crypto_openssl.c 33 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633
  1. /*
  2. * Wrapper functions for OpenSSL libcrypto
  3. * Copyright (c) 2004-2015, Jouni Malinen <j@w1.fi>
  4. *
  5. * This software may be distributed under the terms of the BSD license.
  6. * See README for more details.
  7. */
  8. #include "includes.h"
  9. #include <openssl/opensslv.h>
  10. #include <openssl/err.h>
  11. #include <openssl/des.h>
  12. #include <openssl/aes.h>
  13. #include <openssl/bn.h>
  14. #include <openssl/evp.h>
  15. #include <openssl/dh.h>
  16. #include <openssl/hmac.h>
  17. #include <openssl/rand.h>
  18. #ifdef CONFIG_OPENSSL_CMAC
  19. #include <openssl/cmac.h>
  20. #endif /* CONFIG_OPENSSL_CMAC */
  21. #ifdef CONFIG_ECC
  22. #include <openssl/ec.h>
  23. #endif /* CONFIG_ECC */
  24. #include "common.h"
  25. #include "wpabuf.h"
  26. #include "dh_group5.h"
  27. #include "sha1.h"
  28. #include "sha256.h"
  29. #include "sha384.h"
  30. #include "crypto.h"
  31. #if OPENSSL_VERSION_NUMBER < 0x10100000L || defined(LIBRESSL_VERSION_NUMBER)
  32. /* Compatibility wrappers for older versions. */
  33. static HMAC_CTX * HMAC_CTX_new(void)
  34. {
  35. HMAC_CTX *ctx;
  36. ctx = os_zalloc(sizeof(*ctx));
  37. if (ctx)
  38. HMAC_CTX_init(ctx);
  39. return ctx;
  40. }
  41. static void HMAC_CTX_free(HMAC_CTX *ctx)
  42. {
  43. HMAC_CTX_cleanup(ctx);
  44. bin_clear_free(ctx, sizeof(*ctx));
  45. }
  46. static EVP_MD_CTX * EVP_MD_CTX_new(void)
  47. {
  48. EVP_MD_CTX *ctx;
  49. ctx = os_zalloc(sizeof(*ctx));
  50. if (ctx)
  51. EVP_MD_CTX_init(ctx);
  52. return ctx;
  53. }
  54. static void EVP_MD_CTX_free(EVP_MD_CTX *ctx)
  55. {
  56. bin_clear_free(ctx, sizeof(*ctx));
  57. }
  58. #endif /* OpenSSL version < 1.1.0 */
  59. static BIGNUM * get_group5_prime(void)
  60. {
  61. #ifdef OPENSSL_IS_BORINGSSL
  62. static const unsigned char RFC3526_PRIME_1536[] = {
  63. 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xC9,0x0F,0xDA,0xA2,
  64. 0x21,0x68,0xC2,0x34,0xC4,0xC6,0x62,0x8B,0x80,0xDC,0x1C,0xD1,
  65. 0x29,0x02,0x4E,0x08,0x8A,0x67,0xCC,0x74,0x02,0x0B,0xBE,0xA6,
  66. 0x3B,0x13,0x9B,0x22,0x51,0x4A,0x08,0x79,0x8E,0x34,0x04,0xDD,
  67. 0xEF,0x95,0x19,0xB3,0xCD,0x3A,0x43,0x1B,0x30,0x2B,0x0A,0x6D,
  68. 0xF2,0x5F,0x14,0x37,0x4F,0xE1,0x35,0x6D,0x6D,0x51,0xC2,0x45,
  69. 0xE4,0x85,0xB5,0x76,0x62,0x5E,0x7E,0xC6,0xF4,0x4C,0x42,0xE9,
  70. 0xA6,0x37,0xED,0x6B,0x0B,0xFF,0x5C,0xB6,0xF4,0x06,0xB7,0xED,
  71. 0xEE,0x38,0x6B,0xFB,0x5A,0x89,0x9F,0xA5,0xAE,0x9F,0x24,0x11,
  72. 0x7C,0x4B,0x1F,0xE6,0x49,0x28,0x66,0x51,0xEC,0xE4,0x5B,0x3D,
  73. 0xC2,0x00,0x7C,0xB8,0xA1,0x63,0xBF,0x05,0x98,0xDA,0x48,0x36,
  74. 0x1C,0x55,0xD3,0x9A,0x69,0x16,0x3F,0xA8,0xFD,0x24,0xCF,0x5F,
  75. 0x83,0x65,0x5D,0x23,0xDC,0xA3,0xAD,0x96,0x1C,0x62,0xF3,0x56,
  76. 0x20,0x85,0x52,0xBB,0x9E,0xD5,0x29,0x07,0x70,0x96,0x96,0x6D,
  77. 0x67,0x0C,0x35,0x4E,0x4A,0xBC,0x98,0x04,0xF1,0x74,0x6C,0x08,
  78. 0xCA,0x23,0x73,0x27,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
  79. };
  80. return BN_bin2bn(RFC3526_PRIME_1536, sizeof(RFC3526_PRIME_1536), NULL);
  81. #else /* OPENSSL_IS_BORINGSSL */
  82. return get_rfc3526_prime_1536(NULL);
  83. #endif /* OPENSSL_IS_BORINGSSL */
  84. }
  85. #ifdef OPENSSL_NO_SHA256
  86. #define NO_SHA256_WRAPPER
  87. #endif
  88. static int openssl_digest_vector(const EVP_MD *type, size_t num_elem,
  89. const u8 *addr[], const size_t *len, u8 *mac)
  90. {
  91. EVP_MD_CTX *ctx;
  92. size_t i;
  93. unsigned int mac_len;
  94. if (TEST_FAIL())
  95. return -1;
  96. ctx = EVP_MD_CTX_new();
  97. if (!ctx)
  98. return -1;
  99. if (!EVP_DigestInit_ex(ctx, type, NULL)) {
  100. wpa_printf(MSG_ERROR, "OpenSSL: EVP_DigestInit_ex failed: %s",
  101. ERR_error_string(ERR_get_error(), NULL));
  102. EVP_MD_CTX_free(ctx);
  103. return -1;
  104. }
  105. for (i = 0; i < num_elem; i++) {
  106. if (!EVP_DigestUpdate(ctx, addr[i], len[i])) {
  107. wpa_printf(MSG_ERROR, "OpenSSL: EVP_DigestUpdate "
  108. "failed: %s",
  109. ERR_error_string(ERR_get_error(), NULL));
  110. EVP_MD_CTX_free(ctx);
  111. return -1;
  112. }
  113. }
  114. if (!EVP_DigestFinal(ctx, mac, &mac_len)) {
  115. wpa_printf(MSG_ERROR, "OpenSSL: EVP_DigestFinal failed: %s",
  116. ERR_error_string(ERR_get_error(), NULL));
  117. EVP_MD_CTX_free(ctx);
  118. return -1;
  119. }
  120. EVP_MD_CTX_free(ctx);
  121. return 0;
  122. }
  123. #ifndef CONFIG_FIPS
  124. int md4_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac)
  125. {
  126. return openssl_digest_vector(EVP_md4(), num_elem, addr, len, mac);
  127. }
  128. #endif /* CONFIG_FIPS */
  129. void des_encrypt(const u8 *clear, const u8 *key, u8 *cypher)
  130. {
  131. u8 pkey[8], next, tmp;
  132. int i;
  133. DES_key_schedule ks;
  134. /* Add parity bits to the key */
  135. next = 0;
  136. for (i = 0; i < 7; i++) {
  137. tmp = key[i];
  138. pkey[i] = (tmp >> i) | next | 1;
  139. next = tmp << (7 - i);
  140. }
  141. pkey[i] = next | 1;
  142. DES_set_key((DES_cblock *) &pkey, &ks);
  143. DES_ecb_encrypt((DES_cblock *) clear, (DES_cblock *) cypher, &ks,
  144. DES_ENCRYPT);
  145. }
  146. #ifndef CONFIG_NO_RC4
  147. int rc4_skip(const u8 *key, size_t keylen, size_t skip,
  148. u8 *data, size_t data_len)
  149. {
  150. #ifdef OPENSSL_NO_RC4
  151. return -1;
  152. #else /* OPENSSL_NO_RC4 */
  153. EVP_CIPHER_CTX *ctx;
  154. int outl;
  155. int res = -1;
  156. unsigned char skip_buf[16];
  157. ctx = EVP_CIPHER_CTX_new();
  158. if (!ctx ||
  159. !EVP_CIPHER_CTX_set_padding(ctx, 0) ||
  160. !EVP_CipherInit_ex(ctx, EVP_rc4(), NULL, NULL, NULL, 1) ||
  161. !EVP_CIPHER_CTX_set_key_length(ctx, keylen) ||
  162. !EVP_CipherInit_ex(ctx, NULL, NULL, key, NULL, 1))
  163. goto out;
  164. while (skip >= sizeof(skip_buf)) {
  165. size_t len = skip;
  166. if (len > sizeof(skip_buf))
  167. len = sizeof(skip_buf);
  168. if (!EVP_CipherUpdate(ctx, skip_buf, &outl, skip_buf, len))
  169. goto out;
  170. skip -= len;
  171. }
  172. if (EVP_CipherUpdate(ctx, data, &outl, data, data_len))
  173. res = 0;
  174. out:
  175. if (ctx)
  176. EVP_CIPHER_CTX_free(ctx);
  177. return res;
  178. #endif /* OPENSSL_NO_RC4 */
  179. }
  180. #endif /* CONFIG_NO_RC4 */
  181. #ifndef CONFIG_FIPS
  182. int md5_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac)
  183. {
  184. return openssl_digest_vector(EVP_md5(), num_elem, addr, len, mac);
  185. }
  186. #endif /* CONFIG_FIPS */
  187. int sha1_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac)
  188. {
  189. return openssl_digest_vector(EVP_sha1(), num_elem, addr, len, mac);
  190. }
  191. #ifndef NO_SHA256_WRAPPER
  192. int sha256_vector(size_t num_elem, const u8 *addr[], const size_t *len,
  193. u8 *mac)
  194. {
  195. return openssl_digest_vector(EVP_sha256(), num_elem, addr, len, mac);
  196. }
  197. #endif /* NO_SHA256_WRAPPER */
  198. static const EVP_CIPHER * aes_get_evp_cipher(size_t keylen)
  199. {
  200. switch (keylen) {
  201. case 16:
  202. return EVP_aes_128_ecb();
  203. #ifndef OPENSSL_IS_BORINGSSL
  204. case 24:
  205. return EVP_aes_192_ecb();
  206. #endif /* OPENSSL_IS_BORINGSSL */
  207. case 32:
  208. return EVP_aes_256_ecb();
  209. }
  210. return NULL;
  211. }
  212. void * aes_encrypt_init(const u8 *key, size_t len)
  213. {
  214. EVP_CIPHER_CTX *ctx;
  215. const EVP_CIPHER *type;
  216. if (TEST_FAIL())
  217. return NULL;
  218. type = aes_get_evp_cipher(len);
  219. if (type == NULL)
  220. return NULL;
  221. ctx = EVP_CIPHER_CTX_new();
  222. if (ctx == NULL)
  223. return NULL;
  224. if (EVP_EncryptInit_ex(ctx, type, NULL, key, NULL) != 1) {
  225. os_free(ctx);
  226. return NULL;
  227. }
  228. EVP_CIPHER_CTX_set_padding(ctx, 0);
  229. return ctx;
  230. }
  231. void aes_encrypt(void *ctx, const u8 *plain, u8 *crypt)
  232. {
  233. EVP_CIPHER_CTX *c = ctx;
  234. int clen = 16;
  235. if (EVP_EncryptUpdate(c, crypt, &clen, plain, 16) != 1) {
  236. wpa_printf(MSG_ERROR, "OpenSSL: EVP_EncryptUpdate failed: %s",
  237. ERR_error_string(ERR_get_error(), NULL));
  238. }
  239. }
  240. void aes_encrypt_deinit(void *ctx)
  241. {
  242. EVP_CIPHER_CTX *c = ctx;
  243. u8 buf[16];
  244. int len = sizeof(buf);
  245. if (EVP_EncryptFinal_ex(c, buf, &len) != 1) {
  246. wpa_printf(MSG_ERROR, "OpenSSL: EVP_EncryptFinal_ex failed: "
  247. "%s", ERR_error_string(ERR_get_error(), NULL));
  248. }
  249. if (len != 0) {
  250. wpa_printf(MSG_ERROR, "OpenSSL: Unexpected padding length %d "
  251. "in AES encrypt", len);
  252. }
  253. EVP_CIPHER_CTX_free(c);
  254. }
  255. void * aes_decrypt_init(const u8 *key, size_t len)
  256. {
  257. EVP_CIPHER_CTX *ctx;
  258. const EVP_CIPHER *type;
  259. if (TEST_FAIL())
  260. return NULL;
  261. type = aes_get_evp_cipher(len);
  262. if (type == NULL)
  263. return NULL;
  264. ctx = EVP_CIPHER_CTX_new();
  265. if (ctx == NULL)
  266. return NULL;
  267. if (EVP_DecryptInit_ex(ctx, type, NULL, key, NULL) != 1) {
  268. EVP_CIPHER_CTX_free(ctx);
  269. return NULL;
  270. }
  271. EVP_CIPHER_CTX_set_padding(ctx, 0);
  272. return ctx;
  273. }
  274. void aes_decrypt(void *ctx, const u8 *crypt, u8 *plain)
  275. {
  276. EVP_CIPHER_CTX *c = ctx;
  277. int plen = 16;
  278. if (EVP_DecryptUpdate(c, plain, &plen, crypt, 16) != 1) {
  279. wpa_printf(MSG_ERROR, "OpenSSL: EVP_DecryptUpdate failed: %s",
  280. ERR_error_string(ERR_get_error(), NULL));
  281. }
  282. }
  283. void aes_decrypt_deinit(void *ctx)
  284. {
  285. EVP_CIPHER_CTX *c = ctx;
  286. u8 buf[16];
  287. int len = sizeof(buf);
  288. if (EVP_DecryptFinal_ex(c, buf, &len) != 1) {
  289. wpa_printf(MSG_ERROR, "OpenSSL: EVP_DecryptFinal_ex failed: "
  290. "%s", ERR_error_string(ERR_get_error(), NULL));
  291. }
  292. if (len != 0) {
  293. wpa_printf(MSG_ERROR, "OpenSSL: Unexpected padding length %d "
  294. "in AES decrypt", len);
  295. }
  296. EVP_CIPHER_CTX_free(c);
  297. }
  298. #ifndef CONFIG_FIPS
  299. #ifndef CONFIG_OPENSSL_INTERNAL_AES_WRAP
  300. int aes_wrap(const u8 *kek, size_t kek_len, int n, const u8 *plain, u8 *cipher)
  301. {
  302. AES_KEY actx;
  303. int res;
  304. if (AES_set_encrypt_key(kek, kek_len << 3, &actx))
  305. return -1;
  306. res = AES_wrap_key(&actx, NULL, cipher, plain, n * 8);
  307. OPENSSL_cleanse(&actx, sizeof(actx));
  308. return res <= 0 ? -1 : 0;
  309. }
  310. int aes_unwrap(const u8 *kek, size_t kek_len, int n, const u8 *cipher,
  311. u8 *plain)
  312. {
  313. AES_KEY actx;
  314. int res;
  315. if (AES_set_decrypt_key(kek, kek_len << 3, &actx))
  316. return -1;
  317. res = AES_unwrap_key(&actx, NULL, plain, cipher, (n + 1) * 8);
  318. OPENSSL_cleanse(&actx, sizeof(actx));
  319. return res <= 0 ? -1 : 0;
  320. }
  321. #endif /* CONFIG_OPENSSL_INTERNAL_AES_WRAP */
  322. #endif /* CONFIG_FIPS */
  323. int aes_128_cbc_encrypt(const u8 *key, const u8 *iv, u8 *data, size_t data_len)
  324. {
  325. EVP_CIPHER_CTX *ctx;
  326. int clen, len;
  327. u8 buf[16];
  328. int res = -1;
  329. if (TEST_FAIL())
  330. return -1;
  331. ctx = EVP_CIPHER_CTX_new();
  332. if (!ctx)
  333. return -1;
  334. clen = data_len;
  335. len = sizeof(buf);
  336. if (EVP_EncryptInit_ex(ctx, EVP_aes_128_cbc(), NULL, key, iv) == 1 &&
  337. EVP_CIPHER_CTX_set_padding(ctx, 0) == 1 &&
  338. EVP_EncryptUpdate(ctx, data, &clen, data, data_len) == 1 &&
  339. clen == (int) data_len &&
  340. EVP_EncryptFinal_ex(ctx, buf, &len) == 1 && len == 0)
  341. res = 0;
  342. EVP_CIPHER_CTX_free(ctx);
  343. return res;
  344. }
  345. int aes_128_cbc_decrypt(const u8 *key, const u8 *iv, u8 *data, size_t data_len)
  346. {
  347. EVP_CIPHER_CTX *ctx;
  348. int plen, len;
  349. u8 buf[16];
  350. int res = -1;
  351. if (TEST_FAIL())
  352. return -1;
  353. ctx = EVP_CIPHER_CTX_new();
  354. if (!ctx)
  355. return -1;
  356. plen = data_len;
  357. len = sizeof(buf);
  358. if (EVP_DecryptInit_ex(ctx, EVP_aes_128_cbc(), NULL, key, iv) == 1 &&
  359. EVP_CIPHER_CTX_set_padding(ctx, 0) == 1 &&
  360. EVP_DecryptUpdate(ctx, data, &plen, data, data_len) == 1 &&
  361. plen == (int) data_len &&
  362. EVP_DecryptFinal_ex(ctx, buf, &len) == 1 && len == 0)
  363. res = 0;
  364. EVP_CIPHER_CTX_free(ctx);
  365. return res;
  366. }
  367. int crypto_mod_exp(const u8 *base, size_t base_len,
  368. const u8 *power, size_t power_len,
  369. const u8 *modulus, size_t modulus_len,
  370. u8 *result, size_t *result_len)
  371. {
  372. BIGNUM *bn_base, *bn_exp, *bn_modulus, *bn_result;
  373. int ret = -1;
  374. BN_CTX *ctx;
  375. ctx = BN_CTX_new();
  376. if (ctx == NULL)
  377. return -1;
  378. bn_base = BN_bin2bn(base, base_len, NULL);
  379. bn_exp = BN_bin2bn(power, power_len, NULL);
  380. bn_modulus = BN_bin2bn(modulus, modulus_len, NULL);
  381. bn_result = BN_new();
  382. if (bn_base == NULL || bn_exp == NULL || bn_modulus == NULL ||
  383. bn_result == NULL)
  384. goto error;
  385. if (BN_mod_exp(bn_result, bn_base, bn_exp, bn_modulus, ctx) != 1)
  386. goto error;
  387. *result_len = BN_bn2bin(bn_result, result);
  388. ret = 0;
  389. error:
  390. BN_clear_free(bn_base);
  391. BN_clear_free(bn_exp);
  392. BN_clear_free(bn_modulus);
  393. BN_clear_free(bn_result);
  394. BN_CTX_free(ctx);
  395. return ret;
  396. }
  397. struct crypto_cipher {
  398. EVP_CIPHER_CTX *enc;
  399. EVP_CIPHER_CTX *dec;
  400. };
  401. struct crypto_cipher * crypto_cipher_init(enum crypto_cipher_alg alg,
  402. const u8 *iv, const u8 *key,
  403. size_t key_len)
  404. {
  405. struct crypto_cipher *ctx;
  406. const EVP_CIPHER *cipher;
  407. ctx = os_zalloc(sizeof(*ctx));
  408. if (ctx == NULL)
  409. return NULL;
  410. switch (alg) {
  411. #ifndef CONFIG_NO_RC4
  412. #ifndef OPENSSL_NO_RC4
  413. case CRYPTO_CIPHER_ALG_RC4:
  414. cipher = EVP_rc4();
  415. break;
  416. #endif /* OPENSSL_NO_RC4 */
  417. #endif /* CONFIG_NO_RC4 */
  418. #ifndef OPENSSL_NO_AES
  419. case CRYPTO_CIPHER_ALG_AES:
  420. switch (key_len) {
  421. case 16:
  422. cipher = EVP_aes_128_cbc();
  423. break;
  424. #ifndef OPENSSL_IS_BORINGSSL
  425. case 24:
  426. cipher = EVP_aes_192_cbc();
  427. break;
  428. #endif /* OPENSSL_IS_BORINGSSL */
  429. case 32:
  430. cipher = EVP_aes_256_cbc();
  431. break;
  432. default:
  433. os_free(ctx);
  434. return NULL;
  435. }
  436. break;
  437. #endif /* OPENSSL_NO_AES */
  438. #ifndef OPENSSL_NO_DES
  439. case CRYPTO_CIPHER_ALG_3DES:
  440. cipher = EVP_des_ede3_cbc();
  441. break;
  442. case CRYPTO_CIPHER_ALG_DES:
  443. cipher = EVP_des_cbc();
  444. break;
  445. #endif /* OPENSSL_NO_DES */
  446. #ifndef OPENSSL_NO_RC2
  447. case CRYPTO_CIPHER_ALG_RC2:
  448. cipher = EVP_rc2_ecb();
  449. break;
  450. #endif /* OPENSSL_NO_RC2 */
  451. default:
  452. os_free(ctx);
  453. return NULL;
  454. }
  455. if (!(ctx->enc = EVP_CIPHER_CTX_new()) ||
  456. !EVP_CIPHER_CTX_set_padding(ctx->enc, 0) ||
  457. !EVP_EncryptInit_ex(ctx->enc, cipher, NULL, NULL, NULL) ||
  458. !EVP_CIPHER_CTX_set_key_length(ctx->enc, key_len) ||
  459. !EVP_EncryptInit_ex(ctx->enc, NULL, NULL, key, iv)) {
  460. if (ctx->enc)
  461. EVP_CIPHER_CTX_free(ctx->enc);
  462. os_free(ctx);
  463. return NULL;
  464. }
  465. if (!(ctx->dec = EVP_CIPHER_CTX_new()) ||
  466. !EVP_CIPHER_CTX_set_padding(ctx->dec, 0) ||
  467. !EVP_DecryptInit_ex(ctx->dec, cipher, NULL, NULL, NULL) ||
  468. !EVP_CIPHER_CTX_set_key_length(ctx->dec, key_len) ||
  469. !EVP_DecryptInit_ex(ctx->dec, NULL, NULL, key, iv)) {
  470. EVP_CIPHER_CTX_free(ctx->enc);
  471. if (ctx->dec)
  472. EVP_CIPHER_CTX_free(ctx->dec);
  473. os_free(ctx);
  474. return NULL;
  475. }
  476. return ctx;
  477. }
  478. int crypto_cipher_encrypt(struct crypto_cipher *ctx, const u8 *plain,
  479. u8 *crypt, size_t len)
  480. {
  481. int outl;
  482. if (!EVP_EncryptUpdate(ctx->enc, crypt, &outl, plain, len))
  483. return -1;
  484. return 0;
  485. }
  486. int crypto_cipher_decrypt(struct crypto_cipher *ctx, const u8 *crypt,
  487. u8 *plain, size_t len)
  488. {
  489. int outl;
  490. outl = len;
  491. if (!EVP_DecryptUpdate(ctx->dec, plain, &outl, crypt, len))
  492. return -1;
  493. return 0;
  494. }
  495. void crypto_cipher_deinit(struct crypto_cipher *ctx)
  496. {
  497. EVP_CIPHER_CTX_free(ctx->enc);
  498. EVP_CIPHER_CTX_free(ctx->dec);
  499. os_free(ctx);
  500. }
  501. void * dh5_init(struct wpabuf **priv, struct wpabuf **publ)
  502. {
  503. #if OPENSSL_VERSION_NUMBER < 0x10100000L
  504. DH *dh;
  505. struct wpabuf *pubkey = NULL, *privkey = NULL;
  506. size_t publen, privlen;
  507. *priv = NULL;
  508. wpabuf_free(*publ);
  509. *publ = NULL;
  510. dh = DH_new();
  511. if (dh == NULL)
  512. return NULL;
  513. dh->g = BN_new();
  514. if (dh->g == NULL || BN_set_word(dh->g, 2) != 1)
  515. goto err;
  516. dh->p = get_group5_prime();
  517. if (dh->p == NULL)
  518. goto err;
  519. if (DH_generate_key(dh) != 1)
  520. goto err;
  521. publen = BN_num_bytes(dh->pub_key);
  522. pubkey = wpabuf_alloc(publen);
  523. if (pubkey == NULL)
  524. goto err;
  525. privlen = BN_num_bytes(dh->priv_key);
  526. privkey = wpabuf_alloc(privlen);
  527. if (privkey == NULL)
  528. goto err;
  529. BN_bn2bin(dh->pub_key, wpabuf_put(pubkey, publen));
  530. BN_bn2bin(dh->priv_key, wpabuf_put(privkey, privlen));
  531. *priv = privkey;
  532. *publ = pubkey;
  533. return dh;
  534. err:
  535. wpabuf_clear_free(pubkey);
  536. wpabuf_clear_free(privkey);
  537. DH_free(dh);
  538. return NULL;
  539. #else
  540. DH *dh;
  541. struct wpabuf *pubkey = NULL, *privkey = NULL;
  542. size_t publen, privlen;
  543. BIGNUM *p = NULL, *g, *priv_key = NULL, *pub_key = NULL;
  544. *priv = NULL;
  545. wpabuf_free(*publ);
  546. *publ = NULL;
  547. dh = DH_new();
  548. if (dh == NULL)
  549. return NULL;
  550. g = BN_new();
  551. p = get_group5_prime();
  552. if (!g || BN_set_word(g, 2) != 1 || !p ||
  553. DH_set0_pqg(dh, p, NULL, g) != 1)
  554. goto err;
  555. p = NULL;
  556. g = NULL;
  557. if (DH_generate_key(dh) != 1)
  558. goto err;
  559. DH_get0_key(dh, &pub_key, &priv_key);
  560. publen = BN_num_bytes(pub_key);
  561. pubkey = wpabuf_alloc(publen);
  562. if (!pubkey)
  563. goto err;
  564. privlen = BN_num_bytes(priv_key);
  565. privkey = wpabuf_alloc(privlen);
  566. if (!privkey)
  567. goto err;
  568. BN_bn2bin(pub_key, wpabuf_put(pubkey, publen));
  569. BN_bn2bin(priv_key, wpabuf_put(privkey, privlen));
  570. *priv = privkey;
  571. *publ = pubkey;
  572. return dh;
  573. err:
  574. BN_free(p);
  575. BN_free(g);
  576. wpabuf_clear_free(pubkey);
  577. wpabuf_clear_free(privkey);
  578. DH_free(dh);
  579. return NULL;
  580. #endif
  581. }
  582. void * dh5_init_fixed(const struct wpabuf *priv, const struct wpabuf *publ)
  583. {
  584. #if OPENSSL_VERSION_NUMBER < 0x10100000L
  585. DH *dh;
  586. dh = DH_new();
  587. if (dh == NULL)
  588. return NULL;
  589. dh->g = BN_new();
  590. if (dh->g == NULL || BN_set_word(dh->g, 2) != 1)
  591. goto err;
  592. dh->p = get_group5_prime();
  593. if (dh->p == NULL)
  594. goto err;
  595. dh->priv_key = BN_bin2bn(wpabuf_head(priv), wpabuf_len(priv), NULL);
  596. if (dh->priv_key == NULL)
  597. goto err;
  598. dh->pub_key = BN_bin2bn(wpabuf_head(publ), wpabuf_len(publ), NULL);
  599. if (dh->pub_key == NULL)
  600. goto err;
  601. if (DH_generate_key(dh) != 1)
  602. goto err;
  603. return dh;
  604. err:
  605. DH_free(dh);
  606. return NULL;
  607. #else
  608. DH *dh;
  609. BIGNUM *p = NULL, *g, *priv_key = NULL, *pub_key = NULL;
  610. dh = DH_new();
  611. if (dh == NULL)
  612. return NULL;
  613. g = BN_new();
  614. p = get_group5_prime();
  615. if (!g || BN_set_word(g, 2) != 1 || !p ||
  616. DH_set0_pqg(dh, p, NULL, g) != 1)
  617. goto err;
  618. p = NULL;
  619. g = NULL;
  620. priv_key = BN_bin2bn(wpabuf_head(priv), wpabuf_len(priv), NULL);
  621. pub_key = BN_bin2bn(wpabuf_head(publ), wpabuf_len(publ), NULL);
  622. if (!priv_key || !pub_key || DH_set0_key(dh, pub_key, priv_key) != 0)
  623. goto err;
  624. pub_key = NULL;
  625. priv_key = NULL;
  626. if (DH_generate_key(dh) != 1)
  627. goto err;
  628. return dh;
  629. err:
  630. BN_free(p);
  631. BN_free(g);
  632. BN_free(pub_key);
  633. BN_clear_free(priv_key);
  634. DH_free(dh);
  635. return NULL;
  636. #endif
  637. }
  638. struct wpabuf * dh5_derive_shared(void *ctx, const struct wpabuf *peer_public,
  639. const struct wpabuf *own_private)
  640. {
  641. BIGNUM *pub_key;
  642. struct wpabuf *res = NULL;
  643. size_t rlen;
  644. DH *dh = ctx;
  645. int keylen;
  646. if (ctx == NULL)
  647. return NULL;
  648. pub_key = BN_bin2bn(wpabuf_head(peer_public), wpabuf_len(peer_public),
  649. NULL);
  650. if (pub_key == NULL)
  651. return NULL;
  652. rlen = DH_size(dh);
  653. res = wpabuf_alloc(rlen);
  654. if (res == NULL)
  655. goto err;
  656. keylen = DH_compute_key(wpabuf_mhead(res), pub_key, dh);
  657. if (keylen < 0)
  658. goto err;
  659. wpabuf_put(res, keylen);
  660. BN_clear_free(pub_key);
  661. return res;
  662. err:
  663. BN_clear_free(pub_key);
  664. wpabuf_clear_free(res);
  665. return NULL;
  666. }
  667. void dh5_free(void *ctx)
  668. {
  669. DH *dh;
  670. if (ctx == NULL)
  671. return;
  672. dh = ctx;
  673. DH_free(dh);
  674. }
  675. struct crypto_hash {
  676. HMAC_CTX *ctx;
  677. };
  678. struct crypto_hash * crypto_hash_init(enum crypto_hash_alg alg, const u8 *key,
  679. size_t key_len)
  680. {
  681. struct crypto_hash *ctx;
  682. const EVP_MD *md;
  683. switch (alg) {
  684. #ifndef OPENSSL_NO_MD5
  685. case CRYPTO_HASH_ALG_HMAC_MD5:
  686. md = EVP_md5();
  687. break;
  688. #endif /* OPENSSL_NO_MD5 */
  689. #ifndef OPENSSL_NO_SHA
  690. case CRYPTO_HASH_ALG_HMAC_SHA1:
  691. md = EVP_sha1();
  692. break;
  693. #endif /* OPENSSL_NO_SHA */
  694. #ifndef OPENSSL_NO_SHA256
  695. #ifdef CONFIG_SHA256
  696. case CRYPTO_HASH_ALG_HMAC_SHA256:
  697. md = EVP_sha256();
  698. break;
  699. #endif /* CONFIG_SHA256 */
  700. #endif /* OPENSSL_NO_SHA256 */
  701. default:
  702. return NULL;
  703. }
  704. ctx = os_zalloc(sizeof(*ctx));
  705. if (ctx == NULL)
  706. return NULL;
  707. ctx->ctx = HMAC_CTX_new();
  708. if (!ctx->ctx) {
  709. os_free(ctx);
  710. return NULL;
  711. }
  712. if (HMAC_Init_ex(ctx->ctx, key, key_len, md, NULL) != 1) {
  713. HMAC_CTX_free(ctx->ctx);
  714. bin_clear_free(ctx, sizeof(*ctx));
  715. return NULL;
  716. }
  717. return ctx;
  718. }
  719. void crypto_hash_update(struct crypto_hash *ctx, const u8 *data, size_t len)
  720. {
  721. if (ctx == NULL)
  722. return;
  723. HMAC_Update(ctx->ctx, data, len);
  724. }
  725. int crypto_hash_finish(struct crypto_hash *ctx, u8 *mac, size_t *len)
  726. {
  727. unsigned int mdlen;
  728. int res;
  729. if (ctx == NULL)
  730. return -2;
  731. if (mac == NULL || len == NULL) {
  732. HMAC_CTX_free(ctx->ctx);
  733. bin_clear_free(ctx, sizeof(*ctx));
  734. return 0;
  735. }
  736. mdlen = *len;
  737. res = HMAC_Final(ctx->ctx, mac, &mdlen);
  738. HMAC_CTX_free(ctx->ctx);
  739. bin_clear_free(ctx, sizeof(*ctx));
  740. if (res == 1) {
  741. *len = mdlen;
  742. return 0;
  743. }
  744. return -1;
  745. }
  746. static int openssl_hmac_vector(const EVP_MD *type, const u8 *key,
  747. size_t key_len, size_t num_elem,
  748. const u8 *addr[], const size_t *len, u8 *mac,
  749. unsigned int mdlen)
  750. {
  751. HMAC_CTX *ctx;
  752. size_t i;
  753. int res;
  754. if (TEST_FAIL())
  755. return -1;
  756. ctx = HMAC_CTX_new();
  757. if (!ctx)
  758. return -1;
  759. res = HMAC_Init_ex(ctx, key, key_len, type, NULL);
  760. if (res != 1)
  761. goto done;
  762. for (i = 0; i < num_elem; i++)
  763. HMAC_Update(ctx, addr[i], len[i]);
  764. res = HMAC_Final(ctx, mac, &mdlen);
  765. done:
  766. HMAC_CTX_free(ctx);
  767. return res == 1 ? 0 : -1;
  768. }
  769. #ifndef CONFIG_FIPS
  770. int hmac_md5_vector(const u8 *key, size_t key_len, size_t num_elem,
  771. const u8 *addr[], const size_t *len, u8 *mac)
  772. {
  773. return openssl_hmac_vector(EVP_md5(), key ,key_len, num_elem, addr, len,
  774. mac, 16);
  775. }
  776. int hmac_md5(const u8 *key, size_t key_len, const u8 *data, size_t data_len,
  777. u8 *mac)
  778. {
  779. return hmac_md5_vector(key, key_len, 1, &data, &data_len, mac);
  780. }
  781. #endif /* CONFIG_FIPS */
  782. int pbkdf2_sha1(const char *passphrase, const u8 *ssid, size_t ssid_len,
  783. int iterations, u8 *buf, size_t buflen)
  784. {
  785. if (PKCS5_PBKDF2_HMAC_SHA1(passphrase, os_strlen(passphrase), ssid,
  786. ssid_len, iterations, buflen, buf) != 1)
  787. return -1;
  788. return 0;
  789. }
  790. int hmac_sha1_vector(const u8 *key, size_t key_len, size_t num_elem,
  791. const u8 *addr[], const size_t *len, u8 *mac)
  792. {
  793. return openssl_hmac_vector(EVP_sha1(), key, key_len, num_elem, addr,
  794. len, mac, 20);
  795. }
  796. int hmac_sha1(const u8 *key, size_t key_len, const u8 *data, size_t data_len,
  797. u8 *mac)
  798. {
  799. return hmac_sha1_vector(key, key_len, 1, &data, &data_len, mac);
  800. }
  801. #ifdef CONFIG_SHA256
  802. int hmac_sha256_vector(const u8 *key, size_t key_len, size_t num_elem,
  803. const u8 *addr[], const size_t *len, u8 *mac)
  804. {
  805. return openssl_hmac_vector(EVP_sha256(), key, key_len, num_elem, addr,
  806. len, mac, 32);
  807. }
  808. int hmac_sha256(const u8 *key, size_t key_len, const u8 *data,
  809. size_t data_len, u8 *mac)
  810. {
  811. return hmac_sha256_vector(key, key_len, 1, &data, &data_len, mac);
  812. }
  813. #endif /* CONFIG_SHA256 */
  814. #ifdef CONFIG_SHA384
  815. int hmac_sha384_vector(const u8 *key, size_t key_len, size_t num_elem,
  816. const u8 *addr[], const size_t *len, u8 *mac)
  817. {
  818. return openssl_hmac_vector(EVP_sha384(), key, key_len, num_elem, addr,
  819. len, mac, 32);
  820. }
  821. int hmac_sha384(const u8 *key, size_t key_len, const u8 *data,
  822. size_t data_len, u8 *mac)
  823. {
  824. return hmac_sha384_vector(key, key_len, 1, &data, &data_len, mac);
  825. }
  826. #endif /* CONFIG_SHA384 */
  827. int crypto_get_random(void *buf, size_t len)
  828. {
  829. if (RAND_bytes(buf, len) != 1)
  830. return -1;
  831. return 0;
  832. }
  833. #ifdef CONFIG_OPENSSL_CMAC
  834. int omac1_aes_vector(const u8 *key, size_t key_len, size_t num_elem,
  835. const u8 *addr[], const size_t *len, u8 *mac)
  836. {
  837. CMAC_CTX *ctx;
  838. int ret = -1;
  839. size_t outlen, i;
  840. if (TEST_FAIL())
  841. return -1;
  842. ctx = CMAC_CTX_new();
  843. if (ctx == NULL)
  844. return -1;
  845. if (key_len == 32) {
  846. if (!CMAC_Init(ctx, key, 32, EVP_aes_256_cbc(), NULL))
  847. goto fail;
  848. } else if (key_len == 16) {
  849. if (!CMAC_Init(ctx, key, 16, EVP_aes_128_cbc(), NULL))
  850. goto fail;
  851. } else {
  852. goto fail;
  853. }
  854. for (i = 0; i < num_elem; i++) {
  855. if (!CMAC_Update(ctx, addr[i], len[i]))
  856. goto fail;
  857. }
  858. if (!CMAC_Final(ctx, mac, &outlen) || outlen != 16)
  859. goto fail;
  860. ret = 0;
  861. fail:
  862. CMAC_CTX_free(ctx);
  863. return ret;
  864. }
  865. int omac1_aes_128_vector(const u8 *key, size_t num_elem,
  866. const u8 *addr[], const size_t *len, u8 *mac)
  867. {
  868. return omac1_aes_vector(key, 16, num_elem, addr, len, mac);
  869. }
  870. int omac1_aes_128(const u8 *key, const u8 *data, size_t data_len, u8 *mac)
  871. {
  872. return omac1_aes_128_vector(key, 1, &data, &data_len, mac);
  873. }
  874. int omac1_aes_256(const u8 *key, const u8 *data, size_t data_len, u8 *mac)
  875. {
  876. return omac1_aes_vector(key, 32, 1, &data, &data_len, mac);
  877. }
  878. #endif /* CONFIG_OPENSSL_CMAC */
  879. struct crypto_bignum * crypto_bignum_init(void)
  880. {
  881. if (TEST_FAIL())
  882. return NULL;
  883. return (struct crypto_bignum *) BN_new();
  884. }
  885. struct crypto_bignum * crypto_bignum_init_set(const u8 *buf, size_t len)
  886. {
  887. BIGNUM *bn;
  888. if (TEST_FAIL())
  889. return NULL;
  890. bn = BN_bin2bn(buf, len, NULL);
  891. return (struct crypto_bignum *) bn;
  892. }
  893. void crypto_bignum_deinit(struct crypto_bignum *n, int clear)
  894. {
  895. if (clear)
  896. BN_clear_free((BIGNUM *) n);
  897. else
  898. BN_free((BIGNUM *) n);
  899. }
  900. int crypto_bignum_to_bin(const struct crypto_bignum *a,
  901. u8 *buf, size_t buflen, size_t padlen)
  902. {
  903. int num_bytes, offset;
  904. if (TEST_FAIL())
  905. return -1;
  906. if (padlen > buflen)
  907. return -1;
  908. num_bytes = BN_num_bytes((const BIGNUM *) a);
  909. if ((size_t) num_bytes > buflen)
  910. return -1;
  911. if (padlen > (size_t) num_bytes)
  912. offset = padlen - num_bytes;
  913. else
  914. offset = 0;
  915. os_memset(buf, 0, offset);
  916. BN_bn2bin((const BIGNUM *) a, buf + offset);
  917. return num_bytes + offset;
  918. }
  919. int crypto_bignum_add(const struct crypto_bignum *a,
  920. const struct crypto_bignum *b,
  921. struct crypto_bignum *c)
  922. {
  923. return BN_add((BIGNUM *) c, (const BIGNUM *) a, (const BIGNUM *) b) ?
  924. 0 : -1;
  925. }
  926. int crypto_bignum_mod(const struct crypto_bignum *a,
  927. const struct crypto_bignum *b,
  928. struct crypto_bignum *c)
  929. {
  930. int res;
  931. BN_CTX *bnctx;
  932. bnctx = BN_CTX_new();
  933. if (bnctx == NULL)
  934. return -1;
  935. res = BN_mod((BIGNUM *) c, (const BIGNUM *) a, (const BIGNUM *) b,
  936. bnctx);
  937. BN_CTX_free(bnctx);
  938. return res ? 0 : -1;
  939. }
  940. int crypto_bignum_exptmod(const struct crypto_bignum *a,
  941. const struct crypto_bignum *b,
  942. const struct crypto_bignum *c,
  943. struct crypto_bignum *d)
  944. {
  945. int res;
  946. BN_CTX *bnctx;
  947. if (TEST_FAIL())
  948. return -1;
  949. bnctx = BN_CTX_new();
  950. if (bnctx == NULL)
  951. return -1;
  952. res = BN_mod_exp((BIGNUM *) d, (const BIGNUM *) a, (const BIGNUM *) b,
  953. (const BIGNUM *) c, bnctx);
  954. BN_CTX_free(bnctx);
  955. return res ? 0 : -1;
  956. }
  957. int crypto_bignum_inverse(const struct crypto_bignum *a,
  958. const struct crypto_bignum *b,
  959. struct crypto_bignum *c)
  960. {
  961. BIGNUM *res;
  962. BN_CTX *bnctx;
  963. if (TEST_FAIL())
  964. return -1;
  965. bnctx = BN_CTX_new();
  966. if (bnctx == NULL)
  967. return -1;
  968. res = BN_mod_inverse((BIGNUM *) c, (const BIGNUM *) a,
  969. (const BIGNUM *) b, bnctx);
  970. BN_CTX_free(bnctx);
  971. return res ? 0 : -1;
  972. }
  973. int crypto_bignum_sub(const struct crypto_bignum *a,
  974. const struct crypto_bignum *b,
  975. struct crypto_bignum *c)
  976. {
  977. if (TEST_FAIL())
  978. return -1;
  979. return BN_sub((BIGNUM *) c, (const BIGNUM *) a, (const BIGNUM *) b) ?
  980. 0 : -1;
  981. }
  982. int crypto_bignum_div(const struct crypto_bignum *a,
  983. const struct crypto_bignum *b,
  984. struct crypto_bignum *c)
  985. {
  986. int res;
  987. BN_CTX *bnctx;
  988. if (TEST_FAIL())
  989. return -1;
  990. bnctx = BN_CTX_new();
  991. if (bnctx == NULL)
  992. return -1;
  993. res = BN_div((BIGNUM *) c, NULL, (const BIGNUM *) a,
  994. (const BIGNUM *) b, bnctx);
  995. BN_CTX_free(bnctx);
  996. return res ? 0 : -1;
  997. }
  998. int crypto_bignum_mulmod(const struct crypto_bignum *a,
  999. const struct crypto_bignum *b,
  1000. const struct crypto_bignum *c,
  1001. struct crypto_bignum *d)
  1002. {
  1003. int res;
  1004. BN_CTX *bnctx;
  1005. if (TEST_FAIL())
  1006. return -1;
  1007. bnctx = BN_CTX_new();
  1008. if (bnctx == NULL)
  1009. return -1;
  1010. res = BN_mod_mul((BIGNUM *) d, (const BIGNUM *) a, (const BIGNUM *) b,
  1011. (const BIGNUM *) c, bnctx);
  1012. BN_CTX_free(bnctx);
  1013. return res ? 0 : -1;
  1014. }
  1015. int crypto_bignum_cmp(const struct crypto_bignum *a,
  1016. const struct crypto_bignum *b)
  1017. {
  1018. return BN_cmp((const BIGNUM *) a, (const BIGNUM *) b);
  1019. }
  1020. int crypto_bignum_bits(const struct crypto_bignum *a)
  1021. {
  1022. return BN_num_bits((const BIGNUM *) a);
  1023. }
  1024. int crypto_bignum_is_zero(const struct crypto_bignum *a)
  1025. {
  1026. return BN_is_zero((const BIGNUM *) a);
  1027. }
  1028. int crypto_bignum_is_one(const struct crypto_bignum *a)
  1029. {
  1030. return BN_is_one((const BIGNUM *) a);
  1031. }
  1032. int crypto_bignum_legendre(const struct crypto_bignum *a,
  1033. const struct crypto_bignum *p)
  1034. {
  1035. BN_CTX *bnctx;
  1036. BIGNUM *exp = NULL, *tmp = NULL;
  1037. int res = -2;
  1038. if (TEST_FAIL())
  1039. return -2;
  1040. bnctx = BN_CTX_new();
  1041. if (bnctx == NULL)
  1042. return -2;
  1043. exp = BN_new();
  1044. tmp = BN_new();
  1045. if (!exp || !tmp ||
  1046. /* exp = (p-1) / 2 */
  1047. !BN_sub(exp, (const BIGNUM *) p, BN_value_one()) ||
  1048. !BN_rshift1(exp, exp) ||
  1049. !BN_mod_exp(tmp, (const BIGNUM *) a, exp, (const BIGNUM *) p,
  1050. bnctx))
  1051. goto fail;
  1052. if (BN_is_word(tmp, 1))
  1053. res = 1;
  1054. else if (BN_is_zero(tmp))
  1055. res = 0;
  1056. else
  1057. res = -1;
  1058. fail:
  1059. BN_clear_free(tmp);
  1060. BN_clear_free(exp);
  1061. BN_CTX_free(bnctx);
  1062. return res;
  1063. }
  1064. #ifdef CONFIG_ECC
  1065. struct crypto_ec {
  1066. EC_GROUP *group;
  1067. BN_CTX *bnctx;
  1068. BIGNUM *prime;
  1069. BIGNUM *order;
  1070. BIGNUM *a;
  1071. BIGNUM *b;
  1072. };
  1073. struct crypto_ec * crypto_ec_init(int group)
  1074. {
  1075. struct crypto_ec *e;
  1076. int nid;
  1077. /* Map from IANA registry for IKE D-H groups to OpenSSL NID */
  1078. switch (group) {
  1079. case 19:
  1080. nid = NID_X9_62_prime256v1;
  1081. break;
  1082. case 20:
  1083. nid = NID_secp384r1;
  1084. break;
  1085. case 21:
  1086. nid = NID_secp521r1;
  1087. break;
  1088. case 25:
  1089. nid = NID_X9_62_prime192v1;
  1090. break;
  1091. case 26:
  1092. nid = NID_secp224r1;
  1093. break;
  1094. #ifdef NID_brainpoolP224r1
  1095. case 27:
  1096. nid = NID_brainpoolP224r1;
  1097. break;
  1098. #endif /* NID_brainpoolP224r1 */
  1099. #ifdef NID_brainpoolP256r1
  1100. case 28:
  1101. nid = NID_brainpoolP256r1;
  1102. break;
  1103. #endif /* NID_brainpoolP256r1 */
  1104. #ifdef NID_brainpoolP384r1
  1105. case 29:
  1106. nid = NID_brainpoolP384r1;
  1107. break;
  1108. #endif /* NID_brainpoolP384r1 */
  1109. #ifdef NID_brainpoolP512r1
  1110. case 30:
  1111. nid = NID_brainpoolP512r1;
  1112. break;
  1113. #endif /* NID_brainpoolP512r1 */
  1114. default:
  1115. return NULL;
  1116. }
  1117. e = os_zalloc(sizeof(*e));
  1118. if (e == NULL)
  1119. return NULL;
  1120. e->bnctx = BN_CTX_new();
  1121. e->group = EC_GROUP_new_by_curve_name(nid);
  1122. e->prime = BN_new();
  1123. e->order = BN_new();
  1124. e->a = BN_new();
  1125. e->b = BN_new();
  1126. if (e->group == NULL || e->bnctx == NULL || e->prime == NULL ||
  1127. e->order == NULL || e->a == NULL || e->b == NULL ||
  1128. !EC_GROUP_get_curve_GFp(e->group, e->prime, e->a, e->b, e->bnctx) ||
  1129. !EC_GROUP_get_order(e->group, e->order, e->bnctx)) {
  1130. crypto_ec_deinit(e);
  1131. e = NULL;
  1132. }
  1133. return e;
  1134. }
  1135. void crypto_ec_deinit(struct crypto_ec *e)
  1136. {
  1137. if (e == NULL)
  1138. return;
  1139. BN_clear_free(e->b);
  1140. BN_clear_free(e->a);
  1141. BN_clear_free(e->order);
  1142. BN_clear_free(e->prime);
  1143. EC_GROUP_free(e->group);
  1144. BN_CTX_free(e->bnctx);
  1145. os_free(e);
  1146. }
  1147. struct crypto_ec_point * crypto_ec_point_init(struct crypto_ec *e)
  1148. {
  1149. if (TEST_FAIL())
  1150. return NULL;
  1151. if (e == NULL)
  1152. return NULL;
  1153. return (struct crypto_ec_point *) EC_POINT_new(e->group);
  1154. }
  1155. size_t crypto_ec_prime_len(struct crypto_ec *e)
  1156. {
  1157. return BN_num_bytes(e->prime);
  1158. }
  1159. size_t crypto_ec_prime_len_bits(struct crypto_ec *e)
  1160. {
  1161. return BN_num_bits(e->prime);
  1162. }
  1163. const struct crypto_bignum * crypto_ec_get_prime(struct crypto_ec *e)
  1164. {
  1165. return (const struct crypto_bignum *) e->prime;
  1166. }
  1167. const struct crypto_bignum * crypto_ec_get_order(struct crypto_ec *e)
  1168. {
  1169. return (const struct crypto_bignum *) e->order;
  1170. }
  1171. void crypto_ec_point_deinit(struct crypto_ec_point *p, int clear)
  1172. {
  1173. if (clear)
  1174. EC_POINT_clear_free((EC_POINT *) p);
  1175. else
  1176. EC_POINT_free((EC_POINT *) p);
  1177. }
  1178. int crypto_ec_point_to_bin(struct crypto_ec *e,
  1179. const struct crypto_ec_point *point, u8 *x, u8 *y)
  1180. {
  1181. BIGNUM *x_bn, *y_bn;
  1182. int ret = -1;
  1183. int len = BN_num_bytes(e->prime);
  1184. if (TEST_FAIL())
  1185. return -1;
  1186. x_bn = BN_new();
  1187. y_bn = BN_new();
  1188. if (x_bn && y_bn &&
  1189. EC_POINT_get_affine_coordinates_GFp(e->group, (EC_POINT *) point,
  1190. x_bn, y_bn, e->bnctx)) {
  1191. if (x) {
  1192. crypto_bignum_to_bin((struct crypto_bignum *) x_bn,
  1193. x, len, len);
  1194. }
  1195. if (y) {
  1196. crypto_bignum_to_bin((struct crypto_bignum *) y_bn,
  1197. y, len, len);
  1198. }
  1199. ret = 0;
  1200. }
  1201. BN_clear_free(x_bn);
  1202. BN_clear_free(y_bn);
  1203. return ret;
  1204. }
  1205. struct crypto_ec_point * crypto_ec_point_from_bin(struct crypto_ec *e,
  1206. const u8 *val)
  1207. {
  1208. BIGNUM *x, *y;
  1209. EC_POINT *elem;
  1210. int len = BN_num_bytes(e->prime);
  1211. if (TEST_FAIL())
  1212. return NULL;
  1213. x = BN_bin2bn(val, len, NULL);
  1214. y = BN_bin2bn(val + len, len, NULL);
  1215. elem = EC_POINT_new(e->group);
  1216. if (x == NULL || y == NULL || elem == NULL) {
  1217. BN_clear_free(x);
  1218. BN_clear_free(y);
  1219. EC_POINT_clear_free(elem);
  1220. return NULL;
  1221. }
  1222. if (!EC_POINT_set_affine_coordinates_GFp(e->group, elem, x, y,
  1223. e->bnctx)) {
  1224. EC_POINT_clear_free(elem);
  1225. elem = NULL;
  1226. }
  1227. BN_clear_free(x);
  1228. BN_clear_free(y);
  1229. return (struct crypto_ec_point *) elem;
  1230. }
  1231. int crypto_ec_point_add(struct crypto_ec *e, const struct crypto_ec_point *a,
  1232. const struct crypto_ec_point *b,
  1233. struct crypto_ec_point *c)
  1234. {
  1235. if (TEST_FAIL())
  1236. return -1;
  1237. return EC_POINT_add(e->group, (EC_POINT *) c, (const EC_POINT *) a,
  1238. (const EC_POINT *) b, e->bnctx) ? 0 : -1;
  1239. }
  1240. int crypto_ec_point_mul(struct crypto_ec *e, const struct crypto_ec_point *p,
  1241. const struct crypto_bignum *b,
  1242. struct crypto_ec_point *res)
  1243. {
  1244. if (TEST_FAIL())
  1245. return -1;
  1246. return EC_POINT_mul(e->group, (EC_POINT *) res, NULL,
  1247. (const EC_POINT *) p, (const BIGNUM *) b, e->bnctx)
  1248. ? 0 : -1;
  1249. }
  1250. int crypto_ec_point_invert(struct crypto_ec *e, struct crypto_ec_point *p)
  1251. {
  1252. if (TEST_FAIL())
  1253. return -1;
  1254. return EC_POINT_invert(e->group, (EC_POINT *) p, e->bnctx) ? 0 : -1;
  1255. }
  1256. int crypto_ec_point_solve_y_coord(struct crypto_ec *e,
  1257. struct crypto_ec_point *p,
  1258. const struct crypto_bignum *x, int y_bit)
  1259. {
  1260. if (TEST_FAIL())
  1261. return -1;
  1262. if (!EC_POINT_set_compressed_coordinates_GFp(e->group, (EC_POINT *) p,
  1263. (const BIGNUM *) x, y_bit,
  1264. e->bnctx) ||
  1265. !EC_POINT_is_on_curve(e->group, (EC_POINT *) p, e->bnctx))
  1266. return -1;
  1267. return 0;
  1268. }
  1269. struct crypto_bignum *
  1270. crypto_ec_point_compute_y_sqr(struct crypto_ec *e,
  1271. const struct crypto_bignum *x)
  1272. {
  1273. BIGNUM *tmp, *tmp2, *y_sqr = NULL;
  1274. if (TEST_FAIL())
  1275. return NULL;
  1276. tmp = BN_new();
  1277. tmp2 = BN_new();
  1278. /* y^2 = x^3 + ax + b */
  1279. if (tmp && tmp2 &&
  1280. BN_mod_sqr(tmp, (const BIGNUM *) x, e->prime, e->bnctx) &&
  1281. BN_mod_mul(tmp, tmp, (const BIGNUM *) x, e->prime, e->bnctx) &&
  1282. BN_mod_mul(tmp2, e->a, (const BIGNUM *) x, e->prime, e->bnctx) &&
  1283. BN_mod_add_quick(tmp2, tmp2, tmp, e->prime) &&
  1284. BN_mod_add_quick(tmp2, tmp2, e->b, e->prime)) {
  1285. y_sqr = tmp2;
  1286. tmp2 = NULL;
  1287. }
  1288. BN_clear_free(tmp);
  1289. BN_clear_free(tmp2);
  1290. return (struct crypto_bignum *) y_sqr;
  1291. }
  1292. int crypto_ec_point_is_at_infinity(struct crypto_ec *e,
  1293. const struct crypto_ec_point *p)
  1294. {
  1295. return EC_POINT_is_at_infinity(e->group, (const EC_POINT *) p);
  1296. }
  1297. int crypto_ec_point_is_on_curve(struct crypto_ec *e,
  1298. const struct crypto_ec_point *p)
  1299. {
  1300. return EC_POINT_is_on_curve(e->group, (const EC_POINT *) p,
  1301. e->bnctx) == 1;
  1302. }
  1303. int crypto_ec_point_cmp(const struct crypto_ec *e,
  1304. const struct crypto_ec_point *a,
  1305. const struct crypto_ec_point *b)
  1306. {
  1307. return EC_POINT_cmp(e->group, (const EC_POINT *) a,
  1308. (const EC_POINT *) b, e->bnctx);
  1309. }
  1310. #endif /* CONFIG_ECC */