sae.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604
  1. /*
  2. * Simultaneous authentication of equals
  3. * Copyright (c) 2012, Jouni Malinen <j@w1.fi>
  4. *
  5. * This software may be distributed under the terms of the BSD license.
  6. * See README for more details.
  7. */
  8. #include "includes.h"
  9. #include "common.h"
  10. #include "crypto/crypto.h"
  11. #include "crypto/sha256.h"
  12. #include "crypto/random.h"
  13. #include "ieee802_11_defs.h"
  14. #include "sae.h"
  15. static const u8 group19_prime[] = {
  16. 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x01,
  17. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
  18. 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF,
  19. 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF
  20. };
  21. static const u8 group19_order[] = {
  22. 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00,
  23. 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
  24. 0xBC, 0xE6, 0xFA, 0xAD, 0xA7, 0x17, 0x9E, 0x84,
  25. 0xF3, 0xB9, 0xCA, 0xC2, 0xFC, 0x63, 0x25, 0x51
  26. };
  27. int sae_set_group(struct sae_data *sae, int group)
  28. {
  29. crypto_ec_deinit(sae->ec);
  30. sae->ec = crypto_ec_init(group);
  31. if (!sae->ec)
  32. return -1;
  33. sae->group = group;
  34. sae->prime_len = crypto_ec_prime_len(sae->ec);
  35. return 0;
  36. }
  37. void sae_clear_data(struct sae_data *sae)
  38. {
  39. if (sae == NULL)
  40. return;
  41. crypto_ec_deinit(sae->ec);
  42. os_memset(sae, 0, sizeof(*sae));
  43. }
  44. static int val_zero_or_one(const u8 *val, size_t len)
  45. {
  46. size_t i;
  47. for (i = 0; i < len - 1; i++) {
  48. if (val[i])
  49. return 0;
  50. }
  51. return val[len - 1] <= 1;
  52. }
  53. static int val_zero(const u8 *val, size_t len)
  54. {
  55. size_t i;
  56. for (i = 0; i < len; i++) {
  57. if (val[i])
  58. return 0;
  59. }
  60. return 1;
  61. }
  62. static int sae_get_rand(u8 *val)
  63. {
  64. int iter = 0;
  65. do {
  66. if (random_get_bytes(val, sizeof(group19_prime)) < 0)
  67. return -1;
  68. if (iter++ > 100)
  69. return -1;
  70. } while (os_memcmp(val, group19_order, sizeof(group19_prime)) >= 0 ||
  71. val_zero_or_one(val, sizeof(group19_prime)));
  72. return 0;
  73. }
  74. static void sae_pwd_seed_key(const u8 *addr1, const u8 *addr2, u8 *key)
  75. {
  76. wpa_printf(MSG_DEBUG, "SAE: PWE derivation - addr1=" MACSTR
  77. " addr2=" MACSTR, MAC2STR(addr1), MAC2STR(addr2));
  78. if (os_memcmp(addr1, addr2, ETH_ALEN) > 0) {
  79. os_memcpy(key, addr1, ETH_ALEN);
  80. os_memcpy(key + ETH_ALEN, addr2, ETH_ALEN);
  81. } else {
  82. os_memcpy(key, addr2, ETH_ALEN);
  83. os_memcpy(key + ETH_ALEN, addr1, ETH_ALEN);
  84. }
  85. }
  86. static int sae_test_pwd_seed(struct crypto_ec *ecc, const u8 *pwd_seed,
  87. struct crypto_ec_point *pwe, u8 *pwe_bin)
  88. {
  89. u8 pwd_value[32];
  90. struct crypto_bignum *x;
  91. int y_bit;
  92. wpa_hexdump_key(MSG_DEBUG, "SAE: pwd-seed", pwd_seed, 32);
  93. /* pwd-value = KDF-z(pwd-seed, "SAE Hunting and Pecking", p) */
  94. sha256_prf(pwd_seed, 32, "SAE Hunting and Pecking",
  95. group19_prime, sizeof(group19_prime),
  96. pwd_value, sizeof(pwd_value));
  97. wpa_hexdump_key(MSG_DEBUG, "SAE: pwd-value",
  98. pwd_value, sizeof(pwd_value));
  99. if (os_memcmp(pwd_value, group19_prime, sizeof(group19_prime)) >= 0)
  100. return 0;
  101. y_bit = pwd_seed[SHA256_MAC_LEN - 1] & 0x01;
  102. x = crypto_bignum_init_set(pwd_value, sizeof(pwd_value));
  103. if (x == NULL)
  104. return -1;
  105. if (crypto_ec_point_solve_y_coord(ecc, pwe, x, y_bit) < 0) {
  106. crypto_bignum_deinit(x, 0);
  107. wpa_printf(MSG_DEBUG, "SAE: No solution found");
  108. return 0;
  109. }
  110. crypto_bignum_deinit(x, 0);
  111. wpa_printf(MSG_DEBUG, "SAE: PWE found");
  112. if (crypto_ec_point_to_bin(ecc, pwe, pwe_bin, pwe_bin + 32) < 0)
  113. return -1;
  114. wpa_hexdump_key(MSG_DEBUG, "SAE: PWE x", pwe_bin, 32);
  115. wpa_hexdump_key(MSG_DEBUG, "SAE: PWE y", pwe_bin + 32, 32);
  116. return 1;
  117. }
  118. static int sae_derive_pwe(struct crypto_ec *ecc, const u8 *addr1,
  119. const u8 *addr2, const u8 *password,
  120. size_t password_len, struct crypto_ec_point *pwe,
  121. u8 *pwe_bin)
  122. {
  123. u8 counter, k = 4;
  124. u8 addrs[2 * ETH_ALEN];
  125. const u8 *addr[2];
  126. size_t len[2];
  127. int found = 0;
  128. struct crypto_ec_point *pwe_tmp;
  129. u8 pwe_bin_tmp[2 * 32];
  130. pwe_tmp = crypto_ec_point_init(ecc);
  131. if (pwe_tmp == NULL)
  132. return -1;
  133. wpa_hexdump_ascii_key(MSG_DEBUG, "SAE: password",
  134. password, password_len);
  135. /*
  136. * H(salt, ikm) = HMAC-SHA256(salt, ikm)
  137. * pwd-seed = H(MAX(STA-A-MAC, STA-B-MAC) || MIN(STA-A-MAC, STA-B-MAC),
  138. * password || counter)
  139. */
  140. sae_pwd_seed_key(addr1, addr2, addrs);
  141. addr[0] = password;
  142. len[0] = password_len;
  143. addr[1] = &counter;
  144. len[1] = sizeof(counter);
  145. /*
  146. * Continue for at least k iterations to protect against side-channel
  147. * attacks that attempt to determine the number of iterations required
  148. * in the loop.
  149. */
  150. for (counter = 1; counter < k || !found; counter++) {
  151. u8 pwd_seed[SHA256_MAC_LEN];
  152. int res;
  153. wpa_printf(MSG_DEBUG, "SAE: counter = %u", counter);
  154. if (hmac_sha256_vector(addrs, sizeof(addrs), 2, addr, len,
  155. pwd_seed) < 0)
  156. break;
  157. res = sae_test_pwd_seed(ecc, pwd_seed,
  158. found ? pwe_tmp : pwe,
  159. found ? pwe_bin_tmp : pwe_bin);
  160. if (res < 0)
  161. break;
  162. if (res == 0)
  163. continue;
  164. if (found) {
  165. wpa_printf(MSG_DEBUG, "SAE: Ignore this PWE (one was "
  166. "already selected)");
  167. } else {
  168. wpa_printf(MSG_DEBUG, "SAE: Use this PWE");
  169. found = 1;
  170. }
  171. if (counter > 200) {
  172. /* This should not happen in practice */
  173. wpa_printf(MSG_DEBUG, "SAE: Failed to derive PWE");
  174. break;
  175. }
  176. }
  177. crypto_ec_point_deinit(pwe_tmp, 1);
  178. return found ? 0 : -1;
  179. }
  180. static int sae_derive_commit(struct sae_data *sae, struct crypto_ec *ecc,
  181. struct crypto_ec_point *pwe)
  182. {
  183. struct crypto_bignum *x, *bn_rand, *bn_mask, *order;
  184. struct crypto_ec_point *elem;
  185. u8 mask[32];
  186. int ret = -1;
  187. if (sae_get_rand(sae->sae_rand) < 0 || sae_get_rand(mask) < 0)
  188. return -1;
  189. wpa_hexdump_key(MSG_DEBUG, "SAE: rand",
  190. sae->sae_rand, sizeof(sae->sae_rand));
  191. wpa_hexdump_key(MSG_DEBUG, "SAE: mask", mask, sizeof(mask));
  192. x = crypto_bignum_init();
  193. bn_rand = crypto_bignum_init_set(sae->sae_rand, 32);
  194. bn_mask = crypto_bignum_init_set(mask, sizeof(mask));
  195. order = crypto_bignum_init_set(group19_order, sizeof(group19_order));
  196. elem = crypto_ec_point_init(ecc);
  197. if (x == NULL || bn_rand == NULL || bn_mask == NULL || order == NULL ||
  198. elem == NULL)
  199. goto fail;
  200. /* commit-scalar = (rand + mask) modulo r */
  201. crypto_bignum_add(bn_rand, bn_mask, x);
  202. crypto_bignum_mod(x, order, x);
  203. crypto_bignum_to_bin(x, sae->own_commit_scalar,
  204. sizeof(sae->own_commit_scalar), 32);
  205. wpa_hexdump(MSG_DEBUG, "SAE: commit-scalar",
  206. sae->own_commit_scalar, 32);
  207. /* COMMIT-ELEMENT = inverse(scalar-op(mask, PWE)) */
  208. if (crypto_ec_point_mul(ecc, pwe, bn_mask, elem) < 0 ||
  209. crypto_ec_point_invert(ecc, elem) < 0 ||
  210. crypto_ec_point_to_bin(ecc, elem, sae->own_commit_element,
  211. sae->own_commit_element + 32) < 0)
  212. goto fail;
  213. wpa_hexdump(MSG_DEBUG, "SAE: commit-element x",
  214. sae->own_commit_element, 32);
  215. wpa_hexdump(MSG_DEBUG, "SAE: commit-element y",
  216. sae->own_commit_element + 32, 32);
  217. ret = 0;
  218. fail:
  219. crypto_ec_point_deinit(elem, 0);
  220. crypto_bignum_deinit(order, 0);
  221. crypto_bignum_deinit(bn_mask, 1);
  222. os_memset(mask, 0, sizeof(mask));
  223. crypto_bignum_deinit(bn_rand, 1);
  224. crypto_bignum_deinit(x, 1);
  225. return ret;
  226. }
  227. int sae_prepare_commit(const u8 *addr1, const u8 *addr2,
  228. const u8 *password, size_t password_len,
  229. struct sae_data *sae)
  230. {
  231. struct crypto_ec *ecc;
  232. struct crypto_ec_point *pwe;
  233. int ret = 0;
  234. ecc = crypto_ec_init(19);
  235. pwe = crypto_ec_point_init(ecc);
  236. if (ecc == NULL || pwe == NULL ||
  237. sae_derive_pwe(ecc, addr1, addr2, password, password_len, pwe,
  238. sae->pwe) < 0 ||
  239. sae_derive_commit(sae, ecc, pwe) < 0)
  240. ret = -1;
  241. crypto_ec_point_deinit(pwe, 1);
  242. crypto_ec_deinit(ecc);
  243. return ret;
  244. }
  245. static int sae_check_peer_commit(struct sae_data *sae)
  246. {
  247. /* 0 < scalar < r */
  248. if (val_zero(sae->peer_commit_scalar, 32) ||
  249. os_memcmp(sae->peer_commit_scalar, group19_order,
  250. sizeof(group19_prime)) >= 0) {
  251. wpa_printf(MSG_DEBUG, "SAE: Invalid peer scalar");
  252. return -1;
  253. }
  254. /* element x and y coordinates < p */
  255. if (os_memcmp(sae->peer_commit_element, group19_prime,
  256. sizeof(group19_prime)) >= 0 ||
  257. os_memcmp(sae->peer_commit_element + 32, group19_prime,
  258. sizeof(group19_prime)) >= 0) {
  259. wpa_printf(MSG_DEBUG, "SAE: Invalid coordinates in peer "
  260. "element");
  261. return -1;
  262. }
  263. return 0;
  264. }
  265. static int sae_derive_k(struct sae_data *sae, u8 *k)
  266. {
  267. struct crypto_ec *ecc;
  268. struct crypto_ec_point *pwe, *peer_elem, *K;
  269. struct crypto_bignum *rand_bn, *peer_scalar;
  270. int ret = -1;
  271. ecc = crypto_ec_init(19);
  272. if (ecc == NULL)
  273. return -1;
  274. pwe = crypto_ec_point_from_bin(ecc, sae->pwe);
  275. peer_scalar = crypto_bignum_init_set(sae->peer_commit_scalar, 32);
  276. peer_elem = crypto_ec_point_from_bin(ecc, sae->peer_commit_element);
  277. K = crypto_ec_point_init(ecc);
  278. rand_bn = crypto_bignum_init_set(sae->sae_rand, 32);
  279. if (pwe == NULL || peer_elem == NULL || peer_scalar == NULL ||
  280. K == NULL || rand_bn == NULL)
  281. goto fail;
  282. if (!crypto_ec_point_is_on_curve(ecc, peer_elem)) {
  283. wpa_printf(MSG_DEBUG, "SAE: Peer element is not on curve");
  284. goto fail;
  285. }
  286. /*
  287. * K = scalar-op(rand, (elem-op(scalar-op(peer-commit-scalar, PWE),
  288. * PEER-COMMIT-ELEMENT)))
  289. * If K is identity element (point-at-infinity), reject
  290. * k = F(K) (= x coordinate)
  291. */
  292. if (crypto_ec_point_mul(ecc, pwe, peer_scalar, K) < 0 ||
  293. crypto_ec_point_add(ecc, K, peer_elem, K) < 0 ||
  294. crypto_ec_point_mul(ecc, K, rand_bn, K) < 0 ||
  295. crypto_ec_point_is_at_infinity(ecc, K) ||
  296. crypto_ec_point_to_bin(ecc, K, k, NULL) < 0) {
  297. wpa_printf(MSG_DEBUG, "SAE: Failed to calculate K and k");
  298. goto fail;
  299. }
  300. wpa_hexdump_key(MSG_DEBUG, "SAE: k", k, 32);
  301. ret = 0;
  302. fail:
  303. crypto_ec_point_deinit(pwe, 1);
  304. crypto_ec_point_deinit(peer_elem, 0);
  305. crypto_ec_point_deinit(K, 1);
  306. crypto_bignum_deinit(rand_bn, 1);
  307. crypto_ec_deinit(ecc);
  308. return ret;
  309. }
  310. static int sae_derive_keys(struct sae_data *sae, const u8 *k)
  311. {
  312. u8 null_key[32], val[32];
  313. u8 keyseed[SHA256_MAC_LEN];
  314. u8 keys[32 + 32];
  315. struct crypto_bignum *order, *own_scalar, *peer_scalar, *tmp;
  316. int ret = -1;
  317. order = crypto_bignum_init_set(group19_order, sizeof(group19_order));
  318. own_scalar = crypto_bignum_init_set(sae->own_commit_scalar, 32);
  319. peer_scalar = crypto_bignum_init_set(sae->peer_commit_scalar, 32);
  320. tmp = crypto_bignum_init();
  321. if (order == NULL || own_scalar == NULL || peer_scalar == NULL ||
  322. tmp == NULL)
  323. goto fail;
  324. /* keyseed = H(<0>32, k)
  325. * KCK || PMK = KDF-512(keyseed, "SAE KCK and PMK",
  326. * (commit-scalar + peer-commit-scalar) modulo r)
  327. * PMKID = L((commit-scalar + peer-commit-scalar) modulo r, 0, 128)
  328. */
  329. os_memset(null_key, 0, sizeof(null_key));
  330. hmac_sha256(null_key, sizeof(null_key), k, 32, keyseed);
  331. wpa_hexdump_key(MSG_DEBUG, "SAE: keyseed", keyseed, sizeof(keyseed));
  332. crypto_bignum_add(own_scalar, peer_scalar, tmp);
  333. crypto_bignum_mod(tmp, order, tmp);
  334. crypto_bignum_to_bin(tmp, val, sizeof(val), sizeof(group19_prime));
  335. wpa_hexdump(MSG_DEBUG, "SAE: PMKID", val, 16);
  336. sha256_prf(keyseed, sizeof(keyseed), "SAE KCK and PMK",
  337. val, sizeof(val), keys, sizeof(keys));
  338. os_memcpy(sae->kck, keys, 32);
  339. os_memcpy(sae->pmk, keys + 32, 32);
  340. wpa_hexdump_key(MSG_DEBUG, "SAE: KCK", sae->kck, 32);
  341. wpa_hexdump_key(MSG_DEBUG, "SAE: PMK", sae->pmk, 32);
  342. ret = 0;
  343. fail:
  344. crypto_bignum_deinit(tmp, 0);
  345. crypto_bignum_deinit(peer_scalar, 0);
  346. crypto_bignum_deinit(own_scalar, 0);
  347. crypto_bignum_deinit(order, 0);
  348. return ret;
  349. }
  350. int sae_process_commit(struct sae_data *sae)
  351. {
  352. u8 k[32];
  353. if (sae_check_peer_commit(sae) < 0 ||
  354. sae_derive_k(sae, k) < 0 ||
  355. sae_derive_keys(sae, k) < 0)
  356. return -1;
  357. return 0;
  358. }
  359. void sae_write_commit(struct sae_data *sae, struct wpabuf *buf,
  360. const struct wpabuf *token)
  361. {
  362. wpabuf_put_le16(buf, sae->group); /* Finite Cyclic Group */
  363. if (token)
  364. wpabuf_put_buf(buf, token);
  365. wpabuf_put_data(buf, sae->own_commit_scalar, 32);
  366. wpabuf_put_data(buf, sae->own_commit_element, 2 * 32);
  367. }
  368. u16 sae_parse_commit(struct sae_data *sae, const u8 *data, size_t len,
  369. const u8 **token, size_t *token_len)
  370. {
  371. const u8 *pos = data, *end = data + len;
  372. size_t val_len;
  373. u16 group;
  374. wpa_hexdump(MSG_DEBUG, "SAE: Commit fields", data, len);
  375. if (token)
  376. *token = NULL;
  377. if (token_len)
  378. *token_len = 0;
  379. /* Check Finite Cyclic Group */
  380. if (pos + 2 > end)
  381. return WLAN_STATUS_UNSPECIFIED_FAILURE;
  382. group = WPA_GET_LE16(pos);
  383. if (sae->state == SAE_COMMITTED && group != sae->group) {
  384. wpa_printf(MSG_DEBUG, "SAE: Do not allow group to be changed");
  385. return WLAN_STATUS_FINITE_CYCLIC_GROUP_NOT_SUPPORTED;
  386. }
  387. if (group != sae->group && sae_set_group(sae, group) < 0) {
  388. wpa_printf(MSG_DEBUG, "SAE: Unsupported Finite Cyclic Group %u",
  389. group);
  390. return WLAN_STATUS_FINITE_CYCLIC_GROUP_NOT_SUPPORTED;
  391. }
  392. pos += 2;
  393. val_len = 32;
  394. if (pos + 3 * val_len < end) {
  395. size_t tlen = end - (pos + 3 * val_len);
  396. wpa_hexdump(MSG_DEBUG, "SAE: Anti-Clogging Token", pos, tlen);
  397. if (token)
  398. *token = pos;
  399. if (token_len)
  400. *token_len = tlen;
  401. pos += tlen;
  402. }
  403. if (pos + val_len > end) {
  404. wpa_printf(MSG_DEBUG, "SAE: Not enough data for scalar");
  405. return WLAN_STATUS_UNSPECIFIED_FAILURE;
  406. }
  407. /*
  408. * IEEE Std 802.11-2012, 11.3.8.6.1: If there is a protocol instance for
  409. * the peer and it is in Authenticated state, the new Commit Message
  410. * shall be dropped if the peer-scalar is identical to the one used in
  411. * the existing protocol instance.
  412. */
  413. if (sae->state == SAE_ACCEPTED &&
  414. os_memcmp(sae->peer_commit_scalar, pos, val_len) == 0) {
  415. wpa_printf(MSG_DEBUG, "SAE: Do not accept re-use of previous "
  416. "peer-commit-scalar");
  417. return WLAN_STATUS_UNSPECIFIED_FAILURE;
  418. }
  419. os_memcpy(sae->peer_commit_scalar, pos, val_len);
  420. wpa_hexdump(MSG_DEBUG, "SAE: Peer commit-scalar",
  421. sae->peer_commit_scalar, val_len);
  422. pos += val_len;
  423. if (pos + 2 * val_len > end) {
  424. wpa_printf(MSG_DEBUG, "SAE: Not enough data for "
  425. "commit-element");
  426. return WLAN_STATUS_UNSPECIFIED_FAILURE;
  427. }
  428. os_memcpy(sae->peer_commit_element, pos, 2 * val_len);
  429. wpa_hexdump(MSG_DEBUG, "SAE: Peer commit-element(x)",
  430. sae->peer_commit_element, val_len);
  431. wpa_hexdump(MSG_DEBUG, "SAE: Peer commit-element(y)",
  432. sae->peer_commit_element + val_len, val_len);
  433. return WLAN_STATUS_SUCCESS;
  434. }
  435. void sae_write_confirm(struct sae_data *sae, struct wpabuf *buf)
  436. {
  437. const u8 *sc;
  438. const u8 *addr[5];
  439. size_t len[5];
  440. /* Send-Confirm */
  441. sc = wpabuf_put(buf, 0);
  442. wpabuf_put_le16(buf, sae->send_confirm);
  443. sae->send_confirm++;
  444. /* Confirm
  445. * CN(key, X, Y, Z, ...) =
  446. * HMAC-SHA256(key, D2OS(X) || D2OS(Y) || D2OS(Z) | ...)
  447. * confirm = CN(KCK, send-confirm, commit-scalar, COMMIT-ELEMENT,
  448. * peer-commit-scalar, PEER-COMMIT-ELEMENT)
  449. */
  450. addr[0] = sc;
  451. len[0] = 2;
  452. addr[1] = sae->own_commit_scalar;
  453. len[1] = 32;
  454. addr[2] = sae->own_commit_element;
  455. len[2] = 2 * 32;
  456. addr[3] = sae->peer_commit_scalar;
  457. len[3] = 32;
  458. addr[4] = sae->peer_commit_element;
  459. len[4] = 2 * 32;
  460. hmac_sha256_vector(sae->kck, sizeof(sae->kck), 5, addr, len,
  461. wpabuf_put(buf, SHA256_MAC_LEN));
  462. }
  463. int sae_check_confirm(struct sae_data *sae, const u8 *data, size_t len)
  464. {
  465. u16 rc;
  466. const u8 *addr[5];
  467. size_t elen[5];
  468. u8 verifier[SHA256_MAC_LEN];
  469. wpa_hexdump(MSG_DEBUG, "SAE: Confirm fields", data, len);
  470. if (len < 2 + SHA256_MAC_LEN) {
  471. wpa_printf(MSG_DEBUG, "SAE: Too short confirm message");
  472. return -1;
  473. }
  474. rc = WPA_GET_LE16(data);
  475. wpa_printf(MSG_DEBUG, "SAE: peer-send-confirm %u", rc);
  476. /* Confirm
  477. * CN(key, X, Y, Z, ...) =
  478. * HMAC-SHA256(key, D2OS(X) || D2OS(Y) || D2OS(Z) | ...)
  479. * verifier = CN(KCK, peer-send-confirm, peer-commit-scalar,
  480. * PEER-COMMIT-ELEMENT, commit-scalar, COMMIT-ELEMENT)
  481. */
  482. addr[0] = data;
  483. elen[0] = 2;
  484. addr[1] = sae->peer_commit_scalar;
  485. elen[1] = 32;
  486. addr[2] = sae->peer_commit_element;
  487. elen[2] = 2 * 32;
  488. addr[3] = sae->own_commit_scalar;
  489. elen[3] = 32;
  490. addr[4] = sae->own_commit_element;
  491. elen[4] = 2 * 32;
  492. hmac_sha256_vector(sae->kck, sizeof(sae->kck), 5, addr, elen, verifier);
  493. if (os_memcmp(verifier, data + 2, SHA256_MAC_LEN) != 0) {
  494. wpa_printf(MSG_DEBUG, "SAE: Confirm mismatch");
  495. wpa_hexdump(MSG_DEBUG, "SAE: Received confirm",
  496. data + 2, SHA256_MAC_LEN);
  497. wpa_hexdump(MSG_DEBUG, "SAE: Calculated verifier",
  498. verifier, SHA256_MAC_LEN);
  499. return -1;
  500. }
  501. return 0;
  502. }