ap.c 26 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027
  1. /*
  2. * WPA Supplicant - Basic AP mode support routines
  3. * Copyright (c) 2003-2009, Jouni Malinen <j@w1.fi>
  4. * Copyright (c) 2009, Atheros Communications
  5. *
  6. * This software may be distributed under the terms of the BSD license.
  7. * See README for more details.
  8. */
  9. #include "utils/includes.h"
  10. #include "utils/common.h"
  11. #include "utils/eloop.h"
  12. #include "utils/uuid.h"
  13. #include "common/ieee802_11_defs.h"
  14. #include "common/wpa_ctrl.h"
  15. #include "ap/hostapd.h"
  16. #include "ap/ap_config.h"
  17. #include "ap/ap_drv_ops.h"
  18. #ifdef NEED_AP_MLME
  19. #include "ap/ieee802_11.h"
  20. #endif /* NEED_AP_MLME */
  21. #include "ap/beacon.h"
  22. #include "ap/ieee802_1x.h"
  23. #include "ap/wps_hostapd.h"
  24. #include "ap/ctrl_iface_ap.h"
  25. #include "wps/wps.h"
  26. #include "common/ieee802_11_defs.h"
  27. #include "config_ssid.h"
  28. #include "config.h"
  29. #include "wpa_supplicant_i.h"
  30. #include "driver_i.h"
  31. #include "p2p_supplicant.h"
  32. #include "ap.h"
  33. #include "ap/sta_info.h"
  34. #include "notify.h"
  35. #ifdef CONFIG_WPS
  36. static void wpas_wps_ap_pin_timeout(void *eloop_data, void *user_ctx);
  37. #endif /* CONFIG_WPS */
  38. static int wpa_supplicant_conf_ap(struct wpa_supplicant *wpa_s,
  39. struct wpa_ssid *ssid,
  40. struct hostapd_config *conf)
  41. {
  42. struct hostapd_bss_config *bss = &conf->bss[0];
  43. conf->driver = wpa_s->driver;
  44. os_strlcpy(bss->iface, wpa_s->ifname, sizeof(bss->iface));
  45. if (ssid->frequency == 0) {
  46. /* default channel 11 */
  47. conf->hw_mode = HOSTAPD_MODE_IEEE80211G;
  48. conf->channel = 11;
  49. } else if (ssid->frequency >= 2412 && ssid->frequency <= 2472) {
  50. conf->hw_mode = HOSTAPD_MODE_IEEE80211G;
  51. conf->channel = (ssid->frequency - 2407) / 5;
  52. } else if ((ssid->frequency >= 5180 && ssid->frequency <= 5240) ||
  53. (ssid->frequency >= 5745 && ssid->frequency <= 5825)) {
  54. conf->hw_mode = HOSTAPD_MODE_IEEE80211A;
  55. conf->channel = (ssid->frequency - 5000) / 5;
  56. } else if (ssid->frequency >= 56160 + 2160 * 1 &&
  57. ssid->frequency <= 56160 + 2160 * 4) {
  58. conf->hw_mode = HOSTAPD_MODE_IEEE80211AD;
  59. conf->channel = (ssid->frequency - 56160) / 2160;
  60. } else {
  61. wpa_printf(MSG_ERROR, "Unsupported AP mode frequency: %d MHz",
  62. ssid->frequency);
  63. return -1;
  64. }
  65. /* TODO: enable HT40 if driver supports it;
  66. * drop to 11b if driver does not support 11g */
  67. #ifdef CONFIG_IEEE80211N
  68. /*
  69. * Enable HT20 if the driver supports it, by setting conf->ieee80211n
  70. * and a mask of allowed capabilities within conf->ht_capab.
  71. * Using default config settings for: conf->ht_op_mode_fixed,
  72. * conf->secondary_channel, conf->require_ht
  73. */
  74. if (wpa_s->hw.modes) {
  75. struct hostapd_hw_modes *mode = NULL;
  76. int i, no_ht = 0;
  77. for (i = 0; i < wpa_s->hw.num_modes; i++) {
  78. if (wpa_s->hw.modes[i].mode == conf->hw_mode) {
  79. mode = &wpa_s->hw.modes[i];
  80. break;
  81. }
  82. }
  83. #ifdef CONFIG_HT_OVERRIDES
  84. if (ssid->disable_ht) {
  85. conf->ieee80211n = 0;
  86. conf->ht_capab = 0;
  87. no_ht = 1;
  88. }
  89. #endif /* CONFIG_HT_OVERRIDES */
  90. if (!no_ht && mode && mode->ht_capab) {
  91. conf->ieee80211n = 1;
  92. #ifdef CONFIG_P2P
  93. if (conf->hw_mode == HOSTAPD_MODE_IEEE80211A &&
  94. (mode->ht_capab &
  95. HT_CAP_INFO_SUPP_CHANNEL_WIDTH_SET) &&
  96. ssid->ht40)
  97. conf->secondary_channel =
  98. wpas_p2p_get_ht40_mode(wpa_s, mode,
  99. conf->channel);
  100. if (conf->secondary_channel)
  101. conf->ht_capab |=
  102. HT_CAP_INFO_SUPP_CHANNEL_WIDTH_SET;
  103. #endif /* CONFIG_P2P */
  104. /*
  105. * white-list capabilities that won't cause issues
  106. * to connecting stations, while leaving the current
  107. * capabilities intact (currently disabled SMPS).
  108. */
  109. conf->ht_capab |= mode->ht_capab &
  110. (HT_CAP_INFO_GREEN_FIELD |
  111. HT_CAP_INFO_SHORT_GI20MHZ |
  112. HT_CAP_INFO_SHORT_GI40MHZ |
  113. HT_CAP_INFO_RX_STBC_MASK |
  114. HT_CAP_INFO_MAX_AMSDU_SIZE);
  115. }
  116. }
  117. #endif /* CONFIG_IEEE80211N */
  118. #ifdef CONFIG_P2P
  119. if (conf->hw_mode == HOSTAPD_MODE_IEEE80211G) {
  120. /* Remove 802.11b rates from supported and basic rate sets */
  121. int *list = os_malloc(4 * sizeof(int));
  122. if (list) {
  123. list[0] = 60;
  124. list[1] = 120;
  125. list[2] = 240;
  126. list[3] = -1;
  127. }
  128. conf->basic_rates = list;
  129. list = os_malloc(9 * sizeof(int));
  130. if (list) {
  131. list[0] = 60;
  132. list[1] = 90;
  133. list[2] = 120;
  134. list[3] = 180;
  135. list[4] = 240;
  136. list[5] = 360;
  137. list[6] = 480;
  138. list[7] = 540;
  139. list[8] = -1;
  140. }
  141. conf->supported_rates = list;
  142. }
  143. bss->isolate = !wpa_s->conf->p2p_intra_bss;
  144. #endif /* CONFIG_P2P */
  145. if (ssid->ssid_len == 0) {
  146. wpa_printf(MSG_ERROR, "No SSID configured for AP mode");
  147. return -1;
  148. }
  149. os_memcpy(bss->ssid.ssid, ssid->ssid, ssid->ssid_len);
  150. bss->ssid.ssid_len = ssid->ssid_len;
  151. bss->ssid.ssid_set = 1;
  152. bss->ignore_broadcast_ssid = ssid->ignore_broadcast_ssid;
  153. if (ssid->auth_alg)
  154. bss->auth_algs = ssid->auth_alg;
  155. if (wpa_key_mgmt_wpa_psk(ssid->key_mgmt))
  156. bss->wpa = ssid->proto;
  157. bss->wpa_key_mgmt = ssid->key_mgmt;
  158. bss->wpa_pairwise = ssid->pairwise_cipher;
  159. if (ssid->psk_set) {
  160. os_free(bss->ssid.wpa_psk);
  161. bss->ssid.wpa_psk = os_zalloc(sizeof(struct hostapd_wpa_psk));
  162. if (bss->ssid.wpa_psk == NULL)
  163. return -1;
  164. os_memcpy(bss->ssid.wpa_psk->psk, ssid->psk, PMK_LEN);
  165. bss->ssid.wpa_psk->group = 1;
  166. } else if (ssid->passphrase) {
  167. bss->ssid.wpa_passphrase = os_strdup(ssid->passphrase);
  168. } else if (ssid->wep_key_len[0] || ssid->wep_key_len[1] ||
  169. ssid->wep_key_len[2] || ssid->wep_key_len[3]) {
  170. struct hostapd_wep_keys *wep = &bss->ssid.wep;
  171. int i;
  172. for (i = 0; i < NUM_WEP_KEYS; i++) {
  173. if (ssid->wep_key_len[i] == 0)
  174. continue;
  175. wep->key[i] = os_malloc(ssid->wep_key_len[i]);
  176. if (wep->key[i] == NULL)
  177. return -1;
  178. os_memcpy(wep->key[i], ssid->wep_key[i],
  179. ssid->wep_key_len[i]);
  180. wep->len[i] = ssid->wep_key_len[i];
  181. }
  182. wep->idx = ssid->wep_tx_keyidx;
  183. wep->keys_set = 1;
  184. }
  185. if (ssid->ap_max_inactivity)
  186. bss->ap_max_inactivity = ssid->ap_max_inactivity;
  187. if (ssid->dtim_period)
  188. bss->dtim_period = ssid->dtim_period;
  189. if ((bss->wpa & 2) && bss->rsn_pairwise == 0)
  190. bss->rsn_pairwise = bss->wpa_pairwise;
  191. bss->wpa_group = wpa_select_ap_group_cipher(bss->wpa, bss->wpa_pairwise,
  192. bss->rsn_pairwise);
  193. if (bss->wpa && bss->ieee802_1x)
  194. bss->ssid.security_policy = SECURITY_WPA;
  195. else if (bss->wpa)
  196. bss->ssid.security_policy = SECURITY_WPA_PSK;
  197. else if (bss->ieee802_1x) {
  198. int cipher = WPA_CIPHER_NONE;
  199. bss->ssid.security_policy = SECURITY_IEEE_802_1X;
  200. bss->ssid.wep.default_len = bss->default_wep_key_len;
  201. if (bss->default_wep_key_len)
  202. cipher = bss->default_wep_key_len >= 13 ?
  203. WPA_CIPHER_WEP104 : WPA_CIPHER_WEP40;
  204. bss->wpa_group = cipher;
  205. bss->wpa_pairwise = cipher;
  206. bss->rsn_pairwise = cipher;
  207. } else if (bss->ssid.wep.keys_set) {
  208. int cipher = WPA_CIPHER_WEP40;
  209. if (bss->ssid.wep.len[0] >= 13)
  210. cipher = WPA_CIPHER_WEP104;
  211. bss->ssid.security_policy = SECURITY_STATIC_WEP;
  212. bss->wpa_group = cipher;
  213. bss->wpa_pairwise = cipher;
  214. bss->rsn_pairwise = cipher;
  215. } else {
  216. bss->ssid.security_policy = SECURITY_PLAINTEXT;
  217. bss->wpa_group = WPA_CIPHER_NONE;
  218. bss->wpa_pairwise = WPA_CIPHER_NONE;
  219. bss->rsn_pairwise = WPA_CIPHER_NONE;
  220. }
  221. #ifdef CONFIG_WPS
  222. /*
  223. * Enable WPS by default for open and WPA/WPA2-Personal network, but
  224. * require user interaction to actually use it. Only the internal
  225. * Registrar is supported.
  226. */
  227. if (bss->ssid.security_policy != SECURITY_WPA_PSK &&
  228. bss->ssid.security_policy != SECURITY_PLAINTEXT)
  229. goto no_wps;
  230. #ifdef CONFIG_WPS2
  231. if (bss->ssid.security_policy == SECURITY_WPA_PSK &&
  232. (!(bss->rsn_pairwise & WPA_CIPHER_CCMP) || !(bss->wpa & 2)))
  233. goto no_wps; /* WPS2 does not allow WPA/TKIP-only
  234. * configuration */
  235. #endif /* CONFIG_WPS2 */
  236. bss->eap_server = 1;
  237. if (!ssid->ignore_broadcast_ssid)
  238. bss->wps_state = 2;
  239. bss->ap_setup_locked = 2;
  240. if (wpa_s->conf->config_methods)
  241. bss->config_methods = os_strdup(wpa_s->conf->config_methods);
  242. os_memcpy(bss->device_type, wpa_s->conf->device_type,
  243. WPS_DEV_TYPE_LEN);
  244. if (wpa_s->conf->device_name) {
  245. bss->device_name = os_strdup(wpa_s->conf->device_name);
  246. bss->friendly_name = os_strdup(wpa_s->conf->device_name);
  247. }
  248. if (wpa_s->conf->manufacturer)
  249. bss->manufacturer = os_strdup(wpa_s->conf->manufacturer);
  250. if (wpa_s->conf->model_name)
  251. bss->model_name = os_strdup(wpa_s->conf->model_name);
  252. if (wpa_s->conf->model_number)
  253. bss->model_number = os_strdup(wpa_s->conf->model_number);
  254. if (wpa_s->conf->serial_number)
  255. bss->serial_number = os_strdup(wpa_s->conf->serial_number);
  256. if (is_nil_uuid(wpa_s->conf->uuid))
  257. os_memcpy(bss->uuid, wpa_s->wps->uuid, WPS_UUID_LEN);
  258. else
  259. os_memcpy(bss->uuid, wpa_s->conf->uuid, WPS_UUID_LEN);
  260. os_memcpy(bss->os_version, wpa_s->conf->os_version, 4);
  261. bss->pbc_in_m1 = wpa_s->conf->pbc_in_m1;
  262. no_wps:
  263. #endif /* CONFIG_WPS */
  264. if (wpa_s->max_stations &&
  265. wpa_s->max_stations < wpa_s->conf->max_num_sta)
  266. bss->max_num_sta = wpa_s->max_stations;
  267. else
  268. bss->max_num_sta = wpa_s->conf->max_num_sta;
  269. bss->disassoc_low_ack = wpa_s->conf->disassoc_low_ack;
  270. return 0;
  271. }
  272. static void ap_public_action_rx(void *ctx, const u8 *buf, size_t len, int freq)
  273. {
  274. #ifdef CONFIG_P2P
  275. struct wpa_supplicant *wpa_s = ctx;
  276. const struct ieee80211_mgmt *mgmt;
  277. size_t hdr_len;
  278. mgmt = (const struct ieee80211_mgmt *) buf;
  279. hdr_len = (const u8 *) &mgmt->u.action.u.vs_public_action.action - buf;
  280. if (hdr_len > len)
  281. return;
  282. wpas_p2p_rx_action(wpa_s, mgmt->da, mgmt->sa, mgmt->bssid,
  283. mgmt->u.action.category,
  284. &mgmt->u.action.u.vs_public_action.action,
  285. len - hdr_len, freq);
  286. #endif /* CONFIG_P2P */
  287. }
  288. static void ap_wps_event_cb(void *ctx, enum wps_event event,
  289. union wps_event_data *data)
  290. {
  291. #ifdef CONFIG_P2P
  292. struct wpa_supplicant *wpa_s = ctx;
  293. if (event == WPS_EV_FAIL) {
  294. struct wps_event_fail *fail = &data->fail;
  295. if (wpa_s->parent && wpa_s->parent != wpa_s &&
  296. wpa_s == wpa_s->global->p2p_group_formation) {
  297. /*
  298. * src/ap/wps_hostapd.c has already sent this on the
  299. * main interface, so only send on the parent interface
  300. * here if needed.
  301. */
  302. wpa_msg(wpa_s->parent, MSG_INFO, WPS_EVENT_FAIL
  303. "msg=%d config_error=%d",
  304. fail->msg, fail->config_error);
  305. }
  306. wpas_p2p_wps_failed(wpa_s, fail);
  307. }
  308. #endif /* CONFIG_P2P */
  309. }
  310. static void ap_sta_authorized_cb(void *ctx, const u8 *mac_addr,
  311. int authorized, const u8 *p2p_dev_addr)
  312. {
  313. wpas_notify_sta_authorized(ctx, mac_addr, authorized, p2p_dev_addr);
  314. }
  315. static int ap_vendor_action_rx(void *ctx, const u8 *buf, size_t len, int freq)
  316. {
  317. #ifdef CONFIG_P2P
  318. struct wpa_supplicant *wpa_s = ctx;
  319. const struct ieee80211_mgmt *mgmt;
  320. size_t hdr_len;
  321. mgmt = (const struct ieee80211_mgmt *) buf;
  322. hdr_len = (const u8 *) &mgmt->u.action.u.vs_public_action.action - buf;
  323. if (hdr_len > len)
  324. return -1;
  325. wpas_p2p_rx_action(wpa_s, mgmt->da, mgmt->sa, mgmt->bssid,
  326. mgmt->u.action.category,
  327. &mgmt->u.action.u.vs_public_action.action,
  328. len - hdr_len, freq);
  329. #endif /* CONFIG_P2P */
  330. return 0;
  331. }
  332. static int ap_probe_req_rx(void *ctx, const u8 *sa, const u8 *da,
  333. const u8 *bssid, const u8 *ie, size_t ie_len,
  334. int ssi_signal)
  335. {
  336. #ifdef CONFIG_P2P
  337. struct wpa_supplicant *wpa_s = ctx;
  338. return wpas_p2p_probe_req_rx(wpa_s, sa, da, bssid, ie, ie_len,
  339. ssi_signal);
  340. #else /* CONFIG_P2P */
  341. return 0;
  342. #endif /* CONFIG_P2P */
  343. }
  344. static void ap_wps_reg_success_cb(void *ctx, const u8 *mac_addr,
  345. const u8 *uuid_e)
  346. {
  347. #ifdef CONFIG_P2P
  348. struct wpa_supplicant *wpa_s = ctx;
  349. wpas_p2p_wps_success(wpa_s, mac_addr, 1);
  350. #endif /* CONFIG_P2P */
  351. }
  352. static void wpas_ap_configured_cb(void *ctx)
  353. {
  354. struct wpa_supplicant *wpa_s = ctx;
  355. wpa_supplicant_set_state(wpa_s, WPA_COMPLETED);
  356. if (wpa_s->ap_configured_cb)
  357. wpa_s->ap_configured_cb(wpa_s->ap_configured_cb_ctx,
  358. wpa_s->ap_configured_cb_data);
  359. }
  360. int wpa_supplicant_create_ap(struct wpa_supplicant *wpa_s,
  361. struct wpa_ssid *ssid)
  362. {
  363. struct wpa_driver_associate_params params;
  364. struct hostapd_iface *hapd_iface;
  365. struct hostapd_config *conf;
  366. size_t i;
  367. if (ssid->ssid == NULL || ssid->ssid_len == 0) {
  368. wpa_printf(MSG_ERROR, "No SSID configured for AP mode");
  369. return -1;
  370. }
  371. wpa_supplicant_ap_deinit(wpa_s);
  372. wpa_printf(MSG_DEBUG, "Setting up AP (SSID='%s')",
  373. wpa_ssid_txt(ssid->ssid, ssid->ssid_len));
  374. os_memset(&params, 0, sizeof(params));
  375. params.ssid = ssid->ssid;
  376. params.ssid_len = ssid->ssid_len;
  377. switch (ssid->mode) {
  378. case WPAS_MODE_INFRA:
  379. params.mode = IEEE80211_MODE_INFRA;
  380. break;
  381. case WPAS_MODE_IBSS:
  382. params.mode = IEEE80211_MODE_IBSS;
  383. break;
  384. case WPAS_MODE_AP:
  385. case WPAS_MODE_P2P_GO:
  386. case WPAS_MODE_P2P_GROUP_FORMATION:
  387. params.mode = IEEE80211_MODE_AP;
  388. break;
  389. }
  390. params.freq = ssid->frequency;
  391. params.wpa_proto = ssid->proto;
  392. if (ssid->key_mgmt & WPA_KEY_MGMT_PSK)
  393. wpa_s->key_mgmt = WPA_KEY_MGMT_PSK;
  394. else
  395. wpa_s->key_mgmt = WPA_KEY_MGMT_NONE;
  396. params.key_mgmt_suite = key_mgmt2driver(wpa_s->key_mgmt);
  397. wpa_s->pairwise_cipher = wpa_pick_pairwise_cipher(ssid->pairwise_cipher,
  398. 1);
  399. if (wpa_s->pairwise_cipher < 0) {
  400. wpa_printf(MSG_WARNING, "WPA: Failed to select pairwise "
  401. "cipher.");
  402. return -1;
  403. }
  404. params.pairwise_suite =
  405. wpa_cipher_to_suite_driver(wpa_s->pairwise_cipher);
  406. params.group_suite = params.pairwise_suite;
  407. #ifdef CONFIG_P2P
  408. if (ssid->mode == WPAS_MODE_P2P_GO ||
  409. ssid->mode == WPAS_MODE_P2P_GROUP_FORMATION)
  410. params.p2p = 1;
  411. #endif /* CONFIG_P2P */
  412. if (wpa_s->parent->set_ap_uapsd)
  413. params.uapsd = wpa_s->parent->ap_uapsd;
  414. else
  415. params.uapsd = -1;
  416. if (wpa_drv_associate(wpa_s, &params) < 0) {
  417. wpa_msg(wpa_s, MSG_INFO, "Failed to start AP functionality");
  418. return -1;
  419. }
  420. wpa_s->ap_iface = hapd_iface = os_zalloc(sizeof(*wpa_s->ap_iface));
  421. if (hapd_iface == NULL)
  422. return -1;
  423. hapd_iface->owner = wpa_s;
  424. hapd_iface->drv_flags = wpa_s->drv_flags;
  425. hapd_iface->probe_resp_offloads = wpa_s->probe_resp_offloads;
  426. wpa_s->ap_iface->conf = conf = hostapd_config_defaults();
  427. if (conf == NULL) {
  428. wpa_supplicant_ap_deinit(wpa_s);
  429. return -1;
  430. }
  431. os_memcpy(wpa_s->ap_iface->conf->wmm_ac_params,
  432. wpa_s->conf->wmm_ac_params,
  433. sizeof(wpa_s->conf->wmm_ac_params));
  434. if (params.uapsd > 0) {
  435. conf->bss->wmm_enabled = 1;
  436. conf->bss->wmm_uapsd = 1;
  437. }
  438. if (wpa_supplicant_conf_ap(wpa_s, ssid, conf)) {
  439. wpa_printf(MSG_ERROR, "Failed to create AP configuration");
  440. wpa_supplicant_ap_deinit(wpa_s);
  441. return -1;
  442. }
  443. #ifdef CONFIG_P2P
  444. if (ssid->mode == WPAS_MODE_P2P_GO)
  445. conf->bss[0].p2p = P2P_ENABLED | P2P_GROUP_OWNER;
  446. else if (ssid->mode == WPAS_MODE_P2P_GROUP_FORMATION)
  447. conf->bss[0].p2p = P2P_ENABLED | P2P_GROUP_OWNER |
  448. P2P_GROUP_FORMATION;
  449. #endif /* CONFIG_P2P */
  450. hapd_iface->num_bss = conf->num_bss;
  451. hapd_iface->bss = os_calloc(conf->num_bss,
  452. sizeof(struct hostapd_data *));
  453. if (hapd_iface->bss == NULL) {
  454. wpa_supplicant_ap_deinit(wpa_s);
  455. return -1;
  456. }
  457. for (i = 0; i < conf->num_bss; i++) {
  458. hapd_iface->bss[i] =
  459. hostapd_alloc_bss_data(hapd_iface, conf,
  460. &conf->bss[i]);
  461. if (hapd_iface->bss[i] == NULL) {
  462. wpa_supplicant_ap_deinit(wpa_s);
  463. return -1;
  464. }
  465. hapd_iface->bss[i]->msg_ctx = wpa_s;
  466. hapd_iface->bss[i]->msg_ctx_parent = wpa_s->parent;
  467. hapd_iface->bss[i]->public_action_cb = ap_public_action_rx;
  468. hapd_iface->bss[i]->public_action_cb_ctx = wpa_s;
  469. hapd_iface->bss[i]->vendor_action_cb = ap_vendor_action_rx;
  470. hapd_iface->bss[i]->vendor_action_cb_ctx = wpa_s;
  471. hostapd_register_probereq_cb(hapd_iface->bss[i],
  472. ap_probe_req_rx, wpa_s);
  473. hapd_iface->bss[i]->wps_reg_success_cb = ap_wps_reg_success_cb;
  474. hapd_iface->bss[i]->wps_reg_success_cb_ctx = wpa_s;
  475. hapd_iface->bss[i]->wps_event_cb = ap_wps_event_cb;
  476. hapd_iface->bss[i]->wps_event_cb_ctx = wpa_s;
  477. hapd_iface->bss[i]->sta_authorized_cb = ap_sta_authorized_cb;
  478. hapd_iface->bss[i]->sta_authorized_cb_ctx = wpa_s;
  479. #ifdef CONFIG_P2P
  480. hapd_iface->bss[i]->p2p = wpa_s->global->p2p;
  481. hapd_iface->bss[i]->p2p_group = wpas_p2p_group_init(wpa_s,
  482. ssid);
  483. #endif /* CONFIG_P2P */
  484. hapd_iface->bss[i]->setup_complete_cb = wpas_ap_configured_cb;
  485. hapd_iface->bss[i]->setup_complete_cb_ctx = wpa_s;
  486. }
  487. os_memcpy(hapd_iface->bss[0]->own_addr, wpa_s->own_addr, ETH_ALEN);
  488. hapd_iface->bss[0]->driver = wpa_s->driver;
  489. hapd_iface->bss[0]->drv_priv = wpa_s->drv_priv;
  490. wpa_s->current_ssid = ssid;
  491. os_memcpy(wpa_s->bssid, wpa_s->own_addr, ETH_ALEN);
  492. wpa_s->assoc_freq = ssid->frequency;
  493. if (hostapd_setup_interface(wpa_s->ap_iface)) {
  494. wpa_printf(MSG_ERROR, "Failed to initialize AP interface");
  495. wpa_supplicant_ap_deinit(wpa_s);
  496. return -1;
  497. }
  498. return 0;
  499. }
  500. void wpa_supplicant_ap_deinit(struct wpa_supplicant *wpa_s)
  501. {
  502. #ifdef CONFIG_WPS
  503. eloop_cancel_timeout(wpas_wps_ap_pin_timeout, wpa_s, NULL);
  504. #endif /* CONFIG_WPS */
  505. if (wpa_s->ap_iface == NULL)
  506. return;
  507. wpa_s->current_ssid = NULL;
  508. wpa_s->assoc_freq = 0;
  509. #ifdef CONFIG_P2P
  510. if (wpa_s->ap_iface->bss)
  511. wpa_s->ap_iface->bss[0]->p2p_group = NULL;
  512. wpas_p2p_group_deinit(wpa_s);
  513. #endif /* CONFIG_P2P */
  514. hostapd_interface_deinit(wpa_s->ap_iface);
  515. hostapd_interface_free(wpa_s->ap_iface);
  516. wpa_s->ap_iface = NULL;
  517. wpa_drv_deinit_ap(wpa_s);
  518. }
  519. void ap_tx_status(void *ctx, const u8 *addr,
  520. const u8 *buf, size_t len, int ack)
  521. {
  522. #ifdef NEED_AP_MLME
  523. struct wpa_supplicant *wpa_s = ctx;
  524. hostapd_tx_status(wpa_s->ap_iface->bss[0], addr, buf, len, ack);
  525. #endif /* NEED_AP_MLME */
  526. }
  527. void ap_eapol_tx_status(void *ctx, const u8 *dst,
  528. const u8 *data, size_t len, int ack)
  529. {
  530. #ifdef NEED_AP_MLME
  531. struct wpa_supplicant *wpa_s = ctx;
  532. hostapd_tx_status(wpa_s->ap_iface->bss[0], dst, data, len, ack);
  533. #endif /* NEED_AP_MLME */
  534. }
  535. void ap_client_poll_ok(void *ctx, const u8 *addr)
  536. {
  537. #ifdef NEED_AP_MLME
  538. struct wpa_supplicant *wpa_s = ctx;
  539. if (wpa_s->ap_iface)
  540. hostapd_client_poll_ok(wpa_s->ap_iface->bss[0], addr);
  541. #endif /* NEED_AP_MLME */
  542. }
  543. void ap_rx_from_unknown_sta(void *ctx, const u8 *addr, int wds)
  544. {
  545. #ifdef NEED_AP_MLME
  546. struct wpa_supplicant *wpa_s = ctx;
  547. ieee802_11_rx_from_unknown(wpa_s->ap_iface->bss[0], addr, wds);
  548. #endif /* NEED_AP_MLME */
  549. }
  550. void ap_mgmt_rx(void *ctx, struct rx_mgmt *rx_mgmt)
  551. {
  552. #ifdef NEED_AP_MLME
  553. struct wpa_supplicant *wpa_s = ctx;
  554. struct hostapd_frame_info fi;
  555. os_memset(&fi, 0, sizeof(fi));
  556. fi.datarate = rx_mgmt->datarate;
  557. fi.ssi_signal = rx_mgmt->ssi_signal;
  558. ieee802_11_mgmt(wpa_s->ap_iface->bss[0], rx_mgmt->frame,
  559. rx_mgmt->frame_len, &fi);
  560. #endif /* NEED_AP_MLME */
  561. }
  562. void ap_mgmt_tx_cb(void *ctx, const u8 *buf, size_t len, u16 stype, int ok)
  563. {
  564. #ifdef NEED_AP_MLME
  565. struct wpa_supplicant *wpa_s = ctx;
  566. ieee802_11_mgmt_cb(wpa_s->ap_iface->bss[0], buf, len, stype, ok);
  567. #endif /* NEED_AP_MLME */
  568. }
  569. void wpa_supplicant_ap_rx_eapol(struct wpa_supplicant *wpa_s,
  570. const u8 *src_addr, const u8 *buf, size_t len)
  571. {
  572. ieee802_1x_receive(wpa_s->ap_iface->bss[0], src_addr, buf, len);
  573. }
  574. #ifdef CONFIG_WPS
  575. int wpa_supplicant_ap_wps_pbc(struct wpa_supplicant *wpa_s, const u8 *bssid,
  576. const u8 *p2p_dev_addr)
  577. {
  578. if (!wpa_s->ap_iface)
  579. return -1;
  580. return hostapd_wps_button_pushed(wpa_s->ap_iface->bss[0],
  581. p2p_dev_addr);
  582. }
  583. int wpa_supplicant_ap_wps_cancel(struct wpa_supplicant *wpa_s)
  584. {
  585. struct wps_registrar *reg;
  586. int reg_sel = 0, wps_sta = 0;
  587. if (!wpa_s->ap_iface || !wpa_s->ap_iface->bss[0]->wps)
  588. return -1;
  589. reg = wpa_s->ap_iface->bss[0]->wps->registrar;
  590. reg_sel = wps_registrar_wps_cancel(reg);
  591. wps_sta = ap_for_each_sta(wpa_s->ap_iface->bss[0],
  592. ap_sta_wps_cancel, NULL);
  593. if (!reg_sel && !wps_sta) {
  594. wpa_printf(MSG_DEBUG, "No WPS operation in progress at this "
  595. "time");
  596. return -1;
  597. }
  598. /*
  599. * There are 2 cases to return wps cancel as success:
  600. * 1. When wps cancel was initiated but no connection has been
  601. * established with client yet.
  602. * 2. Client is in the middle of exchanging WPS messages.
  603. */
  604. return 0;
  605. }
  606. int wpa_supplicant_ap_wps_pin(struct wpa_supplicant *wpa_s, const u8 *bssid,
  607. const char *pin, char *buf, size_t buflen,
  608. int timeout)
  609. {
  610. int ret, ret_len = 0;
  611. if (!wpa_s->ap_iface)
  612. return -1;
  613. if (pin == NULL) {
  614. unsigned int rpin = wps_generate_pin();
  615. ret_len = os_snprintf(buf, buflen, "%08d", rpin);
  616. pin = buf;
  617. } else
  618. ret_len = os_snprintf(buf, buflen, "%s", pin);
  619. ret = hostapd_wps_add_pin(wpa_s->ap_iface->bss[0], bssid, "any", pin,
  620. timeout);
  621. if (ret)
  622. return -1;
  623. return ret_len;
  624. }
  625. static void wpas_wps_ap_pin_timeout(void *eloop_data, void *user_ctx)
  626. {
  627. struct wpa_supplicant *wpa_s = eloop_data;
  628. wpa_printf(MSG_DEBUG, "WPS: AP PIN timed out");
  629. wpas_wps_ap_pin_disable(wpa_s);
  630. }
  631. static void wpas_wps_ap_pin_enable(struct wpa_supplicant *wpa_s, int timeout)
  632. {
  633. struct hostapd_data *hapd;
  634. if (wpa_s->ap_iface == NULL)
  635. return;
  636. hapd = wpa_s->ap_iface->bss[0];
  637. wpa_printf(MSG_DEBUG, "WPS: Enabling AP PIN (timeout=%d)", timeout);
  638. hapd->ap_pin_failures = 0;
  639. eloop_cancel_timeout(wpas_wps_ap_pin_timeout, wpa_s, NULL);
  640. if (timeout > 0)
  641. eloop_register_timeout(timeout, 0,
  642. wpas_wps_ap_pin_timeout, wpa_s, NULL);
  643. }
  644. void wpas_wps_ap_pin_disable(struct wpa_supplicant *wpa_s)
  645. {
  646. struct hostapd_data *hapd;
  647. if (wpa_s->ap_iface == NULL)
  648. return;
  649. wpa_printf(MSG_DEBUG, "WPS: Disabling AP PIN");
  650. hapd = wpa_s->ap_iface->bss[0];
  651. os_free(hapd->conf->ap_pin);
  652. hapd->conf->ap_pin = NULL;
  653. eloop_cancel_timeout(wpas_wps_ap_pin_timeout, wpa_s, NULL);
  654. }
  655. const char * wpas_wps_ap_pin_random(struct wpa_supplicant *wpa_s, int timeout)
  656. {
  657. struct hostapd_data *hapd;
  658. unsigned int pin;
  659. char pin_txt[9];
  660. if (wpa_s->ap_iface == NULL)
  661. return NULL;
  662. hapd = wpa_s->ap_iface->bss[0];
  663. pin = wps_generate_pin();
  664. os_snprintf(pin_txt, sizeof(pin_txt), "%08u", pin);
  665. os_free(hapd->conf->ap_pin);
  666. hapd->conf->ap_pin = os_strdup(pin_txt);
  667. if (hapd->conf->ap_pin == NULL)
  668. return NULL;
  669. wpas_wps_ap_pin_enable(wpa_s, timeout);
  670. return hapd->conf->ap_pin;
  671. }
  672. const char * wpas_wps_ap_pin_get(struct wpa_supplicant *wpa_s)
  673. {
  674. struct hostapd_data *hapd;
  675. if (wpa_s->ap_iface == NULL)
  676. return NULL;
  677. hapd = wpa_s->ap_iface->bss[0];
  678. return hapd->conf->ap_pin;
  679. }
  680. int wpas_wps_ap_pin_set(struct wpa_supplicant *wpa_s, const char *pin,
  681. int timeout)
  682. {
  683. struct hostapd_data *hapd;
  684. char pin_txt[9];
  685. int ret;
  686. if (wpa_s->ap_iface == NULL)
  687. return -1;
  688. hapd = wpa_s->ap_iface->bss[0];
  689. ret = os_snprintf(pin_txt, sizeof(pin_txt), "%s", pin);
  690. if (ret < 0 || ret >= (int) sizeof(pin_txt))
  691. return -1;
  692. os_free(hapd->conf->ap_pin);
  693. hapd->conf->ap_pin = os_strdup(pin_txt);
  694. if (hapd->conf->ap_pin == NULL)
  695. return -1;
  696. wpas_wps_ap_pin_enable(wpa_s, timeout);
  697. return 0;
  698. }
  699. void wpa_supplicant_ap_pwd_auth_fail(struct wpa_supplicant *wpa_s)
  700. {
  701. struct hostapd_data *hapd;
  702. if (wpa_s->ap_iface == NULL)
  703. return;
  704. hapd = wpa_s->ap_iface->bss[0];
  705. /*
  706. * Registrar failed to prove its knowledge of the AP PIN. Disable AP
  707. * PIN if this happens multiple times to slow down brute force attacks.
  708. */
  709. hapd->ap_pin_failures++;
  710. wpa_printf(MSG_DEBUG, "WPS: AP PIN authentication failure number %u",
  711. hapd->ap_pin_failures);
  712. if (hapd->ap_pin_failures < 3)
  713. return;
  714. wpa_printf(MSG_DEBUG, "WPS: Disable AP PIN");
  715. hapd->ap_pin_failures = 0;
  716. os_free(hapd->conf->ap_pin);
  717. hapd->conf->ap_pin = NULL;
  718. }
  719. struct wpabuf * wpas_ap_wps_nfc_config_token(struct wpa_supplicant *wpa_s,
  720. int ndef)
  721. {
  722. struct hostapd_data *hapd;
  723. if (wpa_s->ap_iface == NULL)
  724. return NULL;
  725. hapd = wpa_s->ap_iface->bss[0];
  726. return hostapd_wps_nfc_config_token(hapd, ndef);
  727. }
  728. #endif /* CONFIG_WPS */
  729. #ifdef CONFIG_CTRL_IFACE
  730. int ap_ctrl_iface_sta_first(struct wpa_supplicant *wpa_s,
  731. char *buf, size_t buflen)
  732. {
  733. if (wpa_s->ap_iface == NULL)
  734. return -1;
  735. return hostapd_ctrl_iface_sta_first(wpa_s->ap_iface->bss[0],
  736. buf, buflen);
  737. }
  738. int ap_ctrl_iface_sta(struct wpa_supplicant *wpa_s, const char *txtaddr,
  739. char *buf, size_t buflen)
  740. {
  741. if (wpa_s->ap_iface == NULL)
  742. return -1;
  743. return hostapd_ctrl_iface_sta(wpa_s->ap_iface->bss[0], txtaddr,
  744. buf, buflen);
  745. }
  746. int ap_ctrl_iface_sta_next(struct wpa_supplicant *wpa_s, const char *txtaddr,
  747. char *buf, size_t buflen)
  748. {
  749. if (wpa_s->ap_iface == NULL)
  750. return -1;
  751. return hostapd_ctrl_iface_sta_next(wpa_s->ap_iface->bss[0], txtaddr,
  752. buf, buflen);
  753. }
  754. int ap_ctrl_iface_sta_disassociate(struct wpa_supplicant *wpa_s,
  755. const char *txtaddr)
  756. {
  757. if (wpa_s->ap_iface == NULL)
  758. return -1;
  759. return hostapd_ctrl_iface_disassociate(wpa_s->ap_iface->bss[0],
  760. txtaddr);
  761. }
  762. int ap_ctrl_iface_sta_deauthenticate(struct wpa_supplicant *wpa_s,
  763. const char *txtaddr)
  764. {
  765. if (wpa_s->ap_iface == NULL)
  766. return -1;
  767. return hostapd_ctrl_iface_deauthenticate(wpa_s->ap_iface->bss[0],
  768. txtaddr);
  769. }
  770. int ap_ctrl_iface_wpa_get_status(struct wpa_supplicant *wpa_s, char *buf,
  771. size_t buflen, int verbose)
  772. {
  773. char *pos = buf, *end = buf + buflen;
  774. int ret;
  775. struct hostapd_bss_config *conf;
  776. if (wpa_s->ap_iface == NULL)
  777. return -1;
  778. conf = wpa_s->ap_iface->bss[0]->conf;
  779. if (conf->wpa == 0)
  780. return 0;
  781. ret = os_snprintf(pos, end - pos,
  782. "pairwise_cipher=%s\n"
  783. "group_cipher=%s\n"
  784. "key_mgmt=%s\n",
  785. wpa_cipher_txt(conf->rsn_pairwise),
  786. wpa_cipher_txt(conf->wpa_group),
  787. wpa_key_mgmt_txt(conf->wpa_key_mgmt,
  788. conf->wpa));
  789. if (ret < 0 || ret >= end - pos)
  790. return pos - buf;
  791. pos += ret;
  792. return pos - buf;
  793. }
  794. #endif /* CONFIG_CTRL_IFACE */
  795. int wpa_supplicant_ap_update_beacon(struct wpa_supplicant *wpa_s)
  796. {
  797. struct hostapd_iface *iface = wpa_s->ap_iface;
  798. struct wpa_ssid *ssid = wpa_s->current_ssid;
  799. struct hostapd_data *hapd;
  800. if (ssid == NULL || wpa_s->ap_iface == NULL ||
  801. ssid->mode == WPAS_MODE_INFRA ||
  802. ssid->mode == WPAS_MODE_IBSS)
  803. return -1;
  804. #ifdef CONFIG_P2P
  805. if (ssid->mode == WPAS_MODE_P2P_GO)
  806. iface->conf->bss[0].p2p = P2P_ENABLED | P2P_GROUP_OWNER;
  807. else if (ssid->mode == WPAS_MODE_P2P_GROUP_FORMATION)
  808. iface->conf->bss[0].p2p = P2P_ENABLED | P2P_GROUP_OWNER |
  809. P2P_GROUP_FORMATION;
  810. #endif /* CONFIG_P2P */
  811. hapd = iface->bss[0];
  812. if (hapd->drv_priv == NULL)
  813. return -1;
  814. ieee802_11_set_beacons(iface);
  815. hostapd_set_ap_wps_ie(hapd);
  816. return 0;
  817. }
  818. void wpas_ap_ch_switch(struct wpa_supplicant *wpa_s, int freq, int ht,
  819. int offset)
  820. {
  821. if (!wpa_s->ap_iface)
  822. return;
  823. wpa_s->assoc_freq = freq;
  824. hostapd_event_ch_switch(wpa_s->ap_iface->bss[0], freq, ht, offset);
  825. }
  826. int wpa_supplicant_ap_mac_addr_filter(struct wpa_supplicant *wpa_s,
  827. const u8 *addr)
  828. {
  829. struct hostapd_data *hapd;
  830. struct hostapd_bss_config *conf;
  831. if (!wpa_s->ap_iface)
  832. return -1;
  833. if (addr)
  834. wpa_printf(MSG_DEBUG, "AP: Set MAC address filter: " MACSTR,
  835. MAC2STR(addr));
  836. else
  837. wpa_printf(MSG_DEBUG, "AP: Clear MAC address filter");
  838. hapd = wpa_s->ap_iface->bss[0];
  839. conf = hapd->conf;
  840. os_free(conf->accept_mac);
  841. conf->accept_mac = NULL;
  842. conf->num_accept_mac = 0;
  843. os_free(conf->deny_mac);
  844. conf->deny_mac = NULL;
  845. conf->num_deny_mac = 0;
  846. if (addr == NULL) {
  847. conf->macaddr_acl = ACCEPT_UNLESS_DENIED;
  848. return 0;
  849. }
  850. conf->macaddr_acl = DENY_UNLESS_ACCEPTED;
  851. conf->accept_mac = os_zalloc(sizeof(struct mac_acl_entry));
  852. if (conf->accept_mac == NULL)
  853. return -1;
  854. os_memcpy(conf->accept_mac[0].addr, addr, ETH_ALEN);
  855. conf->num_accept_mac = 1;
  856. return 0;
  857. }