. #ifdef CONFIG_SUITEB
  82. case WPA_KEY_MGMT_IEEE8021X_SUITE_B:
  83. if (hmac_sha256(key, key_len, buf, len, hash))
  84. return -1;
  85. os_memcpy(mic, hash, MD5_MAC_LEN);
  86. break;
  87. #endif /* CONFIG_SUITEB */
  88. #ifdef CONFIG_SUITEB192
  89. case WPA_KEY_MGMT_IEEE8021X_SUITE_B_192:
  90. if (hmac_sha384(key, key_len, buf, len, hash))
  91. return -1;
  92. os_memcpy(mic, hash, 24);
  93. break;
  94. #endif /* CONFIG_SUITEB192 */
  95. default:
  96. return -1;
  97. }
  98. break;
  99. default:
  100. return -1;
  101. }
  102. return 0;
  103. }
  104. /**
  105. * wpa_pmk_to_ptk - Calculate PTK from PMK, addresses, and nonces
  106. * @pmk: Pairwise master key
  107. * @pmk_len: Length of PMK
  108. * @label: Label to use in derivation
  109. * @addr1: AA or SA
  110. * @addr2: SA or AA
  111. * @nonce1: ANonce or SNonce
  112. * @nonce2: SNonce or ANonce
  113. * @ptk: Buffer for pairwise transient key
  114. * @akmp: Negotiated AKM
  115. * @cipher: Negotiated pairwise cipher
  116. * Returns: 0 on success, -1 on failure
  117. *
  118. * IEEE Std 802.11i-2004 - 8.5.1.2 Pairwise key hierarchy
  119. * PTK = PRF-X(PMK, "Pairwise key expansion",
  120. * Min(AA, SA) || Max(AA, SA) ||
  121. * Min(ANonce, SNonce) || Max(ANonce, SNonce))
  122. *
  123. * STK = PRF-X(SMK, "Peer key expansion",
  124. * Min(MAC_I, MAC_P) || Max(MAC_I, MAC_P) ||
  125. * Min(INonce, PNonce) || Max(INonce, PNonce))
  126. */
  127. int wpa_pmk_to_ptk(const u8 *pmk, size_t pmk_len, const char *label,
  128. const u8 *addr1, const u8 *addr2,
  129. const u8 *nonce1, const u8 *nonce2,
  130. struct wpa_ptk *ptk, int akmp, int cipher)
  131. {
  132. u8 data[2 * ETH_ALEN + 2 * WPA_NONCE_LEN];
  133. u8 tmp[WPA_KCK_MAX_LEN + WPA_KEK_MAX_LEN + WPA_TK_MAX_LEN];
  134. size_t ptk_len;
  135. if (os_memcmp(addr1, addr2, ETH_ALEN) < 0) {
  136. os_memcpy(data, addr1, ETH_ALEN);
  137. os_memcpy(data + ETH_ALEN, addr2, ETH_ALEN);
  138. } else {
  139. os_memcpy(data, addr2, ETH_ALEN);
  140. os_memcpy(data + ETH_ALEN, addr1, ETH_ALEN);
  141. }
  142. if (os_memcmp(nonce1, nonce2, WPA_NONCE_LEN) < 0) {
  143. os_memcpy(data + 2 * ETH_ALEN, nonce1, WPA_NONCE_LEN);
  144. os_memcpy(data + 2 * ETH_ALEN + WPA_NONCE_LEN, nonce2,
  145. WPA_NONCE_LEN);
  146. } else {
  147. os_memcpy(data + 2 * ETH_ALEN, nonce2, WPA_NONCE_LEN);
  148. os_memcpy(data + 2 * ETH_ALEN + WPA_NONCE_LEN, nonce1,
  149. WPA_NONCE_LEN);
  150. }
  151. ptk->kck_len = wpa_kck_len(akmp);
  152. ptk->kek_len = wpa_kek_len(akmp);
  153. ptk->tk_len = wpa_cipher_key_len(cipher);
  154. ptk_len = ptk->kck_len + ptk->kek_len + ptk->tk_len;
  155. #ifdef CONFIG_IEEE80211W
  156. if (wpa_key_mgmt_sha256(akmp))
  157. sha256_prf(pmk, pmk_len, label, data, sizeof(data),
  158. tmp, ptk_len);
  159. else
  160. #endif /* CONFIG_IEEE80211W */
  161. sha1_prf(pmk, pmk_len, label, data, sizeof(data), tmp, ptk_len);
  162. wpa_printf(MSG_DEBUG, "WPA: PTK derivation - A1=" MACSTR " A2=" MACSTR,
  163. MAC2STR(addr1), MAC2STR(addr2));
  164. wpa_hexdump(MSG_DEBUG, "WPA: Nonce1", nonce1, WPA_NONCE_LEN);
  165. wpa_hexdump(MSG_DEBUG, "WPA: Nonce2", nonce2, WPA_NONCE_LEN);
  166. wpa_hexdump_key(MSG_DEBUG, "WPA: PMK", pmk, pmk_len);
  167. wpa_hexdump_key(MSG_DEBUG, "WPA: PTK", tmp, ptk_len);
  168. os_memcpy(ptk->kck, tmp, ptk->kck_len);
  169. wpa_hexdump_key(MSG_DEBUG, "WPA: KCK", ptk->kck, ptk->kck_len);
  170. os_memcpy(ptk->kek, tmp + ptk->kck_len, ptk->kek_len);
  171. wpa_hexdump_key(MSG_DEBUG, "WPA: KEK", ptk->kek, ptk->kek_len);
  172. os_memcpy(ptk->tk, tmp + ptk->kck_len + ptk->kek_len, ptk->tk_len);
  173. wpa_hexdump_key(MSG_DEBUG, "WPA: TK", ptk->tk, ptk->tk_len);
  174. os_memset(tmp, 0, sizeof(tmp));
  175. return 0;
  176. }
  177. #ifdef CONFIG_IEEE80211R
  178. int wpa_ft_mic(const u8 *kck, size_t kck_len, const u8 *sta_addr,
  179. const u8 *ap_addr, u8 transaction_seqnum,
  180. const u8 *mdie, size_t mdie_len,
  181. const u8 *ftie, size_t ftie_len,
  182. const u8 *rsnie, size_t rsnie_len,
  183. const u8 *ric, size_t ric_len, u8 *mic)
  184. {
  185. const u8 *addr[9];
  186. size_t len[9];
  187. size_t i, num_elem = 0;
  188. u8 zero_mic[16];
  189. if (kck_len != 16) {
  190. wpa_printf(MSG_WARNING, "FT: Unsupported KCK length %u",
  191. (unsigned int) kck_len);
  192. return -1;
  193. }
  194. addr[num_elem] = sta_addr;
  195. len[num_elem] = ETH_ALEN;
  196. num_elem++;
  197. addr[num_elem] = ap_addr;
  198. len[num_elem] = ETH_ALEN;
  199. num_elem++;
  200. addr[num_elem] = &transaction_seqnum;
  201. len[num_elem] = 1;
  202. num_elem++;
  203. if (rsnie) {
  204. addr[num_elem] = rsnie;
  205. len[num_elem] = rsnie_len;
  206. num_elem++;
  207. }
  208. if (mdie) {
  209. addr[num_elem] = mdie;
  210. len[num_elem] = mdie_len;
  211. num_elem++;
  212. }
  213. if (ftie) {
  214. if (ftie_len < 2 + sizeof(struct rsn_ftie))
  215. return -1;
  216. /* IE hdr and mic_control */
  217. addr[num_elem] = ftie;
  218. len[num_elem] = 2 + 2;
  219. num_elem++;
  220. /* MIC field with all zeros */
  221. os_memset(zero_mic, 0, sizeof(zero_mic));
  222. addr[num_elem] = zero_mic;
  223. len[num_elem] = sizeof(zero_mic);
  224. num_elem++;
  225. /* Rest of FTIE */
  226. addr[num_elem] = ftie + 2 + 2 + 16;
  227. len[num_elem] = ftie_len - (2 + 2 + 16);
  228. num_elem++;
  229. }
  230. if (ric) {
  231. addr[num_elem] = ric;
  232. len[num_elem] = ric_len;
  233. num_elem++;
  234. }
  235. for (i = 0; i < num_elem; i++)
  236. wpa_hexdump(MSG_MSGDUMP, "FT: MIC data", addr[i], len[i]);
  237. if (omac1_aes_128_vector(kck, num_elem, addr, len, mic))
  238. return -1;
  239. return 0;
  240. }
  241. static int wpa_ft_parse_ftie(const u8 *ie, size_t ie_len,
  242. struct wpa_ft_ies *parse)
  243. {
  244. const u8 *end, *pos;
  245. parse->ftie = ie;
  246. parse->ftie_len = ie_len;
  247. pos = ie + sizeof(struct rsn_ftie);
  248. end = ie + ie_len;
  249. while (pos + 2 <= end && pos + 2 + pos[1] <= end) {
  250. switch (pos[0]) {
  251. case FTIE_SUBELEM_R1KH_ID:
  252. if (pos[1] != FT_R1KH_ID_LEN) {
  253. wpa_printf(MSG_DEBUG, "FT: Invalid R1KH-ID "
  254. "length in FTIE: %d", pos[1]);
  255. return -1;
  256. }
  257. parse->r1kh_id = pos + 2;
  258. break;
  259. case FTIE_SUBELEM_GTK:
  260. parse->gtk = pos + 2;
  261. parse->gtk_len = pos[1];
  262. break;
  263. case FTIE_SUBELEM_R0KH_ID:
  264. if (pos[1] < 1 || pos[1] > FT_R0KH_ID_MAX_LEN) {
  265. wpa_printf(MSG_DEBUG, "FT: Invalid R0KH-ID "
  266. "length in FTIE: %d", pos[1]);
  267. return -1;
  268. }
  269. parse->r0kh_id = pos + 2;
  270. parse->r0kh_id_len = pos[1];
  271. break;
  272. #ifdef CONFIG_IEEE80211W
  273. case FTIE_SUBELEM_IGTK:
  274. parse->igtk = pos + 2;
  275. parse->igtk_len = pos[1];
  276. break;
  277. #endif /* CONFIG_IEEE80211W */
  278. }
  279. pos += 2 + pos[1];
  280. }
  281. return 0;
  282. }
  283. int wpa_ft_parse_ies(const u8 *ies, size_t ies_len,
  284. struct wpa_ft_ies *parse)
  285. {
  286. const u8 *end, *pos;
  287. struct wpa_ie_data data;
  288. int ret;
  289. const struct rsn_ftie *ftie;
  290. int prot_ie_count = 0;
  291. os_memset(parse, 0, sizeof(*parse));
  292. if (ies == NULL)
  293. return 0;
  294. pos = ies;
  295. end = ies + ies_len;
  296. while (pos + 2 <= end && pos + 2 + pos[1] <= end) {
  297. switch (pos[0]) {
  298. case WLAN_EID_RSN:
  299. parse->rsn = pos + 2;
  300. parse->rsn_len = pos[1];
  301. ret = wpa_parse_wpa_ie_rsn(parse->rsn - 2,
  302. parse->rsn_len + 2,
  303. &data);
  304. if (ret < 0) {
  305. wpa_printf(MSG_DEBUG, "FT: Failed to parse "
  306. "RSN IE: %d", ret);
  307. return -1;
  308. }
  309. if (data.num_pmkid == 1 && data.pmkid)
  310. parse->rsn_pmkid = data.pmkid;
  311. break;
  312. case WLAN_EID_MOBILITY_DOMAIN:
  313. if (pos[1] < sizeof(struct rsn_mdie))
  314. return -1;
  315. parse->mdie = pos + 2;
  316. parse->mdie_len = pos[1];
  317. break;
  318. case WLAN_EID_FAST_BSS_TRANSITION:
  319. if (pos[1] < sizeof(*ftie))
  320. return -1;
  321. ftie = (const struct rsn_ftie *) (pos + 2);
  322. prot_ie_count = ftie->mic_control[1];
  323. if (wpa_ft_parse_ftie(pos + 2, pos[1], parse) < 0)
  324. return -1;
  325. break;
  326. case WLAN_EID_TIMEOUT_INTERVAL:
  327. if (pos[1] != 5)
  328. break;
  329. parse->tie = pos + 2;
  330. parse->tie_len = pos[1];
  331. break;
  332. case WLAN_EID_RIC_DATA:
  333. if (parse->ric == NULL)
  334. parse->ric = pos;
  335. break;
  336. }
  337. pos += 2 + pos[1];
  338. }
  339. if (prot_ie_count == 0)
  340. return 0; /* no MIC */
  341. /*
  342. * Check that the protected IE count matches with IEs included in the
  343. * frame.
  344. */
  345. if (parse->rsn)
  346. prot_ie_count--;
  347. if (parse->mdie)
  348. prot_ie_count--;
  349. if (parse->ftie)
  350. prot_ie_count--;
  351. if (prot_ie_count < 0) {
  352. wpa_printf(MSG_DEBUG, "FT: Some required IEs not included in "
  353. "the protected IE count");
  354. return -1;
  355. }
  356. if (prot_ie_count == 0 && parse->ric) {
  357. wpa_printf(MSG_DEBUG, "FT: RIC IE(s) in the frame, but not "
  358. "included in protected IE count");
  359. return -1;
  360. }
  361. /* Determine the end of the RIC IE(s) */
  362. pos = parse->ric;
  363. while (pos && pos + 2 <= end && pos + 2 + pos[1] <= end &&
  364. prot_ie_count) {
  365. prot_ie_count--;
  366. pos += 2 + pos[1];
  367. }
  368. parse->ric_len = pos - parse->ric;
  369. if (prot_ie_count) {
  370. wpa_printf(MSG_DEBUG, "FT: %d protected IEs missing from "
  371. "frame", (int) prot_ie_count);
  372. return -1;
  373. }
  374. return 0;
  375. }
  376. #endif /* CONFIG_IEEE80211R */
  377. static int rsn_selector_to_bitfield(const u8 *s)
  378. {
  379. if (RSN_SELECTOR_GET(s) == RSN_CIPHER_SUITE_NONE)
  380. return WPA_CIPHER_NONE;
  381. if (RSN_SELECTOR_GET(s) == RSN_CIPHER_SUITE_TKIP)
  382. return WPA_CIPHER_TKIP;
  383. if (RSN_SELECTOR_GET(s) == RSN_CIPHER_SUITE_CCMP)
  384. return WPA_CIPHER_CCMP;
  385. #ifdef CONFIG_IEEE80211W
  386. if (RSN_SELECTOR_GET(s) == RSN_CIPHER_SUITE_AES_128_CMAC)
  387. return WPA_CIPHER_AES_128_CMAC;
  388. #endif /* CONFIG_IEEE80211W */
  389. if (RSN_SELECTOR_GET(s) == RSN_CIPHER_SUITE_GCMP)
  390. return WPA_CIPHER_GCMP;
  391. if (RSN_SELECTOR_GET(s) == RSN_CIPHER_SUITE_CCMP_256)
  392. return WPA_CIPHER_CCMP_256;
  393. if (RSN_SELECTOR_GET(s) == RSN_CIPHER_SUITE_GCMP_256)
  394. return WPA_CIPHER_GCMP_256;
  395. if (RSN_SELECTOR_GET(s) == RSN_CIPHER_SUITE_BIP_GMAC_128)
  396. return WPA_CIPHER_BIP_GMAC_128;
  397. if (RSN_SELECTOR_GET(s) == RSN_CIPHER_SUITE_BIP_GMAC_256)
  398. return WPA_CIPHER_BIP_GMAC_256;
  399. if (RSN_SELECTOR_GET(s) == RSN_CIPHER_SUITE_BIP_CMAC_256)
  400. return WPA_CIPHER_BIP_CMAC_256;
  401. if (RSN_SELECTOR_GET(s) == RSN_CIPHER_SUITE_NO_GROUP_ADDRESSED)
  402. return WPA_CIPHER_GTK_NOT_USED;
  403. return 0;
  404. }
  405. static int rsn_key_mgmt_to_bitfield(const u8 *s)
  406. {
  407. if (RSN_SELECTOR_GET(s) == RSN_AUTH_KEY_MGMT_UNSPEC_802_1X)
  408. return WPA_KEY_MGMT_IEEE8021X;
  409. if (RSN_SELECTOR_GET(s) == RSN_AUTH_KEY_MGMT_PSK_OVER_802_1X)
  410. return WPA_KEY_MGMT_PSK;
  411. #ifdef CONFIG_IEEE80211R
  412. if (RSN_SELECTOR_GET(s) == RSN_AUTH_KEY_MGMT_FT_802_1X)
  413. return WPA_KEY_MGMT_FT_IEEE8021X;
  414. if (RSN_SELECTOR_GET(s) == RSN_AUTH_KEY_MGMT_FT_PSK)
  415. return WPA_KEY_MGMT_FT_PSK;
  416. #endif /* CONFIG_IEEE80211R */
  417. #ifdef CONFIG_IEEE80211W
  418. if (RSN_SELECTOR_GET(s) == RSN_AUTH_KEY_MGMT_802_1X_SHA256)
  419. return WPA_KEY_MGMT_IEEE8021X_SHA256;
  420. if (RSN_SELECTOR_GET(s) == RSN_AUTH_KEY_MGMT_PSK_SHA256)
  421. return WPA_KEY_MGMT_PSK_SHA256;
  422. #endif /* CONFIG_IEEE80211W */
  423. #ifdef CONFIG_SAE
  424. if (RSN_SELECTOR_GET(s) == RSN_AUTH_KEY_MGMT_SAE)
  425. return WPA_KEY_MGMT_SAE;
  426. if (RSN_SELECTOR_GET(s) == RSN_AUTH_KEY_MGMT_FT_SAE)
  427. return WPA_KEY_MGMT_FT_SAE;
  428. #endif /* CONFIG_SAE */
  429. if (RSN_SELECTOR_GET(s) == RSN_AUTH_KEY_MGMT_802_1X_SUITE_B)
  430. return WPA_KEY_MGMT_IEEE8021X_SUITE_B;
  431. if (RSN_SELECTOR_GET(s) == RSN_AUTH_KEY_MGMT_802_1X_SUITE_B_192)
  432. return WPA_KEY_MGMT_IEEE8021X_SUITE_B_192;
  433. if (RSN_SELECTOR_GET(s) == RSN_AUTH_KEY_MGMT_OSEN)
  434. return WPA_KEY_MGMT_OSEN;
  435. return 0;
  436. }
  437. int wpa_cipher_valid_group(int cipher)
  438. {
  439. return wpa_cipher_valid_pairwise(cipher) ||
  440. cipher == WPA_CIPHER_GTK_NOT_USED;
  441. }
  442. #ifdef CONFIG_IEEE80211W
  443. int wpa_cipher_valid_mgmt_group(int cipher)
  444. {
  445. return cipher == WPA_CIPHER_AES_128_CMAC ||
  446. cipher == WPA_CIPHER_BIP_GMAC_128 ||
  447. cipher == WPA_CIPHER_BIP_GMAC_256 ||
  448. cipher == WPA_CIPHER_BIP_CMAC_256;
  449. }
  450. #endif /* CONFIG_IEEE80211W */
  451. /**
  452. * wpa_parse_wpa_ie_rsn - Parse RSN IE
  453. * @rsn_ie: Buffer containing RSN IE
  454. * @rsn_ie_len: RSN IE buffer length (including IE number and length octets)
  455. * @data: Pointer to structure that will be filled in with parsed data
  456. * Returns: 0 on success, <0 on failure
  457. */
  458. int wpa_parse_wpa_ie_rsn(const u8 *rsn_ie, size_t rsn_ie_len,
  459. struct wpa_ie_data *data)
  460. {
  461. const u8 *pos;
  462. int left;
  463. int i, count;
  464. os_memset(data, 0, sizeof(*data));
  465. data->proto = WPA_PROTO_RSN;
  466. data->pairwise_cipher = WPA_CIPHER_CCMP;
  467. data->group_cipher = WPA_CIPHER_CCMP;
  468. data->key_mgmt = WPA_KEY_MGMT_IEEE8021X;
  469. data->capabilities = 0;
  470. data->pmkid = NULL;
  471. data->num_pmkid = 0;
  472. #ifdef CONFIG_IEEE80211W
  473. data->mgmt_group_cipher = WPA_CIPHER_AES_128_CMAC;
  474. #else /* CONFIG_IEEE80211W */
  475. data->mgmt_group_cipher = 0;
  476. #endif /* CONFIG_IEEE80211W */
  477. if (rsn_ie_len == 0) {
  478. /* No RSN IE - fail silently */
  479. return -1;
  480. }
  481. if (rsn_ie_len < sizeof(struct rsn_ie_hdr)) {
  482. wpa_printf(MSG_DEBUG, "%s: ie len too short %lu",
  483. __func__, (unsigned long) rsn_ie_len);
  484. return -1;
  485. }
  486. if (rsn_ie_len >= 6 && rsn_ie[1] >= 4 &&
  487. rsn_ie[1] == rsn_ie_len - 2 &&
  488. WPA_GET_BE32(&rsn_ie[2]) == OSEN_IE_VENDOR_TYPE) {
  489. pos = rsn_ie + 6;
  490. left = rsn_ie_len - 6;
  491. data->proto = WPA_PROTO_OSEN;
  492. } else {
  493. const struct rsn_ie_hdr *hdr;
  494. hdr = (const struct rsn_ie_hdr *) rsn_ie;
  495. if (hdr->elem_id != WLAN_EID_RSN ||
  496. hdr->len != rsn_ie_len - 2 ||
  497. WPA_GET_LE16(hdr->version) != RSN_VERSION) {
  498. wpa_printf(MSG_DEBUG, "%s: malformed ie or unknown version",
  499. __func__);
  500. return -2;
  501. }
  502. pos = (const u8 *) (hdr + 1);
  503. left = rsn_ie_len - sizeof(*hdr);
  504. }
  505. if (left >= RSN_SELECTOR_LEN) {
  506. data->group_cipher = rsn_selector_to_bitfield(pos);
  507. if (!wpa_cipher_valid_group(data->group_cipher)) {
  508. wpa_printf(MSG_DEBUG, "%s: invalid group cipher 0x%x",
  509. __func__, data->group_cipher);
  510. return -1;
  511. }
  512. pos += RSN_SELECTOR_LEN;
  513. left -= RSN_SELECTOR_LEN;
  514. } else if (left > 0) {
  515. wpa_printf(MSG_DEBUG, "%s: ie length mismatch, %u too much",
  516. __func__, left);
  517. return -3;
  518. }
  519. if (left >= 2) {
  520. data->pairwise_cipher = 0;
  521. count = WPA_GET_LE16(pos);
  522. pos += 2;
  523. left -= 2;
  524. if (count == 0 || count > left / RSN_SELECTOR_LEN) {
  525. wpa_printf(MSG_DEBUG, "%s: ie count botch (pairwise), "
  526. "count %u left %u", __func__, count, left);
  527. return -4;
  528. }
  529. for (i = 0; i < count; i++) {
  530. data->pairwise_cipher |= rsn_selector_to_bitfield(pos);
  531. pos += RSN_SELECTOR_LEN;
  532. left -= RSN_SELECTOR_LEN;
  533. }
  534. #ifdef CONFIG_IEEE80211W
  535. if (data->pairwise_cipher & WPA_CIPHER_AES_128_CMAC) {
  536. wpa_printf(MSG_DEBUG, "%s: AES-128-CMAC used as "
  537. "pairwise cipher", __func__);
  538. return -1;
  539. }
  540. #endif /* CONFIG_IEEE80211W */
  541. } else if (left == 1) {
  542. wpa_printf(MSG_DEBUG, "%s: ie too short (for key mgmt)",
  543. __func__);
  544. return -5;
  545. }
  546. if (left >= 2) {
  547. data->key_mgmt = 0;
  548. count = WPA_GET_LE16(pos);
  549. pos += 2;
  550. left -= 2;
  551. if (count == 0 || count > left / RSN_SELECTOR_LEN) {
  552. wpa_printf(MSG_DEBUG, "%s: ie count botch (key mgmt), "
  553. "count %u left %u", __func__, count, left);
  554. return -6;
  555. }
  556. for (i = 0; i < count; i++) {
  557. data->key_mgmt |= rsn_key_mgmt_to_bitfield(pos);
  558. pos += RSN_SELECTOR_LEN;
  559. left -= RSN_SELECTOR_LEN;
  560. }
  561. } else if (left == 1) {
  562. wpa_printf(MSG_DEBUG, "%s: ie too short (for capabilities)",
  563. __func__);
  564. return -7;
  565. }
  566. if (left >= 2) {
  567. data->capabilities = WPA_GET_LE16(pos);
  568. pos += 2;
  569. left -= 2;
  570. }
  571. if (left >= 2) {
  572. u16 num_pmkid = WPA_GET_LE16(pos);
  573. pos += 2;
  574. left -= 2;
  575. if (num_pmkid > (unsigned int) left / PMKID_LEN) {
  576. wpa_printf(MSG_DEBUG, "%s: PMKID underflow "
  577. "(num_pmkid=%u left=%d)",
  578. __func__, num_pmkid, left);
  579. data->num_pmkid = 0;
  580. return -9;
  581. } else {
  582. data->num_pmkid = num_pmkid;
  583. data->pmkid = pos;
  584. pos += data->num_pmkid * PMKID_LEN;
  585. left -= data->num_pmkid * PMKID_LEN;
  586. }
  587. }
  588. #ifdef CONFIG_IEEE80211W
  589. if (left >= 4) {
  590. data->mgmt_group_cipher = rsn_selector_to_bitfield(pos);
  591. if (!wpa_cipher_valid_mgmt_group(data->mgmt_group_cipher)) {
  592. wpa_printf(MSG_DEBUG, "%s: Unsupported management "
  593. "group cipher 0x%x", __func__,
  594. data->mgmt_group_cipher);
  595. return -10;
  596. }
  597. pos += RSN_SELECTOR_LEN;
  598. left -= RSN_SELECTOR_LEN;
  599. }
  600. #endif /* CONFIG_IEEE80211W */
  601. if (left > 0) {
  602. wpa_hexdump(MSG_DEBUG,
  603. "wpa_parse_wpa_ie_rsn: ignore trailing bytes",
  604. pos, left);
  605. }
  606. return 0;
  607. }
  608. static int wpa_selector_to_bitfield(const u8 *s)
  609. {
  610. if (RSN_SELECTOR_GET(s) == WPA_CIPHER_SUITE_NONE)
  611. return WPA_CIPHER_NONE;
  612. if (RSN_SELECTOR_GET(s) == WPA_CIPHER_SUITE_TKIP)
  613. return WPA_CIPHER_TKIP;
  614. if (RSN_SELECTOR_GET(s) == WPA_CIPHER_SUITE_CCMP)
  615. return WPA_CIPHER_CCMP;
  616. return 0;
  617. }
  618. static int wpa_key_mgmt_to_bitfield(const u8 *s)
  619. {
  620. if (RSN_SELECTOR_GET(s) == WPA_AUTH_KEY_MGMT_UNSPEC_802_1X)
  621. return WPA_KEY_MGMT_IEEE8021X;
  622. if (RSN_SELECTOR_GET(s) == WPA_AUTH_KEY_MGMT_PSK_OVER_802_1X)
  623. return WPA_KEY_MGMT_PSK;
  624. if (RSN_SELECTOR_GET(s) == WPA_AUTH_KEY_MGMT_NONE)
  625. return WPA_KEY_MGMT_WPA_NONE;
  626. return 0;
  627. }
  628. int wpa_parse_wpa_ie_wpa(const u8 *wpa_ie, size_t wpa_ie_len,
  629. struct wpa_ie_data *data)
  630. {
  631. const struct wpa_ie_hdr *hdr;
  632. const u8 *pos;
  633. int left;
  634. int i, count;
  635. os_memset(data, 0, sizeof(*data));
  636. data->proto = WPA_PROTO_WPA;
  637. data->pairwise_cipher = WPA_CIPHER_TKIP;
  638. data->group_cipher = WPA_CIPHER_TKIP;
  639. data->key_mgmt = WPA_KEY_MGMT_IEEE8021X;
  640. data->capabilities = 0;
  641. data->pmkid = NULL;
  642. data->num_pmkid = 0;
  643. data->mgmt_group_cipher = 0;
  644. if (wpa_ie_len < sizeof(struct wpa_ie_hdr)) {
  645. wpa_printf(MSG_DEBUG, "%s: ie len too short %lu",
  646. __func__, (unsigned long) wpa_ie_len);
  647. return -1;
  648. }
  649. hdr = (const struct wpa_ie_hdr *) wpa_ie;
  650. if (hdr->elem_id != WLAN_EID_VENDOR_SPECIFIC ||
  651. hdr->len != wpa_ie_len - 2 ||
  652. RSN_SELECTOR_GET(hdr->oui) != WPA_OUI_TYPE ||
  653. WPA_GET_LE16(hdr->version) != WPA_VERSION) {
  654. wpa_printf(MSG_DEBUG, "%s: malformed ie or unknown version",
  655. __func__);
  656. return -2;
  657. }
  658. pos = (const u8 *) (hdr + 1);
  659. left = wpa_ie_len - sizeof(*hdr);
  660. if (left >= WPA_SELECTOR_LEN) {
  661. data->group_cipher = wpa_selector_to_bitfield(pos);
  662. pos += WPA_SELECTOR_LEN;
  663. left -= WPA_SELECTOR_LEN;
  664. } else if (left > 0) {
  665. wpa_printf(MSG_DEBUG, "%s: ie length mismatch, %u too much",
  666. __func__, left);
  667. return -3;
  668. }
  669. if (left >= 2) {
  670. data->pairwise_cipher = 0;
  671. count = WPA_GET_LE16(pos);
  672. pos += 2;
  673. left -= 2;
  674. if (count == 0 || count > left / WPA_SELECTOR_LEN) {
  675. wpa_printf(MSG_DEBUG, "%s: ie count botch (pairwise), "
  676. "count %u left %u", __func__, count, left);
  677. return -4;
  678. }
  679. for (i = 0; i < count; i++) {
  680. data->pairwise_cipher |= wpa_selector_to_bitfield(pos);
  681. pos += WPA_SELECTOR_LEN;
  682. left -= WPA_SELECTOR_LEN;
  683. }
  684. } else if (left == 1) {
  685. wpa_printf(MSG_DEBUG, "%s: ie too short (for key mgmt)",
  686. __func__);
  687. return -5;
  688. }
  689. if (left >= 2) {
  690. data->key_mgmt = 0;
  691. count = WPA_GET_LE16(pos);
  692. pos += 2;
  693. left -= 2;
  694. if (count == 0 || count > left / WPA_SELECTOR_LEN) {
  695. wpa_printf(MSG_DEBUG, "%s: ie count botch (key mgmt), "
  696. "count %u left %u", __func__, count, left);
  697. return -6;
  698. }
  699. for (i = 0; i < count; i++) {
  700. data->key_mgmt |= wpa_key_mgmt_to_bitfield(pos);
  701. pos += WPA_SELECTOR_LEN;
  702. left -= WPA_SELECTOR_LEN;
  703. }
  704. } else if (left == 1) {
  705. wpa_printf(MSG_DEBUG, "%s: ie too short (for capabilities)",
  706. __func__);
  707. return -7;
  708. }
  709. if (left >= 2) {
  710. data->capabilities = WPA_GET_LE16(pos);
  711. pos += 2;
  712. left -= 2;
  713. }
  714. if (left > 0) {
  715. wpa_hexdump(MSG_DEBUG,
  716. "wpa_parse_wpa_ie_wpa: ignore trailing bytes",
  717. pos, left);
  718. }
  719. return 0;
  720. }
  721. #ifdef CONFIG_IEEE80211R
  722. /**
  723. * wpa_derive_pmk_r0 - Derive PMK-R0 and PMKR0Name
  724. *
  725. * IEEE Std 802.11r-2008 - 8.5.1.5.3
  726. */
  727. void wpa_derive_pmk_r0(const u8 *xxkey, size_t xxkey_len,
  728. const u8 *ssid, size_t ssid_len,
  729. const u8 *mdid, const u8 *r0kh_id, size_t r0kh_id_len,
  730. const u8 *s0kh_id, u8 *pmk_r0, u8 *pmk_r0_name)
  731. {
  732. u8 buf[1 + SSID_MAX_LEN + MOBILITY_DOMAIN_ID_LEN + 1 +
  733. FT_R0KH_ID_MAX_LEN + ETH_ALEN];
  734. u8 *pos, r0_key_data[48], hash[32];
  735. const u8 *addr[2];
  736. size_t len[2];
  737. /*
  738. * R0-Key-Data = KDF-384(XXKey, "FT-R0",
  739. * SSIDlength || SSID || MDID || R0KHlength ||
  740. * R0KH-ID || S0KH-ID)
  741. * XXKey is either the second 256 bits of MSK or PSK.
  742. * PMK-R0 = L(R0-Key-Data, 0, 256)
  743. * PMK-R0Name-Salt = L(R0-Key-Data, 256, 128)
  744. */
  745. if (ssid_len > SSID_MAX_LEN || r0kh_id_len > FT_R0KH_ID_MAX_LEN)
  746. return;
  747. pos = buf;
  748. *pos++ = ssid_len;
  749. os_memcpy(pos, ssid, ssid_len);
  750. pos += ssid_len;
  751. os_memcpy(pos, mdid, MOBILITY_DOMAIN_ID_LEN);
  752. pos += MOBILITY_DOMAIN_ID_LEN;
  753. *pos++ = r0kh_id_len;
  754. os_memcpy(pos, r0kh_id, r0kh_id_len);
  755. pos += r0kh_id_len;
  756. os_memcpy(pos, s0kh_id, ETH_ALEN);
  757. pos += ETH_ALEN;
  758. sha256_prf(xxkey, xxkey_len, "FT-R0", buf, pos - buf,
  759. r0_key_data, sizeof(r0_key_data));
  760. os_memcpy(pmk_r0, r0_key_data, PMK_LEN);
  761. /*
  762. * PMKR0Name = Truncate-128(SHA-256("FT-R0N" || PMK-R0Name-Salt)
  763. */
  764. addr[0] = (const u8 *) "FT-R0N";
  765. len[0] = 6;
  766. addr[1] = r0_key_data + PMK_LEN;
  767. len[1] = 16;
  768. sha256_vector(2, addr, len, hash);
  769. os_memcpy(pmk_r0_name, hash, WPA_PMK_NAME_LEN);
  770. }
  771. /**
  772. * wpa_derive_pmk_r1_name - Derive PMKR1Name
  773. *
  774. * IEEE Std 802.11r-2008 - 8.5.1.5.4
  775. */
  776. void wpa_derive_pmk_r1_name(const u8 *pmk_r0_name, const u8 *r1kh_id,
  777. const u8 *s1kh_id, u8 *pmk_r1_name)
  778. {
  779. u8 hash[32];
  780. const u8 *addr[4];
  781. size_t len[4];
  782. /*
  783. * PMKR1Name = Truncate-128(SHA-256("FT-R1N" || PMKR0Name ||
  784. * R1KH-ID || S1KH-ID))
  785. */
  786. addr[0] = (const u8 *) "FT-R1N";
  787. len[0] = 6;
  788. addr[1] = pmk_r0_name;
  789. len[1] = WPA_PMK_NAME_LEN;
  790. addr[2] = r1kh_id;
  791. len[2] = FT_R1KH_ID_LEN;
  792. addr[3] = s1kh_id;
  793. len[3] = ETH_ALEN;
  794. sha256_vector(4, addr, len, hash);
  795. os_memcpy(pmk_r1_name, hash, WPA_PMK_NAME_LEN);
  796. }
  797. /**
  798. * wpa_derive_pmk_r1 - Derive PMK-R1 and PMKR1Name from PMK-R0
  799. *
  800. * IEEE Std 802.11r-2008 - 8.5.1.5.4
  801. */
  802. void wpa_derive_pmk_r1(const u8 *pmk_r0, const u8 *pmk_r0_name,
  803. const u8 *r1kh_id, const u8 *s1kh_id,
  804. u8 *pmk_r1, u8 *pmk_r1_name)
  805. {
  806. u8 buf[FT_R1KH_ID_LEN + ETH_ALEN];
  807. u8 *pos;
  808. /* PMK-R1 = KDF-256(PMK-R0, "FT-R1", R1KH-ID || S1KH-ID) */
  809. pos = buf;
  810. os_memcpy(pos, r1kh_id, FT_R1KH_ID_LEN);
  811. pos += FT_R1KH_ID_LEN;
  812. os_memcpy(pos, s1kh_id, ETH_ALEN);
  813. pos += ETH_ALEN;
  814. sha256_prf(pmk_r0, PMK_LEN, "FT-R1", buf, pos - buf, pmk_r1, PMK_LEN);
  815. wpa_derive_pmk_r1_name(pmk_r0_name, r1kh_id, s1kh_id, pmk_r1_name);
  816. }
  817. /**
  818. * wpa_pmk_r1_to_ptk - Derive PTK and PTKName from PMK-R1
  819. *
  820. * IEEE Std 802.11r-2008 - 8.5.1.5.5
  821. */
  822. int wpa_pmk_r1_to_ptk(const u8 *pmk_r1, const u8 *snonce, const u8 *anonce,
  823. const u8 *sta_addr, const u8 *bssid,
  824. const u8 *pmk_r1_name,
  825. struct wpa_ptk *ptk, u8 *ptk_name, int akmp, int cipher)
  826. {
  827. u8 buf[2 * WPA_NONCE_LEN + 2 * ETH_ALEN];
  828. u8 *pos, hash[32];
  829. const u8 *addr[6];
  830. size_t len[6];
  831. u8 tmp[WPA_KCK_MAX_LEN + WPA_KEK_MAX_LEN + WPA_TK_MAX_LEN];
  832. size_t ptk_len;
  833. /*
  834. * PTK = KDF-PTKLen(PMK-R1, "FT-PTK", SNonce || ANonce ||
  835. * BSSID || STA-ADDR)
  836. */
  837. pos = buf;
  838. os_memcpy(pos, snonce, WPA_NONCE_LEN);
  839. pos += WPA_NONCE_LEN;
  840. os_memcpy(pos, anonce, WPA_NONCE_LEN);
  841. pos += WPA_NONCE_LEN;
  842. os_memcpy(pos, bssid, ETH_ALEN);
  843. pos += ETH_ALEN;
  844. os_memcpy(pos, sta_addr, ETH_ALEN);
  845. pos += ETH_ALEN;
  846. ptk->kck_len = wpa_kck_len(akmp);
  847. ptk->kek_len = wpa_kek_len(akmp);
  848. ptk->tk_len = wpa_cipher_key_len(cipher);
  849. ptk_len = ptk->kck_len + ptk->kek_len + ptk->tk_len;
  850. sha256_prf(pmk_r1, PMK_LEN, "FT-PTK", buf, pos - buf, tmp, ptk_len);
  851. /*
  852. * PTKName = Truncate-128(SHA-256(PMKR1Name || "FT-PTKN" || SNonce ||
  853. * ANonce || BSSID || STA-ADDR))
  854. */
  855. addr[0] = pmk_r1_name;
  856. len[0] = WPA_PMK_NAME_LEN;
  857. addr[1] = (const u8 *) "FT-PTKN";
  858. len[1] = 7;
  859. addr[2] = snonce;
  860. len[2] = WPA_NONCE_LEN;
  861. addr[3] = anonce;
  862. len[3] = WPA_NONCE_LEN;
  863. addr[4] = bssid;
  864. len[4] = ETH_ALEN;
  865. addr[5] = sta_addr;
  866. len[5] = ETH_ALEN;
  867. sha256_vector(6, addr, len, hash);
  868. os_memcpy(ptk_name, hash, WPA_PMK_NAME_LEN);
  869. os_memcpy(ptk->kck, tmp, ptk->kck_len);
  870. os_memcpy(ptk->kek, tmp + ptk->kck_len, ptk->kek_len);
  871. os_memcpy(ptk->tk, tmp + ptk->kck_len + ptk->kek_len, ptk->tk_len);
  872. wpa_hexdump_key(MSG_DEBUG, "FT: KCK", ptk->kck, ptk->kck_len);
  873. wpa_hexdump_key(MSG_DEBUG, "FT: KEK", ptk->kek, ptk->kek_len);
  874. wpa_hexdump_key(MSG_DEBUG, "FT: TK", ptk->tk, ptk->tk_len);
  875. wpa_hexdump(MSG_DEBUG, "FT: PTKName", ptk_name, WPA_PMK_NAME_LEN);
  876. os_memset(tmp, 0, sizeof(tmp));
  877. return 0;
  878. }
  879. #endif /* CONFIG_IEEE80211R */
  880. /**
  881. * rsn_pmkid - Calculate PMK identifier
  882. * @pmk: Pairwise master key
  883. * @pmk_len: Length of pmk in bytes
  884. * @aa: Authenticator address
  885. * @spa: Supplicant address
  886. * @pmkid: Buffer for PMKID
  887. * @use_sha256: Whether to use SHA256-based KDF
  888. *
  889. * IEEE Std 802.11i-2004 - 8.5.1.2 Pairwise key hierarchy
  890. * PMKID = HMAC-SHA1-128(PMK, "PMK Name" || AA || SPA)
  891. */
  892. void rsn_pmkid(const u8 *pmk, size_t pmk_len, const u8 *aa, const u8 *spa,
  893. u8 *pmkid, int use_sha256)
  894. {
  895. char *title = "PMK Name";
  896. const u8 *addr[3];
  897. const size_t len[3] = { 8, ETH_ALEN, ETH_ALEN };
  898. unsigned char hash[SHA256_MAC_LEN];
  899. addr[0] = (u8 *) title;
  900. addr[1] = aa;
  901. addr[2] = spa;
  902. #ifdef CONFIG_IEEE80211W
  903. if (use_sha256)
  904. hmac_sha256_vector(pmk, pmk_len, 3, addr, len, hash);
  905. else
  906. #endif /* CONFIG_IEEE80211W */
  907. hmac_sha1_vector(pmk, pmk_len, 3, addr, len, hash);
  908. os_memcpy(pmkid, hash, PMKID_LEN);
  909. }
  910. #ifdef CONFIG_SUITEB
  911. /**
  912. * rsn_pmkid_suite_b - Calculate PMK identifier for Suite B AKM
  913. * @kck: Key confirmation key
  914. * @kck_len: Length of kck in bytes
  915. * @aa: Authenticator address
  916. * @spa: Supplicant address
  917. * @pmkid: Buffer for PMKID
  918. * Returns: 0 on success, -1 on failure
  919. *
  920. * IEEE Std 802.11ac-2013 - 11.6.1.3 Pairwise key hierarchy
  921. * PMKID = Truncate(HMAC-SHA-256(KCK, "PMK Name" || AA || SPA))
  922. */
  923. int rsn_pmkid_suite_b(const u8 *kck, size_t kck_len, const u8 *aa,
  924. const u8 *spa, u8 *pmkid)
  925. {
  926. char *title = "PMK Name";
  927. const u8 *addr[3];
  928. const size_t len[3] = { 8, ETH_ALEN, ETH_ALEN };
  929. unsigned char hash[SHA256_MAC_LEN];
  930. addr[0] = (u8 *) title;
  931. addr[1] = aa;
  932. addr[2] = spa;
  933. if (hmac_sha256_vector(kck, kck_len, 3, addr, len, hash) < 0)
  934. return -1;
  935. os_memcpy(pmkid, hash, PMKID_LEN);
  936. return 0;
  937. }
  938. #endif /* CONFIG_SUITEB */
  939. #ifdef CONFIG_SUITEB192
  940. /**
  941. * rsn_pmkid_suite_b_192 - Calculate PMK identifier for Suite B AKM
  942. * @kck: Key confirmation key
  943. * @kck_len: Length of kck in bytes
  944. * @aa: Authenticator address
  945. * @spa: Supplicant address
  946. * @pmkid: Buffer for PMKID
  947. * Returns: 0 on success, -1 on failure
  948. *
  949. * IEEE Std 802.11ac-2013 - 11.6.1.3 Pairwise key hierarchy
  950. * PMKID = Truncate(HMAC-SHA-384(KCK, "PMK Name" || AA || SPA))
  951. */
  952. int rsn_pmkid_suite_b_192(const u8 *kck, size_t kck_len, const u8 *aa,
  953. const u8 *spa, u8 *pmkid)
  954. {
  955. char *title = "PMK Name";
  956. const u8 *addr[3];
  957. const size_t len[3] = { 8, ETH_ALEN, ETH_ALEN };
  958. unsigned char hash[SHA384_MAC_LEN];
  959. addr[0] = (u8 *) title;
  960. addr[1] = aa;
  961. addr[2] = spa;
  962. if (hmac_sha384_vector(kck, kck_len, 3, addr, len, hash) < 0)
  963. return -1;
  964. os_memcpy(pmkid, hash, PMKID_LEN);
  965. return 0;
  966. }
  967. #endif /* CONFIG_SUITEB192 */
  968. /**
  969. * wpa_cipher_txt - Convert cipher suite to a text string
  970. * @cipher: Cipher suite (WPA_CIPHER_* enum)
  971. * Returns: Pointer to a text string of the cipher suite name
  972. */
  973. const char * wpa_cipher_txt(int cipher)
  974. {
  975. switch (cipher) {
  976. case WPA_CIPHER_NONE:
  977. return "NONE";
  978. case WPA_CIPHER_WEP40:
  979. return "WEP-40";
  980. case WPA_CIPHER_WEP104:
  981. return "WEP-104";
  982. case WPA_CIPHER_TKIP:
  983. return "TKIP";
  984. case WPA_CIPHER_CCMP:
  985. return "CCMP";
  986. case WPA_CIPHER_CCMP | WPA_CIPHER_TKIP:
  987. return "CCMP+TKIP";
  988. case WPA_CIPHER_GCMP:
  989. return "GCMP";
  990. case WPA_CIPHER_GCMP_256:
  991. return "GCMP-256";
  992. case WPA_CIPHER_CCMP_256:
  993. return "CCMP-256";
  994. case WPA_CIPHER_GTK_NOT_USED:
  995. return "GTK_NOT_USED";
  996. default:
  997. return "UNKNOWN";
  998. }
  999. }
  1000. /**
  1001. * wpa_key_mgmt_txt - Convert key management suite to a text string
  1002. * @key_mgmt: Key management suite (WPA_KEY_MGMT_* enum)
  1003. * @proto: WPA/WPA2 version (WPA_PROTO_*)
  1004. * Returns: Pointer to a text string of the key management suite name
  1005. */
  1006. const char * wpa_key_mgmt_txt(int key_mgmt, int proto)
  1007. {
  1008. switch (key_mgmt) {
  1009. case WPA_KEY_MGMT_IEEE8021X:
  1010. if (proto == (WPA_PROTO_RSN | WPA_PROTO_WPA))
  1011. return "WPA2+WPA/IEEE 802.1X/EAP";
  1012. return proto == WPA_PROTO_RSN ?
  1013. "WPA2/IEEE 802.1X/EAP" : "WPA/IEEE 802.1X/EAP";
  1014. case WPA_KEY_MGMT_PSK:
  1015. if (proto == (WPA_PROTO_RSN | WPA_PROTO_WPA))
  1016. return "WPA2-PSK+WPA-PSK";
  1017. return proto == WPA_PROTO_RSN ?
  1018. "WPA2-PSK" : "WPA-PSK";
  1019. case WPA_KEY_MGMT_NONE:
  1020. return "NONE";
  1021. case WPA_KEY_MGMT_IEEE8021X_NO_WPA:
  1022. return "IEEE 802.1X (no WPA)";
  1023. #ifdef CONFIG_IEEE80211R
  1024. case WPA_KEY_MGMT_FT_IEEE8021X:
  1025. return "FT-EAP";
  1026. case WPA_KEY_MGMT_FT_PSK:
  1027. return "FT-PSK";
  1028. #endif /* CONFIG_IEEE80211R */
  1029. #ifdef CONFIG_IEEE80211W
  1030. case WPA_KEY_MGMT_IEEE8021X_SHA256:
  1031. return "WPA2-EAP-SHA256";
  1032. case WPA_KEY_MGMT_PSK_SHA256:
  1033. return "WPA2-PSK-SHA256";
  1034. #endif /* CONFIG_IEEE80211W */
  1035. case WPA_KEY_MGMT_WPS:
  1036. return "WPS";
  1037. case WPA_KEY_MGMT_SAE:
  1038. return "SAE";
  1039. case WPA_KEY_MGMT_FT_SAE:
  1040. return "FT-SAE";
  1041. case WPA_KEY_MGMT_OSEN:
  1042. return "OSEN";
  1043. case WPA_KEY_MGMT_IEEE8021X_SUITE_B:
  1044. return "WPA2-EAP-SUITE-B";
  1045. case WPA_KEY_MGMT_IEEE8021X_SUITE_B_192:
  1046. return "WPA2-EAP-SUITE-B-192";
  1047. default:
  1048. return "UNKNOWN";
  1049. }
  1050. }
  1051. u32 wpa_akm_to_suite(int akm)
  1052. {
  1053. if (akm & WPA_KEY_MGMT_FT_IEEE8021X)
  1054. return WLAN_AKM_SUITE_FT_8021X;
  1055. if (akm & WPA_KEY_MGMT_FT_PSK)
  1056. return WLAN_AKM_SUITE_FT_PSK;
  1057. if (akm & WPA_KEY_MGMT_IEEE8021X)
  1058. return WLAN_AKM_SUITE_8021X;
  1059. if (akm & WPA_KEY_MGMT_IEEE8021X_SHA256)
  1060. return WLAN_AKM_SUITE_8021X_SHA256;
  1061. if (akm & WPA_KEY_MGMT_IEEE8021X)
  1062. return WLAN_AKM_SUITE_8021X;
  1063. if (akm & WPA_KEY_MGMT_PSK_SHA256)
  1064. return WLAN_AKM_SUITE_PSK_SHA256;
  1065. if (akm & WPA_KEY_MGMT_PSK)
  1066. return WLAN_AKM_SUITE_PSK;
  1067. if (akm & WPA_KEY_MGMT_CCKM)
  1068. return WLAN_AKM_SUITE_CCKM;
  1069. if (akm & WPA_KEY_MGMT_OSEN)
  1070. return WLAN_AKM_SUITE_OSEN;
  1071. if (akm & WPA_KEY_MGMT_IEEE8021X_SUITE_B)
  1072. return WLAN_AKM_SUITE_8021X_SUITE_B;
  1073. if (akm & WPA_KEY_MGMT_IEEE8021X_SUITE_B_192)
  1074. return WLAN_AKM_SUITE_8021X_SUITE_B_192;
  1075. return 0;
  1076. }
  1077. int wpa_compare_rsn_ie(int ft_initial_assoc,
  1078. const u8 *ie1, size_t ie1len,
  1079. const u8 *ie2, size_t ie2len)
  1080. {
  1081. if (ie1 == NULL || ie2 == NULL)
  1082. return -1;
  1083. if (ie1len == ie2len && os_memcmp(ie1, ie2, ie1len) == 0)
  1084. return 0; /* identical IEs */
  1085. #ifdef CONFIG_IEEE80211R
  1086. if (ft_initial_assoc) {
  1087. struct wpa_ie_data ie1d, ie2d;
  1088. /*
  1089. * The PMKID-List in RSN IE is different between Beacon/Probe
  1090. * Response/(Re)Association Request frames and EAPOL-Key
  1091. * messages in FT initial mobility domain association. Allow
  1092. * for this, but verify that other parts of the RSN IEs are
  1093. * identical.
  1094. */
  1095. if (wpa_parse_wpa_ie_rsn(ie1, ie1len, &ie1d) < 0 ||
  1096. wpa_parse_wpa_ie_rsn(ie2, ie2len, &ie2d) < 0)
  1097. return -1;
  1098. if (ie1d.proto == ie2d.proto &&
  1099. ie1d.pairwise_cipher == ie2d.pairwise_cipher &&
  1100. ie1d.group_cipher == ie2d.group_cipher &&
  1101. ie1d.key_mgmt == ie2d.key_mgmt &&
  1102. ie1d.capabilities == ie2d.capabilities &&
  1103. ie1d.mgmt_group_cipher == ie2d.mgmt_group_cipher)
  1104. return 0;
  1105. }
  1106. #endif /* CONFIG_IEEE80211R */
  1107. return -1;
  1108. }
  1109. #ifdef CONFIG_IEEE80211R
  1110. int wpa_insert_pmkid(u8 *ies, size_t ies_len, const u8 *pmkid)
  1111. {
  1112. u8 *start, *end, *rpos, *rend;
  1113. int added = 0;
  1114. start = ies;
  1115. end = ies + ies_len;
  1116. while (start < end) {
  1117. if (*start == WLAN_EID_RSN)
  1118. break;
  1119. start += 2 + start[1];
  1120. }
  1121. if (start >= end) {
  1122. wpa_printf(MSG_ERROR, "FT: Could not find RSN IE in "
  1123. "IEs data");
  1124. return -1;
  1125. }
  1126. wpa_hexdump(MSG_DEBUG, "FT: RSN IE before modification",
  1127. start, 2 + start[1]);
  1128. /* Find start of PMKID-Count */
  1129. rpos = start + 2;
  1130. rend = rpos + start[1];
  1131. /* Skip Version and Group Data Cipher Suite */
  1132. rpos += 2 + 4;
  1133. /* Skip Pairwise Cipher Suite Count and List */
  1134. rpos += 2 + WPA_GET_LE16(rpos) * RSN_SELECTOR_LEN;
  1135. /* Skip AKM Suite Count and List */
  1136. rpos += 2 + WPA_GET_LE16(rpos) * RSN_SELECTOR_LEN;
  1137. if (rpos == rend) {
  1138. /* Add RSN Capabilities */
  1139. os_memmove(rpos + 2, rpos, end - rpos);
  1140. *rpos++ = 0;
  1141. *rpos++ = 0;
  1142. } else {
  1143. /* Skip RSN Capabilities */
  1144. rpos += 2;
  1145. if (rpos > rend) {
  1146. wpa_printf(MSG_ERROR, "FT: Could not parse RSN IE in "
  1147. "IEs data");
  1148. return -1;
  1149. }
  1150. }
  1151. if (rpos == rend) {
  1152. /* No PMKID-Count field included; add it */
  1153. os_memmove(rpos + 2 + PMKID_LEN, rpos, end - rpos);
  1154. WPA_PUT_LE16(rpos, 1);
  1155. rpos += 2;
  1156. os_memcpy(rpos, pmkid, PMKID_LEN);
  1157. added += 2 + PMKID_LEN;
  1158. start[1] += 2 + PMKID_LEN;
  1159. } else {
  1160. /* PMKID-Count was included; use it */
  1161. if (WPA_GET_LE16(rpos) != 0) {
  1162. wpa_printf(MSG_ERROR, "FT: Unexpected PMKID "
  1163. "in RSN IE in EAPOL-Key data");
  1164. return -1;
  1165. }
  1166. WPA_PUT_LE16(rpos, 1);
  1167. rpos += 2;
  1168. os_memmove(rpos + PMKID_LEN, rpos, end - rpos);
  1169. os_memcpy(rpos, pmkid, PMKID_LEN);
  1170. added += PMKID_LEN;
  1171. start[1] += PMKID_LEN;
  1172. }
  1173. wpa_hexdump(MSG_DEBUG, "FT: RSN IE after modification "
  1174. "(PMKID inserted)", start, 2 + start[1]);
  1175. return added;
  1176. }
  1177. #endif /* CONFIG_IEEE80211R */
  1178. int wpa_cipher_key_len(int cipher)
  1179. {
  1180. switch (cipher) {
  1181. case WPA_CIPHER_CCMP_256:
  1182. case WPA_CIPHER_GCMP_256:
  1183. case WPA_CIPHER_BIP_GMAC_256:
  1184. case WPA_CIPHER_BIP_CMAC_256:
  1185. return 32;
  1186. case WPA_CIPHER_CCMP:
  1187. case WPA_CIPHER_GCMP:
  1188. case WPA_CIPHER_AES_128_CMAC:
  1189. case WPA_CIPHER_BIP_GMAC_128:
  1190. return 16;
  1191. case WPA_CIPHER_TKIP:
  1192. return 32;
  1193. }
  1194. return 0;
  1195. }
  1196. int wpa_cipher_rsc_len(int cipher)
  1197. {
  1198. switch (cipher) {
  1199. case WPA_CIPHER_CCMP_256:
  1200. case WPA_CIPHER_GCMP_256:
  1201. case WPA_CIPHER_CCMP:
  1202. case WPA_CIPHER_GCMP:
  1203. case WPA_CIPHER_TKIP:
  1204. return 6;
  1205. }
  1206. return 0;
  1207. }
  1208. int wpa_cipher_to_alg(int cipher)
  1209. {
  1210. switch (cipher) {
  1211. case WPA_CIPHER_CCMP_256:
  1212. return WPA_ALG_CCMP_256;
  1213. case WPA_CIPHER_GCMP_256:
  1214. return WPA_ALG_GCMP_256;
  1215. case WPA_CIPHER_CCMP:
  1216. return WPA_ALG_CCMP;
  1217. case WPA_CIPHER_GCMP:
  1218. return WPA_ALG_GCMP;
  1219. case WPA_CIPHER_TKIP:
  1220. return WPA_ALG_TKIP;
  1221. case WPA_CIPHER_AES_128_CMAC:
  1222. return WPA_ALG_IGTK;
  1223. case WPA_CIPHER_BIP_GMAC_128:
  1224. return WPA_ALG_BIP_GMAC_128;
  1225. case WPA_CIPHER_BIP_GMAC_256:
  1226. return WPA_ALG_BIP_GMAC_256;
  1227. case WPA_CIPHER_BIP_CMAC_256:
  1228. return WPA_ALG_BIP_CMAC_256;
  1229. }
  1230. return WPA_ALG_NONE;
  1231. }
  1232. int wpa_cipher_valid_pairwise(int cipher)
  1233. {
  1234. return cipher == WPA_CIPHER_CCMP_256 ||
  1235. cipher == WPA_CIPHER_GCMP_256 ||
  1236. cipher == WPA_CIPHER_CCMP ||
  1237. cipher == WPA_CIPHER_GCMP ||
  1238. cipher == WPA_CIPHER_TKIP;
  1239. }
  1240. u32 wpa_cipher_to_suite(int proto, int cipher)
  1241. {
  1242. if (cipher & WPA_CIPHER_CCMP_256)
  1243. return RSN_CIPHER_SUITE_CCMP_256;
  1244. if (cipher & WPA_CIPHER_GCMP_256)
  1245. return RSN_CIPHER_SUITE_GCMP_256;
  1246. if (cipher & WPA_CIPHER_CCMP)
  1247. return (proto == WPA_PROTO_RSN ?
  1248. RSN_CIPHER_SUITE_CCMP : WPA_CIPHER_SUITE_CCMP);
  1249. if (cipher & WPA_CIPHER_GCMP)
  1250. return RSN_CIPHER_SUITE_GCMP;
  1251. if (cipher & WPA_CIPHER_TKIP)
  1252. return (proto == WPA_PROTO_RSN ?
  1253. RSN_CIPHER_SUITE_TKIP : WPA_CIPHER_SUITE_TKIP);
  1254. if (cipher & WPA_CIPHER_NONE)
  1255. return (proto == WPA_PROTO_RSN ?
  1256. RSN_CIPHER_SUITE_NONE : WPA_CIPHER_SUITE_NONE);
  1257. if (cipher & WPA_CIPHER_GTK_NOT_USED)
  1258. return RSN_CIPHER_SUITE_NO_GROUP_ADDRESSED;
  1259. if (cipher & WPA_CIPHER_AES_128_CMAC)
  1260. return RSN_CIPHER_SUITE_AES_128_CMAC;
  1261. if (cipher & WPA_CIPHER_BIP_GMAC_128)
  1262. return RSN_CIPHER_SUITE_BIP_GMAC_128;
  1263. if (cipher & WPA_CIPHER_BIP_GMAC_256)
  1264. return RSN_CIPHER_SUITE_BIP_GMAC_256;
  1265. if (cipher & WPA_CIPHER_BIP_CMAC_256)
  1266. return RSN_CIPHER_SUITE_BIP_CMAC_256;
  1267. return 0;
  1268. }
  1269. int rsn_cipher_put_suites(u8 *start, int ciphers)
  1270. {
  1271. u8 *pos = start;
  1272. if (ciphers & WPA_CIPHER_CCMP_256) {
  1273. RSN_SELECTOR_PUT(pos, RSN_CIPHER_SUITE_CCMP_256);
  1274. pos += RSN_SELECTOR_LEN;
  1275. }
  1276. if (ciphers & WPA_CIPHER_GCMP_256) {
  1277. RSN_SELECTOR_PUT(pos, RSN_CIPHER_SUITE_GCMP_256);
  1278. pos += RSN_SELECTOR_LEN;
  1279. }
  1280. if (ciphers & WPA_CIPHER_CCMP) {
  1281. RSN_SELECTOR_PUT(pos, RSN_CIPHER_SUITE_CCMP);
  1282. pos += RSN_SELECTOR_LEN;
  1283. }
  1284. if (ciphers & WPA_CIPHER_GCMP) {
  1285. RSN_SELECTOR_PUT(pos, RSN_CIPHER_SUITE_GCMP);
  1286. pos += RSN_SELECTOR_LEN;
  1287. }
  1288. if (ciphers & WPA_CIPHER_TKIP) {
  1289. RSN_SELECTOR_PUT(pos, RSN_CIPHER_SUITE_TKIP);
  1290. pos += RSN_SELECTOR_LEN;
  1291. }
  1292. if (ciphers & WPA_CIPHER_NONE) {
  1293. RSN_SELECTOR_PUT(pos, RSN_CIPHER_SUITE_NONE);
  1294. pos += RSN_SELECTOR_LEN;
  1295. }
  1296. return (pos - start) / RSN_SELECTOR_LEN;
  1297. }
  1298. int wpa_cipher_put_suites(u8 *start, int ciphers)
  1299. {
  1300. u8 *pos = start;
  1301. if (ciphers & WPA_CIPHER_CCMP) {
  1302. RSN_SELECTOR_PUT(pos, WPA_CIPHER_SUITE_CCMP);
  1303. pos += WPA_SELECTOR_LEN;
  1304. }
  1305. if (ciphers & WPA_CIPHER_TKIP) {
  1306. RSN_SELECTOR_PUT(pos, WPA_CIPHER_SUITE_TKIP);
  1307. pos += WPA_SELECTOR_LEN;
  1308. }
  1309. if (ciphers & WPA_CIPHER_NONE) {
  1310. RSN_SELECTOR_PUT(pos, WPA_CIPHER_SUITE_NONE);
  1311. pos += WPA_SELECTOR_LEN;
  1312. }
  1313. return (pos - start) / RSN_SELECTOR_LEN;
  1314. }
  1315. int wpa_pick_pairwise_cipher(int ciphers, int none_allowed)
  1316. {
  1317. if (ciphers & WPA_CIPHER_CCMP_256)
  1318. return WPA_CIPHER_CCMP_256;
  1319. if (ciphers & WPA_CIPHER_GCMP_256)
  1320. return WPA_CIPHER_GCMP_256;
  1321. if (ciphers & WPA_CIPHER_CCMP)
  1322. return WPA_CIPHER_CCMP;
  1323. if (ciphers & WPA_CIPHER_GCMP)
  1324. return WPA_CIPHER_GCMP;
  1325. if (ciphers & WPA_CIPHER_TKIP)
  1326. return WPA_CIPHER_TKIP;
  1327. if (none_allowed && (ciphers & WPA_CIPHER_NONE))
  1328. return WPA_CIPHER_NONE;
  1329. return -1;
  1330. }
  1331. int wpa_pick_group_cipher(int ciphers)
  1332. {
  1333. if (ciphers & WPA_CIPHER_CCMP_256)
  1334. return WPA_CIPHER_CCMP_256;
  1335. if (ciphers & WPA_CIPHER_GCMP_256)
  1336. return WPA_CIPHER_GCMP_256;
  1337. if (ciphers & WPA_CIPHER_CCMP)
  1338. return WPA_CIPHER_CCMP;
  1339. if (ciphers & WPA_CIPHER_GCMP)
  1340. return WPA_CIPHER_GCMP;
  1341. if (ciphers & WPA_CIPHER_GTK_NOT_USED)
  1342. return WPA_CIPHER_GTK_NOT_USED;
  1343. if (ciphers & WPA_CIPHER_TKIP)
  1344. return WPA_CIPHER_TKIP;
  1345. return -1;
  1346. }
  1347. int wpa_parse_cipher(const char *value)
  1348. {
  1349. int val = 0, last;
  1350. char *start, *end, *buf;
  1351. buf = os_strdup(value);
  1352. if (buf == NULL)
  1353. return -1;
  1354. start = buf;
  1355. while (*start != '\0') {
  1356. while (*start == ' ' || *start == '\t')
  1357. start++;
  1358. if (*start == '\0')
  1359. break;
  1360. end = start;
  1361. while (*end != ' ' && *end != '\t' && *end != '\0')
  1362. end++;
  1363. last = *end == '\0';
  1364. *end = '\0';
  1365. if (os_strcmp(start, "CCMP-256") == 0)
  1366. val |= WPA_CIPHER_CCMP_256;
  1367. else if (os_strcmp(start, "GCMP-256") == 0)
  1368. val |= WPA_CIPHER_GCMP_256;
  1369. else if (os_strcmp(start, "CCMP") == 0)
  1370. val |= WPA_CIPHER_CCMP;
  1371. else if (os_strcmp(start, "GCMP") == 0)
  1372. val |= WPA_CIPHER_GCMP;
  1373. else if (os_strcmp(start, "TKIP") == 0)
  1374. val |= WPA_CIPHER_TKIP;
  1375. else if (os_strcmp(start, "WEP104") == 0)
  1376. val |= WPA_CIPHER_WEP104;
  1377. else if (os_strcmp(start, "WEP40") == 0)
  1378. val |= WPA_CIPHER_WEP40;
  1379. else if (os_strcmp(start, "NONE") == 0)
  1380. val |= WPA_CIPHER_NONE;
  1381. else if (os_strcmp(start, "GTK_NOT_USED") == 0)
  1382. val |= WPA_CIPHER_GTK_NOT_USED;
  1383. else {
  1384. os_free(buf);
  1385. return -1;
  1386. }
  1387. if (last)
  1388. break;
  1389. start = end + 1;
  1390. }
  1391. os_free(buf);
  1392. return val;
  1393. }
  1394. int wpa_write_ciphers(char *start, char *end, int ciphers, const char *delim)
  1395. {
  1396. char *pos = start;
  1397. int ret;
  1398. if (ciphers & WPA_CIPHER_CCMP_256) {
  1399. ret = os_snprintf(pos, end - pos, "%sCCMP-256",
  1400. pos == start ? "" : delim);
  1401. if (os_snprintf_error(end - pos, ret))
  1402. return -1;
  1403. pos += ret;
  1404. }
  1405. if (ciphers & WPA_CIPHER_GCMP_256) {
  1406. ret = os_snprintf(pos, end - pos, "%sGCMP-256",
  1407. pos == start ? "" : delim);
  1408. if (os_snprintf_error(end - pos, ret))
  1409. return -1;
  1410. pos += ret;
  1411. }
  1412. if (ciphers & WPA_CIPHER_CCMP) {
  1413. ret = os_snprintf(pos, end - pos, "%sCCMP",
  1414. pos == start ? "" : delim);
  1415. if (os_snprintf_error(end - pos, ret))
  1416. return -1;
  1417. pos += ret;
  1418. }
  1419. if (ciphers & WPA_CIPHER_GCMP) {
  1420. ret = os_snprintf(pos, end - pos, "%sGCMP",
  1421. pos == start ? "" : delim);
  1422. if (os_snprintf_error(end - pos, ret))
  1423. return -1;
  1424. pos += ret;
  1425. }
  1426. if (ciphers & WPA_CIPHER_TKIP) {
  1427. ret = os_snprintf(pos, end - pos, "%sTKIP",
  1428. pos == start ? "" : delim);
  1429. if (os_snprintf_error(end - pos, ret))
  1430. return -1;
  1431. pos += ret;
  1432. }
  1433. if (ciphers & WPA_CIPHER_NONE) {
  1434. ret = os_snprintf(pos, end - pos, "%sNONE",
  1435. pos == start ? "" : delim);
  1436. if (os_snprintf_error(end - pos, ret))
  1437. return -1;
  1438. pos += ret;
  1439. }
  1440. return pos - start;
  1441. }
  1442. int wpa_select_ap_group_cipher(int wpa, int wpa_pairwise, int rsn_pairwise)
  1443. {
  1444. int pairwise = 0;
  1445. /* Select group cipher based on the enabled pairwise cipher suites */
  1446. if (wpa & 1)
  1447. pairwise |= wpa_pairwise;
  1448. if (wpa & 2)
  1449. pairwise |= rsn_pairwise;
  1450. if (pairwise & WPA_CIPHER_TKIP)
  1451. return WPA_CIPHER_TKIP;
  1452. if ((pairwise & (WPA_CIPHER_CCMP | WPA_CIPHER_GCMP)) == WPA_CIPHER_GCMP)
  1453. return WPA_CIPHER_GCMP;
  1454. if ((pairwise & (WPA_CIPHER_GCMP_256 | WPA_CIPHER_CCMP |
  1455. WPA_CIPHER_GCMP)) == WPA_CIPHER_GCMP_256)
  1456. return WPA_CIPHER_GCMP_256;
  1457. if ((pairwise & (WPA_CIPHER_CCMP_256 | WPA_CIPHER_CCMP |
  1458. WPA_CIPHER_GCMP)) == WPA_CIPHER_CCMP_256)
  1459. return WPA_CIPHER_CCMP_256;
  1460. return WPA_CIPHER_CCMP;
  1461. }