ap.c 31 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214
  1. /*
  2. * WPA Supplicant - Basic AP mode support routines
  3. * Copyright (c) 2003-2009, Jouni Malinen <j@w1.fi>
  4. * Copyright (c) 2009, Atheros Communications
  5. *
  6. * This software may be distributed under the terms of the BSD license.
  7. * See README for more details.
  8. */
  9. #include "utils/includes.h"
  10. #include "utils/common.h"
  11. #include "utils/eloop.h"
  12. #include "utils/uuid.h"
  13. #include "common/ieee802_11_defs.h"
  14. #include "common/wpa_ctrl.h"
  15. #include "eapol_supp/eapol_supp_sm.h"
  16. #include "crypto/dh_group5.h"
  17. #include "ap/hostapd.h"
  18. #include "ap/ap_config.h"
  19. #include "ap/ap_drv_ops.h"
  20. #ifdef NEED_AP_MLME
  21. #include "ap/ieee802_11.h"
  22. #endif /* NEED_AP_MLME */
  23. #include "ap/beacon.h"
  24. #include "ap/ieee802_1x.h"
  25. #include "ap/wps_hostapd.h"
  26. #include "ap/ctrl_iface_ap.h"
  27. #include "wps/wps.h"
  28. #include "common/ieee802_11_defs.h"
  29. #include "config_ssid.h"
  30. #include "config.h"
  31. #include "wpa_supplicant_i.h"
  32. #include "driver_i.h"
  33. #include "p2p_supplicant.h"
  34. #include "ap.h"
  35. #include "ap/sta_info.h"
  36. #include "notify.h"
  37. #ifdef CONFIG_WPS
  38. static void wpas_wps_ap_pin_timeout(void *eloop_data, void *user_ctx);
  39. #endif /* CONFIG_WPS */
  40. #ifdef CONFIG_IEEE80211N
  41. static void wpas_conf_ap_vht(struct wpa_supplicant *wpa_s,
  42. struct hostapd_config *conf,
  43. struct hostapd_hw_modes *mode)
  44. {
  45. u8 center_chan = 0;
  46. u8 channel = conf->channel;
  47. if (!conf->secondary_channel)
  48. goto no_vht;
  49. center_chan = wpas_p2p_get_vht80_center(wpa_s, mode, channel);
  50. if (!center_chan)
  51. goto no_vht;
  52. /* Use 80 MHz channel */
  53. conf->vht_oper_chwidth = 1;
  54. conf->vht_oper_centr_freq_seg0_idx = center_chan;
  55. return;
  56. no_vht:
  57. conf->vht_oper_centr_freq_seg0_idx =
  58. channel + conf->secondary_channel * 2;
  59. }
  60. #endif /* CONFIG_IEEE80211N */
  61. static int wpa_supplicant_conf_ap(struct wpa_supplicant *wpa_s,
  62. struct wpa_ssid *ssid,
  63. struct hostapd_config *conf)
  64. {
  65. struct hostapd_bss_config *bss = conf->bss[0];
  66. conf->driver = wpa_s->driver;
  67. os_strlcpy(bss->iface, wpa_s->ifname, sizeof(bss->iface));
  68. conf->hw_mode = ieee80211_freq_to_chan(ssid->frequency,
  69. &conf->channel);
  70. if (conf->hw_mode == NUM_HOSTAPD_MODES) {
  71. wpa_printf(MSG_ERROR, "Unsupported AP mode frequency: %d MHz",
  72. ssid->frequency);
  73. return -1;
  74. }
  75. /* TODO: enable HT40 if driver supports it;
  76. * drop to 11b if driver does not support 11g */
  77. #ifdef CONFIG_IEEE80211N
  78. /*
  79. * Enable HT20 if the driver supports it, by setting conf->ieee80211n
  80. * and a mask of allowed capabilities within conf->ht_capab.
  81. * Using default config settings for: conf->ht_op_mode_fixed,
  82. * conf->secondary_channel, conf->require_ht
  83. */
  84. if (wpa_s->hw.modes) {
  85. struct hostapd_hw_modes *mode = NULL;
  86. int i, no_ht = 0;
  87. for (i = 0; i < wpa_s->hw.num_modes; i++) {
  88. if (wpa_s->hw.modes[i].mode == conf->hw_mode) {
  89. mode = &wpa_s->hw.modes[i];
  90. break;
  91. }
  92. }
  93. #ifdef CONFIG_HT_OVERRIDES
  94. if (ssid->disable_ht) {
  95. conf->ieee80211n = 0;
  96. conf->ht_capab = 0;
  97. no_ht = 1;
  98. }
  99. #endif /* CONFIG_HT_OVERRIDES */
  100. if (!no_ht && mode && mode->ht_capab) {
  101. conf->ieee80211n = 1;
  102. #ifdef CONFIG_P2P
  103. if (conf->hw_mode == HOSTAPD_MODE_IEEE80211A &&
  104. (mode->ht_capab &
  105. HT_CAP_INFO_SUPP_CHANNEL_WIDTH_SET) &&
  106. ssid->ht40)
  107. conf->secondary_channel =
  108. wpas_p2p_get_ht40_mode(wpa_s, mode,
  109. conf->channel);
  110. if (conf->secondary_channel)
  111. conf->ht_capab |=
  112. HT_CAP_INFO_SUPP_CHANNEL_WIDTH_SET;
  113. #endif /* CONFIG_P2P */
  114. /*
  115. * white-list capabilities that won't cause issues
  116. * to connecting stations, while leaving the current
  117. * capabilities intact (currently disabled SMPS).
  118. */
  119. conf->ht_capab |= mode->ht_capab &
  120. (HT_CAP_INFO_GREEN_FIELD |
  121. HT_CAP_INFO_SHORT_GI20MHZ |
  122. HT_CAP_INFO_SHORT_GI40MHZ |
  123. HT_CAP_INFO_RX_STBC_MASK |
  124. HT_CAP_INFO_MAX_AMSDU_SIZE);
  125. if (mode->vht_capab && ssid->vht) {
  126. conf->ieee80211ac = 1;
  127. wpas_conf_ap_vht(wpa_s, conf, mode);
  128. }
  129. }
  130. }
  131. #endif /* CONFIG_IEEE80211N */
  132. #ifdef CONFIG_P2P
  133. if (conf->hw_mode == HOSTAPD_MODE_IEEE80211G &&
  134. (ssid->mode == WPAS_MODE_P2P_GO ||
  135. ssid->mode == WPAS_MODE_P2P_GROUP_FORMATION)) {
  136. /* Remove 802.11b rates from supported and basic rate sets */
  137. int *list = os_malloc(4 * sizeof(int));
  138. if (list) {
  139. list[0] = 60;
  140. list[1] = 120;
  141. list[2] = 240;
  142. list[3] = -1;
  143. }
  144. conf->basic_rates = list;
  145. list = os_malloc(9 * sizeof(int));
  146. if (list) {
  147. list[0] = 60;
  148. list[1] = 90;
  149. list[2] = 120;
  150. list[3] = 180;
  151. list[4] = 240;
  152. list[5] = 360;
  153. list[6] = 480;
  154. list[7] = 540;
  155. list[8] = -1;
  156. }
  157. conf->supported_rates = list;
  158. }
  159. bss->isolate = !wpa_s->conf->p2p_intra_bss;
  160. bss->force_per_enrollee_psk = wpa_s->global->p2p_per_sta_psk;
  161. if (ssid->p2p_group) {
  162. os_memcpy(bss->ip_addr_go, wpa_s->parent->conf->ip_addr_go, 4);
  163. os_memcpy(bss->ip_addr_mask, wpa_s->parent->conf->ip_addr_mask,
  164. 4);
  165. os_memcpy(bss->ip_addr_start,
  166. wpa_s->parent->conf->ip_addr_start, 4);
  167. os_memcpy(bss->ip_addr_end, wpa_s->parent->conf->ip_addr_end,
  168. 4);
  169. }
  170. #endif /* CONFIG_P2P */
  171. if (ssid->ssid_len == 0) {
  172. wpa_printf(MSG_ERROR, "No SSID configured for AP mode");
  173. return -1;
  174. }
  175. os_memcpy(bss->ssid.ssid, ssid->ssid, ssid->ssid_len);
  176. bss->ssid.ssid_len = ssid->ssid_len;
  177. bss->ssid.ssid_set = 1;
  178. bss->ignore_broadcast_ssid = ssid->ignore_broadcast_ssid;
  179. if (ssid->auth_alg)
  180. bss->auth_algs = ssid->auth_alg;
  181. if (wpa_key_mgmt_wpa_psk(ssid->key_mgmt))
  182. bss->wpa = ssid->proto;
  183. bss->wpa_key_mgmt = ssid->key_mgmt;
  184. bss->wpa_pairwise = ssid->pairwise_cipher;
  185. if (ssid->psk_set) {
  186. os_free(bss->ssid.wpa_psk);
  187. bss->ssid.wpa_psk = os_zalloc(sizeof(struct hostapd_wpa_psk));
  188. if (bss->ssid.wpa_psk == NULL)
  189. return -1;
  190. os_memcpy(bss->ssid.wpa_psk->psk, ssid->psk, PMK_LEN);
  191. bss->ssid.wpa_psk->group = 1;
  192. } else if (ssid->passphrase) {
  193. bss->ssid.wpa_passphrase = os_strdup(ssid->passphrase);
  194. } else if (ssid->wep_key_len[0] || ssid->wep_key_len[1] ||
  195. ssid->wep_key_len[2] || ssid->wep_key_len[3]) {
  196. struct hostapd_wep_keys *wep = &bss->ssid.wep;
  197. int i;
  198. for (i = 0; i < NUM_WEP_KEYS; i++) {
  199. if (ssid->wep_key_len[i] == 0)
  200. continue;
  201. wep->key[i] = os_malloc(ssid->wep_key_len[i]);
  202. if (wep->key[i] == NULL)
  203. return -1;
  204. os_memcpy(wep->key[i], ssid->wep_key[i],
  205. ssid->wep_key_len[i]);
  206. wep->len[i] = ssid->wep_key_len[i];
  207. }
  208. wep->idx = ssid->wep_tx_keyidx;
  209. wep->keys_set = 1;
  210. }
  211. if (ssid->ap_max_inactivity)
  212. bss->ap_max_inactivity = ssid->ap_max_inactivity;
  213. if (ssid->dtim_period)
  214. bss->dtim_period = ssid->dtim_period;
  215. else if (wpa_s->conf->dtim_period)
  216. bss->dtim_period = wpa_s->conf->dtim_period;
  217. if (ssid->beacon_int)
  218. conf->beacon_int = ssid->beacon_int;
  219. else if (wpa_s->conf->beacon_int)
  220. conf->beacon_int = wpa_s->conf->beacon_int;
  221. if ((bss->wpa & 2) && bss->rsn_pairwise == 0)
  222. bss->rsn_pairwise = bss->wpa_pairwise;
  223. bss->wpa_group = wpa_select_ap_group_cipher(bss->wpa, bss->wpa_pairwise,
  224. bss->rsn_pairwise);
  225. if (bss->wpa && bss->ieee802_1x)
  226. bss->ssid.security_policy = SECURITY_WPA;
  227. else if (bss->wpa)
  228. bss->ssid.security_policy = SECURITY_WPA_PSK;
  229. else if (bss->ieee802_1x) {
  230. int cipher = WPA_CIPHER_NONE;
  231. bss->ssid.security_policy = SECURITY_IEEE_802_1X;
  232. bss->ssid.wep.default_len = bss->default_wep_key_len;
  233. if (bss->default_wep_key_len)
  234. cipher = bss->default_wep_key_len >= 13 ?
  235. WPA_CIPHER_WEP104 : WPA_CIPHER_WEP40;
  236. bss->wpa_group = cipher;
  237. bss->wpa_pairwise = cipher;
  238. bss->rsn_pairwise = cipher;
  239. } else if (bss->ssid.wep.keys_set) {
  240. int cipher = WPA_CIPHER_WEP40;
  241. if (bss->ssid.wep.len[0] >= 13)
  242. cipher = WPA_CIPHER_WEP104;
  243. bss->ssid.security_policy = SECURITY_STATIC_WEP;
  244. bss->wpa_group = cipher;
  245. bss->wpa_pairwise = cipher;
  246. bss->rsn_pairwise = cipher;
  247. } else {
  248. bss->ssid.security_policy = SECURITY_PLAINTEXT;
  249. bss->wpa_group = WPA_CIPHER_NONE;
  250. bss->wpa_pairwise = WPA_CIPHER_NONE;
  251. bss->rsn_pairwise = WPA_CIPHER_NONE;
  252. }
  253. if (bss->wpa_group_rekey < 86400 && (bss->wpa & 2) &&
  254. (bss->wpa_group == WPA_CIPHER_CCMP ||
  255. bss->wpa_group == WPA_CIPHER_GCMP ||
  256. bss->wpa_group == WPA_CIPHER_CCMP_256 ||
  257. bss->wpa_group == WPA_CIPHER_GCMP_256)) {
  258. /*
  259. * Strong ciphers do not need frequent rekeying, so increase
  260. * the default GTK rekeying period to 24 hours.
  261. */
  262. bss->wpa_group_rekey = 86400;
  263. }
  264. #ifdef CONFIG_IEEE80211W
  265. if (ssid->ieee80211w != MGMT_FRAME_PROTECTION_DEFAULT)
  266. bss->ieee80211w = ssid->ieee80211w;
  267. #endif /* CONFIG_IEEE80211W */
  268. #ifdef CONFIG_WPS
  269. /*
  270. * Enable WPS by default for open and WPA/WPA2-Personal network, but
  271. * require user interaction to actually use it. Only the internal
  272. * Registrar is supported.
  273. */
  274. if (bss->ssid.security_policy != SECURITY_WPA_PSK &&
  275. bss->ssid.security_policy != SECURITY_PLAINTEXT)
  276. goto no_wps;
  277. if (bss->ssid.security_policy == SECURITY_WPA_PSK &&
  278. (!(bss->rsn_pairwise & WPA_CIPHER_CCMP) || !(bss->wpa & 2)))
  279. goto no_wps; /* WPS2 does not allow WPA/TKIP-only
  280. * configuration */
  281. bss->eap_server = 1;
  282. if (!ssid->ignore_broadcast_ssid)
  283. bss->wps_state = 2;
  284. bss->ap_setup_locked = 2;
  285. if (wpa_s->conf->config_methods)
  286. bss->config_methods = os_strdup(wpa_s->conf->config_methods);
  287. os_memcpy(bss->device_type, wpa_s->conf->device_type,
  288. WPS_DEV_TYPE_LEN);
  289. if (wpa_s->conf->device_name) {
  290. bss->device_name = os_strdup(wpa_s->conf->device_name);
  291. bss->friendly_name = os_strdup(wpa_s->conf->device_name);
  292. }
  293. if (wpa_s->conf->manufacturer)
  294. bss->manufacturer = os_strdup(wpa_s->conf->manufacturer);
  295. if (wpa_s->conf->model_name)
  296. bss->model_name = os_strdup(wpa_s->conf->model_name);
  297. if (wpa_s->conf->model_number)
  298. bss->model_number = os_strdup(wpa_s->conf->model_number);
  299. if (wpa_s->conf->serial_number)
  300. bss->serial_number = os_strdup(wpa_s->conf->serial_number);
  301. if (is_nil_uuid(wpa_s->conf->uuid))
  302. os_memcpy(bss->uuid, wpa_s->wps->uuid, WPS_UUID_LEN);
  303. else
  304. os_memcpy(bss->uuid, wpa_s->conf->uuid, WPS_UUID_LEN);
  305. os_memcpy(bss->os_version, wpa_s->conf->os_version, 4);
  306. bss->pbc_in_m1 = wpa_s->conf->pbc_in_m1;
  307. no_wps:
  308. #endif /* CONFIG_WPS */
  309. if (wpa_s->max_stations &&
  310. wpa_s->max_stations < wpa_s->conf->max_num_sta)
  311. bss->max_num_sta = wpa_s->max_stations;
  312. else
  313. bss->max_num_sta = wpa_s->conf->max_num_sta;
  314. bss->disassoc_low_ack = wpa_s->conf->disassoc_low_ack;
  315. if (wpa_s->conf->ap_vendor_elements) {
  316. bss->vendor_elements =
  317. wpabuf_dup(wpa_s->conf->ap_vendor_elements);
  318. }
  319. return 0;
  320. }
  321. static void ap_public_action_rx(void *ctx, const u8 *buf, size_t len, int freq)
  322. {
  323. #ifdef CONFIG_P2P
  324. struct wpa_supplicant *wpa_s = ctx;
  325. const struct ieee80211_mgmt *mgmt;
  326. size_t hdr_len;
  327. mgmt = (const struct ieee80211_mgmt *) buf;
  328. hdr_len = (const u8 *) &mgmt->u.action.u.vs_public_action.action - buf;
  329. if (hdr_len > len)
  330. return;
  331. if (mgmt->u.action.category != WLAN_ACTION_PUBLIC)
  332. return;
  333. wpas_p2p_rx_action(wpa_s, mgmt->da, mgmt->sa, mgmt->bssid,
  334. mgmt->u.action.category,
  335. &mgmt->u.action.u.vs_public_action.action,
  336. len - hdr_len, freq);
  337. #endif /* CONFIG_P2P */
  338. }
  339. static void ap_wps_event_cb(void *ctx, enum wps_event event,
  340. union wps_event_data *data)
  341. {
  342. #ifdef CONFIG_P2P
  343. struct wpa_supplicant *wpa_s = ctx;
  344. if (event == WPS_EV_FAIL) {
  345. struct wps_event_fail *fail = &data->fail;
  346. if (wpa_s->parent && wpa_s->parent != wpa_s &&
  347. wpa_s == wpa_s->global->p2p_group_formation) {
  348. /*
  349. * src/ap/wps_hostapd.c has already sent this on the
  350. * main interface, so only send on the parent interface
  351. * here if needed.
  352. */
  353. wpa_msg(wpa_s->parent, MSG_INFO, WPS_EVENT_FAIL
  354. "msg=%d config_error=%d",
  355. fail->msg, fail->config_error);
  356. }
  357. wpas_p2p_wps_failed(wpa_s, fail);
  358. }
  359. #endif /* CONFIG_P2P */
  360. }
  361. static void ap_sta_authorized_cb(void *ctx, const u8 *mac_addr,
  362. int authorized, const u8 *p2p_dev_addr)
  363. {
  364. wpas_notify_sta_authorized(ctx, mac_addr, authorized, p2p_dev_addr);
  365. }
  366. #ifdef CONFIG_P2P
  367. static void ap_new_psk_cb(void *ctx, const u8 *mac_addr, const u8 *p2p_dev_addr,
  368. const u8 *psk, size_t psk_len)
  369. {
  370. struct wpa_supplicant *wpa_s = ctx;
  371. if (wpa_s->ap_iface == NULL || wpa_s->current_ssid == NULL)
  372. return;
  373. wpas_p2p_new_psk_cb(wpa_s, mac_addr, p2p_dev_addr, psk, psk_len);
  374. }
  375. #endif /* CONFIG_P2P */
  376. static int ap_vendor_action_rx(void *ctx, const u8 *buf, size_t len, int freq)
  377. {
  378. #ifdef CONFIG_P2P
  379. struct wpa_supplicant *wpa_s = ctx;
  380. const struct ieee80211_mgmt *mgmt;
  381. size_t hdr_len;
  382. mgmt = (const struct ieee80211_mgmt *) buf;
  383. hdr_len = (const u8 *) &mgmt->u.action.u.vs_public_action.action - buf;
  384. if (hdr_len > len)
  385. return -1;
  386. wpas_p2p_rx_action(wpa_s, mgmt->da, mgmt->sa, mgmt->bssid,
  387. mgmt->u.action.category,
  388. &mgmt->u.action.u.vs_public_action.action,
  389. len - hdr_len, freq);
  390. #endif /* CONFIG_P2P */
  391. return 0;
  392. }
  393. static int ap_probe_req_rx(void *ctx, const u8 *sa, const u8 *da,
  394. const u8 *bssid, const u8 *ie, size_t ie_len,
  395. int ssi_signal)
  396. {
  397. #ifdef CONFIG_P2P
  398. struct wpa_supplicant *wpa_s = ctx;
  399. return wpas_p2p_probe_req_rx(wpa_s, sa, da, bssid, ie, ie_len,
  400. ssi_signal);
  401. #else /* CONFIG_P2P */
  402. return 0;
  403. #endif /* CONFIG_P2P */
  404. }
  405. static void ap_wps_reg_success_cb(void *ctx, const u8 *mac_addr,
  406. const u8 *uuid_e)
  407. {
  408. #ifdef CONFIG_P2P
  409. struct wpa_supplicant *wpa_s = ctx;
  410. wpas_p2p_wps_success(wpa_s, mac_addr, 1);
  411. #endif /* CONFIG_P2P */
  412. }
  413. static void wpas_ap_configured_cb(void *ctx)
  414. {
  415. struct wpa_supplicant *wpa_s = ctx;
  416. wpa_supplicant_set_state(wpa_s, WPA_COMPLETED);
  417. if (wpa_s->ap_configured_cb)
  418. wpa_s->ap_configured_cb(wpa_s->ap_configured_cb_ctx,
  419. wpa_s->ap_configured_cb_data);
  420. }
  421. int wpa_supplicant_create_ap(struct wpa_supplicant *wpa_s,
  422. struct wpa_ssid *ssid)
  423. {
  424. struct wpa_driver_associate_params params;
  425. struct hostapd_iface *hapd_iface;
  426. struct hostapd_config *conf;
  427. size_t i;
  428. if (ssid->ssid == NULL || ssid->ssid_len == 0) {
  429. wpa_printf(MSG_ERROR, "No SSID configured for AP mode");
  430. return -1;
  431. }
  432. wpa_supplicant_ap_deinit(wpa_s);
  433. wpa_printf(MSG_DEBUG, "Setting up AP (SSID='%s')",
  434. wpa_ssid_txt(ssid->ssid, ssid->ssid_len));
  435. os_memset(&params, 0, sizeof(params));
  436. params.ssid = ssid->ssid;
  437. params.ssid_len = ssid->ssid_len;
  438. switch (ssid->mode) {
  439. case WPAS_MODE_AP:
  440. case WPAS_MODE_P2P_GO:
  441. case WPAS_MODE_P2P_GROUP_FORMATION:
  442. params.mode = IEEE80211_MODE_AP;
  443. break;
  444. default:
  445. return -1;
  446. }
  447. if (ssid->frequency == 0)
  448. ssid->frequency = 2462; /* default channel 11 */
  449. params.freq = ssid->frequency;
  450. params.wpa_proto = ssid->proto;
  451. if (ssid->key_mgmt & WPA_KEY_MGMT_PSK)
  452. wpa_s->key_mgmt = WPA_KEY_MGMT_PSK;
  453. else
  454. wpa_s->key_mgmt = WPA_KEY_MGMT_NONE;
  455. params.key_mgmt_suite = wpa_s->key_mgmt;
  456. wpa_s->pairwise_cipher = wpa_pick_pairwise_cipher(ssid->pairwise_cipher,
  457. 1);
  458. if (wpa_s->pairwise_cipher < 0) {
  459. wpa_printf(MSG_WARNING, "WPA: Failed to select pairwise "
  460. "cipher.");
  461. return -1;
  462. }
  463. params.pairwise_suite = wpa_s->pairwise_cipher;
  464. params.group_suite = params.pairwise_suite;
  465. #ifdef CONFIG_P2P
  466. if (ssid->mode == WPAS_MODE_P2P_GO ||
  467. ssid->mode == WPAS_MODE_P2P_GROUP_FORMATION)
  468. params.p2p = 1;
  469. #endif /* CONFIG_P2P */
  470. if (wpa_s->parent->set_ap_uapsd)
  471. params.uapsd = wpa_s->parent->ap_uapsd;
  472. else if (params.p2p && (wpa_s->drv_flags & WPA_DRIVER_FLAGS_AP_UAPSD))
  473. params.uapsd = 1; /* mandatory for P2P GO */
  474. else
  475. params.uapsd = -1;
  476. if (wpa_drv_associate(wpa_s, &params) < 0) {
  477. wpa_msg(wpa_s, MSG_INFO, "Failed to start AP functionality");
  478. return -1;
  479. }
  480. wpa_s->ap_iface = hapd_iface = os_zalloc(sizeof(*wpa_s->ap_iface));
  481. if (hapd_iface == NULL)
  482. return -1;
  483. hapd_iface->owner = wpa_s;
  484. hapd_iface->drv_flags = wpa_s->drv_flags;
  485. hapd_iface->probe_resp_offloads = wpa_s->probe_resp_offloads;
  486. hapd_iface->extended_capa = wpa_s->extended_capa;
  487. hapd_iface->extended_capa_mask = wpa_s->extended_capa_mask;
  488. hapd_iface->extended_capa_len = wpa_s->extended_capa_len;
  489. wpa_s->ap_iface->conf = conf = hostapd_config_defaults();
  490. if (conf == NULL) {
  491. wpa_supplicant_ap_deinit(wpa_s);
  492. return -1;
  493. }
  494. os_memcpy(wpa_s->ap_iface->conf->wmm_ac_params,
  495. wpa_s->conf->wmm_ac_params,
  496. sizeof(wpa_s->conf->wmm_ac_params));
  497. if (params.uapsd > 0) {
  498. conf->bss[0]->wmm_enabled = 1;
  499. conf->bss[0]->wmm_uapsd = 1;
  500. }
  501. if (wpa_supplicant_conf_ap(wpa_s, ssid, conf)) {
  502. wpa_printf(MSG_ERROR, "Failed to create AP configuration");
  503. wpa_supplicant_ap_deinit(wpa_s);
  504. return -1;
  505. }
  506. #ifdef CONFIG_P2P
  507. if (ssid->mode == WPAS_MODE_P2P_GO)
  508. conf->bss[0]->p2p = P2P_ENABLED | P2P_GROUP_OWNER;
  509. else if (ssid->mode == WPAS_MODE_P2P_GROUP_FORMATION)
  510. conf->bss[0]->p2p = P2P_ENABLED | P2P_GROUP_OWNER |
  511. P2P_GROUP_FORMATION;
  512. #endif /* CONFIG_P2P */
  513. hapd_iface->num_bss = conf->num_bss;
  514. hapd_iface->bss = os_calloc(conf->num_bss,
  515. sizeof(struct hostapd_data *));
  516. if (hapd_iface->bss == NULL) {
  517. wpa_supplicant_ap_deinit(wpa_s);
  518. return -1;
  519. }
  520. for (i = 0; i < conf->num_bss; i++) {
  521. hapd_iface->bss[i] =
  522. hostapd_alloc_bss_data(hapd_iface, conf,
  523. conf->bss[i]);
  524. if (hapd_iface->bss[i] == NULL) {
  525. wpa_supplicant_ap_deinit(wpa_s);
  526. return -1;
  527. }
  528. hapd_iface->bss[i]->msg_ctx = wpa_s;
  529. hapd_iface->bss[i]->msg_ctx_parent = wpa_s->parent;
  530. hapd_iface->bss[i]->public_action_cb = ap_public_action_rx;
  531. hapd_iface->bss[i]->public_action_cb_ctx = wpa_s;
  532. hapd_iface->bss[i]->vendor_action_cb = ap_vendor_action_rx;
  533. hapd_iface->bss[i]->vendor_action_cb_ctx = wpa_s;
  534. hostapd_register_probereq_cb(hapd_iface->bss[i],
  535. ap_probe_req_rx, wpa_s);
  536. hapd_iface->bss[i]->wps_reg_success_cb = ap_wps_reg_success_cb;
  537. hapd_iface->bss[i]->wps_reg_success_cb_ctx = wpa_s;
  538. hapd_iface->bss[i]->wps_event_cb = ap_wps_event_cb;
  539. hapd_iface->bss[i]->wps_event_cb_ctx = wpa_s;
  540. hapd_iface->bss[i]->sta_authorized_cb = ap_sta_authorized_cb;
  541. hapd_iface->bss[i]->sta_authorized_cb_ctx = wpa_s;
  542. #ifdef CONFIG_P2P
  543. hapd_iface->bss[i]->new_psk_cb = ap_new_psk_cb;
  544. hapd_iface->bss[i]->new_psk_cb_ctx = wpa_s;
  545. hapd_iface->bss[i]->p2p = wpa_s->global->p2p;
  546. hapd_iface->bss[i]->p2p_group = wpas_p2p_group_init(wpa_s,
  547. ssid);
  548. #endif /* CONFIG_P2P */
  549. hapd_iface->bss[i]->setup_complete_cb = wpas_ap_configured_cb;
  550. hapd_iface->bss[i]->setup_complete_cb_ctx = wpa_s;
  551. }
  552. os_memcpy(hapd_iface->bss[0]->own_addr, wpa_s->own_addr, ETH_ALEN);
  553. hapd_iface->bss[0]->driver = wpa_s->driver;
  554. hapd_iface->bss[0]->drv_priv = wpa_s->drv_priv;
  555. wpa_s->current_ssid = ssid;
  556. eapol_sm_notify_config(wpa_s->eapol, NULL, NULL);
  557. os_memcpy(wpa_s->bssid, wpa_s->own_addr, ETH_ALEN);
  558. wpa_s->assoc_freq = ssid->frequency;
  559. if (hostapd_setup_interface(wpa_s->ap_iface)) {
  560. wpa_printf(MSG_ERROR, "Failed to initialize AP interface");
  561. wpa_supplicant_ap_deinit(wpa_s);
  562. return -1;
  563. }
  564. return 0;
  565. }
  566. void wpa_supplicant_ap_deinit(struct wpa_supplicant *wpa_s)
  567. {
  568. #ifdef CONFIG_WPS
  569. eloop_cancel_timeout(wpas_wps_ap_pin_timeout, wpa_s, NULL);
  570. #endif /* CONFIG_WPS */
  571. if (wpa_s->ap_iface == NULL)
  572. return;
  573. wpa_s->current_ssid = NULL;
  574. eapol_sm_notify_config(wpa_s->eapol, NULL, NULL);
  575. wpa_s->assoc_freq = 0;
  576. #ifdef CONFIG_P2P
  577. if (wpa_s->ap_iface->bss)
  578. wpa_s->ap_iface->bss[0]->p2p_group = NULL;
  579. wpas_p2p_group_deinit(wpa_s);
  580. #endif /* CONFIG_P2P */
  581. wpa_s->ap_iface->driver_ap_teardown =
  582. !!(wpa_s->drv_flags & WPA_DRIVER_FLAGS_AP_TEARDOWN_SUPPORT);
  583. hostapd_interface_deinit(wpa_s->ap_iface);
  584. hostapd_interface_free(wpa_s->ap_iface);
  585. wpa_s->ap_iface = NULL;
  586. wpa_drv_deinit_ap(wpa_s);
  587. }
  588. void ap_tx_status(void *ctx, const u8 *addr,
  589. const u8 *buf, size_t len, int ack)
  590. {
  591. #ifdef NEED_AP_MLME
  592. struct wpa_supplicant *wpa_s = ctx;
  593. hostapd_tx_status(wpa_s->ap_iface->bss[0], addr, buf, len, ack);
  594. #endif /* NEED_AP_MLME */
  595. }
  596. void ap_eapol_tx_status(void *ctx, const u8 *dst,
  597. const u8 *data, size_t len, int ack)
  598. {
  599. #ifdef NEED_AP_MLME
  600. struct wpa_supplicant *wpa_s = ctx;
  601. if (!wpa_s->ap_iface)
  602. return;
  603. hostapd_tx_status(wpa_s->ap_iface->bss[0], dst, data, len, ack);
  604. #endif /* NEED_AP_MLME */
  605. }
  606. void ap_client_poll_ok(void *ctx, const u8 *addr)
  607. {
  608. #ifdef NEED_AP_MLME
  609. struct wpa_supplicant *wpa_s = ctx;
  610. if (wpa_s->ap_iface)
  611. hostapd_client_poll_ok(wpa_s->ap_iface->bss[0], addr);
  612. #endif /* NEED_AP_MLME */
  613. }
  614. void ap_rx_from_unknown_sta(void *ctx, const u8 *addr, int wds)
  615. {
  616. #ifdef NEED_AP_MLME
  617. struct wpa_supplicant *wpa_s = ctx;
  618. ieee802_11_rx_from_unknown(wpa_s->ap_iface->bss[0], addr, wds);
  619. #endif /* NEED_AP_MLME */
  620. }
  621. void ap_mgmt_rx(void *ctx, struct rx_mgmt *rx_mgmt)
  622. {
  623. #ifdef NEED_AP_MLME
  624. struct wpa_supplicant *wpa_s = ctx;
  625. struct hostapd_frame_info fi;
  626. os_memset(&fi, 0, sizeof(fi));
  627. fi.datarate = rx_mgmt->datarate;
  628. fi.ssi_signal = rx_mgmt->ssi_signal;
  629. ieee802_11_mgmt(wpa_s->ap_iface->bss[0], rx_mgmt->frame,
  630. rx_mgmt->frame_len, &fi);
  631. #endif /* NEED_AP_MLME */
  632. }
  633. void ap_mgmt_tx_cb(void *ctx, const u8 *buf, size_t len, u16 stype, int ok)
  634. {
  635. #ifdef NEED_AP_MLME
  636. struct wpa_supplicant *wpa_s = ctx;
  637. ieee802_11_mgmt_cb(wpa_s->ap_iface->bss[0], buf, len, stype, ok);
  638. #endif /* NEED_AP_MLME */
  639. }
  640. void wpa_supplicant_ap_rx_eapol(struct wpa_supplicant *wpa_s,
  641. const u8 *src_addr, const u8 *buf, size_t len)
  642. {
  643. ieee802_1x_receive(wpa_s->ap_iface->bss[0], src_addr, buf, len);
  644. }
  645. #ifdef CONFIG_WPS
  646. int wpa_supplicant_ap_wps_pbc(struct wpa_supplicant *wpa_s, const u8 *bssid,
  647. const u8 *p2p_dev_addr)
  648. {
  649. if (!wpa_s->ap_iface)
  650. return -1;
  651. return hostapd_wps_button_pushed(wpa_s->ap_iface->bss[0],
  652. p2p_dev_addr);
  653. }
  654. int wpa_supplicant_ap_wps_cancel(struct wpa_supplicant *wpa_s)
  655. {
  656. struct wps_registrar *reg;
  657. int reg_sel = 0, wps_sta = 0;
  658. if (!wpa_s->ap_iface || !wpa_s->ap_iface->bss[0]->wps)
  659. return -1;
  660. reg = wpa_s->ap_iface->bss[0]->wps->registrar;
  661. reg_sel = wps_registrar_wps_cancel(reg);
  662. wps_sta = ap_for_each_sta(wpa_s->ap_iface->bss[0],
  663. ap_sta_wps_cancel, NULL);
  664. if (!reg_sel && !wps_sta) {
  665. wpa_printf(MSG_DEBUG, "No WPS operation in progress at this "
  666. "time");
  667. return -1;
  668. }
  669. /*
  670. * There are 2 cases to return wps cancel as success:
  671. * 1. When wps cancel was initiated but no connection has been
  672. * established with client yet.
  673. * 2. Client is in the middle of exchanging WPS messages.
  674. */
  675. return 0;
  676. }
  677. int wpa_supplicant_ap_wps_pin(struct wpa_supplicant *wpa_s, const u8 *bssid,
  678. const char *pin, char *buf, size_t buflen,
  679. int timeout)
  680. {
  681. int ret, ret_len = 0;
  682. if (!wpa_s->ap_iface)
  683. return -1;
  684. if (pin == NULL) {
  685. unsigned int rpin = wps_generate_pin();
  686. ret_len = os_snprintf(buf, buflen, "%08d", rpin);
  687. pin = buf;
  688. } else
  689. ret_len = os_snprintf(buf, buflen, "%s", pin);
  690. ret = hostapd_wps_add_pin(wpa_s->ap_iface->bss[0], bssid, "any", pin,
  691. timeout);
  692. if (ret)
  693. return -1;
  694. return ret_len;
  695. }
  696. static void wpas_wps_ap_pin_timeout(void *eloop_data, void *user_ctx)
  697. {
  698. struct wpa_supplicant *wpa_s = eloop_data;
  699. wpa_printf(MSG_DEBUG, "WPS: AP PIN timed out");
  700. wpas_wps_ap_pin_disable(wpa_s);
  701. }
  702. static void wpas_wps_ap_pin_enable(struct wpa_supplicant *wpa_s, int timeout)
  703. {
  704. struct hostapd_data *hapd;
  705. if (wpa_s->ap_iface == NULL)
  706. return;
  707. hapd = wpa_s->ap_iface->bss[0];
  708. wpa_printf(MSG_DEBUG, "WPS: Enabling AP PIN (timeout=%d)", timeout);
  709. hapd->ap_pin_failures = 0;
  710. eloop_cancel_timeout(wpas_wps_ap_pin_timeout, wpa_s, NULL);
  711. if (timeout > 0)
  712. eloop_register_timeout(timeout, 0,
  713. wpas_wps_ap_pin_timeout, wpa_s, NULL);
  714. }
  715. void wpas_wps_ap_pin_disable(struct wpa_supplicant *wpa_s)
  716. {
  717. struct hostapd_data *hapd;
  718. if (wpa_s->ap_iface == NULL)
  719. return;
  720. wpa_printf(MSG_DEBUG, "WPS: Disabling AP PIN");
  721. hapd = wpa_s->ap_iface->bss[0];
  722. os_free(hapd->conf->ap_pin);
  723. hapd->conf->ap_pin = NULL;
  724. eloop_cancel_timeout(wpas_wps_ap_pin_timeout, wpa_s, NULL);
  725. }
  726. const char * wpas_wps_ap_pin_random(struct wpa_supplicant *wpa_s, int timeout)
  727. {
  728. struct hostapd_data *hapd;
  729. unsigned int pin;
  730. char pin_txt[9];
  731. if (wpa_s->ap_iface == NULL)
  732. return NULL;
  733. hapd = wpa_s->ap_iface->bss[0];
  734. pin = wps_generate_pin();
  735. os_snprintf(pin_txt, sizeof(pin_txt), "%08u", pin);
  736. os_free(hapd->conf->ap_pin);
  737. hapd->conf->ap_pin = os_strdup(pin_txt);
  738. if (hapd->conf->ap_pin == NULL)
  739. return NULL;
  740. wpas_wps_ap_pin_enable(wpa_s, timeout);
  741. return hapd->conf->ap_pin;
  742. }
  743. const char * wpas_wps_ap_pin_get(struct wpa_supplicant *wpa_s)
  744. {
  745. struct hostapd_data *hapd;
  746. if (wpa_s->ap_iface == NULL)
  747. return NULL;
  748. hapd = wpa_s->ap_iface->bss[0];
  749. return hapd->conf->ap_pin;
  750. }
  751. int wpas_wps_ap_pin_set(struct wpa_supplicant *wpa_s, const char *pin,
  752. int timeout)
  753. {
  754. struct hostapd_data *hapd;
  755. char pin_txt[9];
  756. int ret;
  757. if (wpa_s->ap_iface == NULL)
  758. return -1;
  759. hapd = wpa_s->ap_iface->bss[0];
  760. ret = os_snprintf(pin_txt, sizeof(pin_txt), "%s", pin);
  761. if (ret < 0 || ret >= (int) sizeof(pin_txt))
  762. return -1;
  763. os_free(hapd->conf->ap_pin);
  764. hapd->conf->ap_pin = os_strdup(pin_txt);
  765. if (hapd->conf->ap_pin == NULL)
  766. return -1;
  767. wpas_wps_ap_pin_enable(wpa_s, timeout);
  768. return 0;
  769. }
  770. void wpa_supplicant_ap_pwd_auth_fail(struct wpa_supplicant *wpa_s)
  771. {
  772. struct hostapd_data *hapd;
  773. if (wpa_s->ap_iface == NULL)
  774. return;
  775. hapd = wpa_s->ap_iface->bss[0];
  776. /*
  777. * Registrar failed to prove its knowledge of the AP PIN. Disable AP
  778. * PIN if this happens multiple times to slow down brute force attacks.
  779. */
  780. hapd->ap_pin_failures++;
  781. wpa_printf(MSG_DEBUG, "WPS: AP PIN authentication failure number %u",
  782. hapd->ap_pin_failures);
  783. if (hapd->ap_pin_failures < 3)
  784. return;
  785. wpa_printf(MSG_DEBUG, "WPS: Disable AP PIN");
  786. hapd->ap_pin_failures = 0;
  787. os_free(hapd->conf->ap_pin);
  788. hapd->conf->ap_pin = NULL;
  789. }
  790. #ifdef CONFIG_WPS_NFC
  791. struct wpabuf * wpas_ap_wps_nfc_config_token(struct wpa_supplicant *wpa_s,
  792. int ndef)
  793. {
  794. struct hostapd_data *hapd;
  795. if (wpa_s->ap_iface == NULL)
  796. return NULL;
  797. hapd = wpa_s->ap_iface->bss[0];
  798. return hostapd_wps_nfc_config_token(hapd, ndef);
  799. }
  800. struct wpabuf * wpas_ap_wps_nfc_handover_sel(struct wpa_supplicant *wpa_s,
  801. int ndef)
  802. {
  803. struct hostapd_data *hapd;
  804. if (wpa_s->ap_iface == NULL)
  805. return NULL;
  806. hapd = wpa_s->ap_iface->bss[0];
  807. return hostapd_wps_nfc_hs_cr(hapd, ndef);
  808. }
  809. int wpas_ap_wps_nfc_report_handover(struct wpa_supplicant *wpa_s,
  810. const struct wpabuf *req,
  811. const struct wpabuf *sel)
  812. {
  813. struct hostapd_data *hapd;
  814. if (wpa_s->ap_iface == NULL)
  815. return -1;
  816. hapd = wpa_s->ap_iface->bss[0];
  817. return hostapd_wps_nfc_report_handover(hapd, req, sel);
  818. }
  819. #endif /* CONFIG_WPS_NFC */
  820. #endif /* CONFIG_WPS */
  821. #ifdef CONFIG_CTRL_IFACE
  822. int ap_ctrl_iface_sta_first(struct wpa_supplicant *wpa_s,
  823. char *buf, size_t buflen)
  824. {
  825. if (wpa_s->ap_iface == NULL)
  826. return -1;
  827. return hostapd_ctrl_iface_sta_first(wpa_s->ap_iface->bss[0],
  828. buf, buflen);
  829. }
  830. int ap_ctrl_iface_sta(struct wpa_supplicant *wpa_s, const char *txtaddr,
  831. char *buf, size_t buflen)
  832. {
  833. if (wpa_s->ap_iface == NULL)
  834. return -1;
  835. return hostapd_ctrl_iface_sta(wpa_s->ap_iface->bss[0], txtaddr,
  836. buf, buflen);
  837. }
  838. int ap_ctrl_iface_sta_next(struct wpa_supplicant *wpa_s, const char *txtaddr,
  839. char *buf, size_t buflen)
  840. {
  841. if (wpa_s->ap_iface == NULL)
  842. return -1;
  843. return hostapd_ctrl_iface_sta_next(wpa_s->ap_iface->bss[0], txtaddr,
  844. buf, buflen);
  845. }
  846. int ap_ctrl_iface_sta_disassociate(struct wpa_supplicant *wpa_s,
  847. const char *txtaddr)
  848. {
  849. if (wpa_s->ap_iface == NULL)
  850. return -1;
  851. return hostapd_ctrl_iface_disassociate(wpa_s->ap_iface->bss[0],
  852. txtaddr);
  853. }
  854. int ap_ctrl_iface_sta_deauthenticate(struct wpa_supplicant *wpa_s,
  855. const char *txtaddr)
  856. {
  857. if (wpa_s->ap_iface == NULL)
  858. return -1;
  859. return hostapd_ctrl_iface_deauthenticate(wpa_s->ap_iface->bss[0],
  860. txtaddr);
  861. }
  862. int ap_ctrl_iface_wpa_get_status(struct wpa_supplicant *wpa_s, char *buf,
  863. size_t buflen, int verbose)
  864. {
  865. char *pos = buf, *end = buf + buflen;
  866. int ret;
  867. struct hostapd_bss_config *conf;
  868. if (wpa_s->ap_iface == NULL)
  869. return -1;
  870. conf = wpa_s->ap_iface->bss[0]->conf;
  871. if (conf->wpa == 0)
  872. return 0;
  873. ret = os_snprintf(pos, end - pos,
  874. "pairwise_cipher=%s\n"
  875. "group_cipher=%s\n"
  876. "key_mgmt=%s\n",
  877. wpa_cipher_txt(conf->rsn_pairwise),
  878. wpa_cipher_txt(conf->wpa_group),
  879. wpa_key_mgmt_txt(conf->wpa_key_mgmt,
  880. conf->wpa));
  881. if (ret < 0 || ret >= end - pos)
  882. return pos - buf;
  883. pos += ret;
  884. return pos - buf;
  885. }
  886. #endif /* CONFIG_CTRL_IFACE */
  887. int wpa_supplicant_ap_update_beacon(struct wpa_supplicant *wpa_s)
  888. {
  889. struct hostapd_iface *iface = wpa_s->ap_iface;
  890. struct wpa_ssid *ssid = wpa_s->current_ssid;
  891. struct hostapd_data *hapd;
  892. if (ssid == NULL || wpa_s->ap_iface == NULL ||
  893. ssid->mode == WPAS_MODE_INFRA ||
  894. ssid->mode == WPAS_MODE_IBSS)
  895. return -1;
  896. #ifdef CONFIG_P2P
  897. if (ssid->mode == WPAS_MODE_P2P_GO)
  898. iface->conf->bss[0]->p2p = P2P_ENABLED | P2P_GROUP_OWNER;
  899. else if (ssid->mode == WPAS_MODE_P2P_GROUP_FORMATION)
  900. iface->conf->bss[0]->p2p = P2P_ENABLED | P2P_GROUP_OWNER |
  901. P2P_GROUP_FORMATION;
  902. #endif /* CONFIG_P2P */
  903. hapd = iface->bss[0];
  904. if (hapd->drv_priv == NULL)
  905. return -1;
  906. ieee802_11_set_beacons(iface);
  907. hostapd_set_ap_wps_ie(hapd);
  908. return 0;
  909. }
  910. int ap_switch_channel(struct wpa_supplicant *wpa_s,
  911. struct csa_settings *settings)
  912. {
  913. #ifdef NEED_AP_MLME
  914. if (!wpa_s->ap_iface || !wpa_s->ap_iface->bss[0])
  915. return -1;
  916. return hostapd_switch_channel(wpa_s->ap_iface->bss[0], settings);
  917. #else /* NEED_AP_MLME */
  918. return -1;
  919. #endif /* NEED_AP_MLME */
  920. }
  921. int ap_ctrl_iface_chanswitch(struct wpa_supplicant *wpa_s, const char *pos)
  922. {
  923. struct csa_settings settings;
  924. int ret = hostapd_parse_csa_settings(pos, &settings);
  925. if (ret)
  926. return ret;
  927. return ap_switch_channel(wpa_s, &settings);
  928. }
  929. void wpas_ap_ch_switch(struct wpa_supplicant *wpa_s, int freq, int ht,
  930. int offset, int width, int cf1, int cf2)
  931. {
  932. if (!wpa_s->ap_iface)
  933. return;
  934. wpa_s->assoc_freq = freq;
  935. hostapd_event_ch_switch(wpa_s->ap_iface->bss[0], freq, ht, offset, width, cf1, cf1);
  936. }
  937. int wpa_supplicant_ap_mac_addr_filter(struct wpa_supplicant *wpa_s,
  938. const u8 *addr)
  939. {
  940. struct hostapd_data *hapd;
  941. struct hostapd_bss_config *conf;
  942. if (!wpa_s->ap_iface)
  943. return -1;
  944. if (addr)
  945. wpa_printf(MSG_DEBUG, "AP: Set MAC address filter: " MACSTR,
  946. MAC2STR(addr));
  947. else
  948. wpa_printf(MSG_DEBUG, "AP: Clear MAC address filter");
  949. hapd = wpa_s->ap_iface->bss[0];
  950. conf = hapd->conf;
  951. os_free(conf->accept_mac);
  952. conf->accept_mac = NULL;
  953. conf->num_accept_mac = 0;
  954. os_free(conf->deny_mac);
  955. conf->deny_mac = NULL;
  956. conf->num_deny_mac = 0;
  957. if (addr == NULL) {
  958. conf->macaddr_acl = ACCEPT_UNLESS_DENIED;
  959. return 0;
  960. }
  961. conf->macaddr_acl = DENY_UNLESS_ACCEPTED;
  962. conf->accept_mac = os_zalloc(sizeof(struct mac_acl_entry));
  963. if (conf->accept_mac == NULL)
  964. return -1;
  965. os_memcpy(conf->accept_mac[0].addr, addr, ETH_ALEN);
  966. conf->num_accept_mac = 1;
  967. return 0;
  968. }
  969. #ifdef CONFIG_WPS_NFC
  970. int wpas_ap_wps_add_nfc_pw(struct wpa_supplicant *wpa_s, u16 pw_id,
  971. const struct wpabuf *pw, const u8 *pubkey_hash)
  972. {
  973. struct hostapd_data *hapd;
  974. struct wps_context *wps;
  975. if (!wpa_s->ap_iface)
  976. return -1;
  977. hapd = wpa_s->ap_iface->bss[0];
  978. wps = hapd->wps;
  979. if (wpa_s->parent->conf->wps_nfc_dh_pubkey == NULL ||
  980. wpa_s->parent->conf->wps_nfc_dh_privkey == NULL) {
  981. wpa_printf(MSG_DEBUG, "P2P: No NFC DH key known");
  982. return -1;
  983. }
  984. dh5_free(wps->dh_ctx);
  985. wpabuf_free(wps->dh_pubkey);
  986. wpabuf_free(wps->dh_privkey);
  987. wps->dh_privkey = wpabuf_dup(
  988. wpa_s->parent->conf->wps_nfc_dh_privkey);
  989. wps->dh_pubkey = wpabuf_dup(
  990. wpa_s->parent->conf->wps_nfc_dh_pubkey);
  991. if (wps->dh_privkey == NULL || wps->dh_pubkey == NULL) {
  992. wps->dh_ctx = NULL;
  993. wpabuf_free(wps->dh_pubkey);
  994. wps->dh_pubkey = NULL;
  995. wpabuf_free(wps->dh_privkey);
  996. wps->dh_privkey = NULL;
  997. return -1;
  998. }
  999. wps->dh_ctx = dh5_init_fixed(wps->dh_privkey, wps->dh_pubkey);
  1000. if (wps->dh_ctx == NULL)
  1001. return -1;
  1002. return wps_registrar_add_nfc_pw_token(hapd->wps->registrar, pubkey_hash,
  1003. pw_id,
  1004. pw ? wpabuf_head(pw) : NULL,
  1005. pw ? wpabuf_len(pw) : 0, 1);
  1006. }
  1007. #endif /* CONFIG_WPS_NFC */