ap.c 32 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251
  1. /*
  2. * WPA Supplicant - Basic AP mode support routines
  3. * Copyright (c) 2003-2009, Jouni Malinen <j@w1.fi>
  4. * Copyright (c) 2009, Atheros Communications
  5. *
  6. * This software may be distributed under the terms of the BSD license.
  7. * See README for more details.
  8. */
  9. #include "utils/includes.h"
  10. #include "utils/common.h"
  11. #include "utils/eloop.h"
  12. #include "utils/uuid.h"
  13. #include "common/ieee802_11_defs.h"
  14. #include "common/wpa_ctrl.h"
  15. #include "eapol_supp/eapol_supp_sm.h"
  16. #include "crypto/dh_group5.h"
  17. #include "ap/hostapd.h"
  18. #include "ap/ap_config.h"
  19. #include "ap/ap_drv_ops.h"
  20. #ifdef NEED_AP_MLME
  21. #include "ap/ieee802_11.h"
  22. #endif /* NEED_AP_MLME */
  23. #include "ap/beacon.h"
  24. #include "ap/ieee802_1x.h"
  25. #include "ap/wps_hostapd.h"
  26. #include "ap/ctrl_iface_ap.h"
  27. #include "wps/wps.h"
  28. #include "common/ieee802_11_defs.h"
  29. #include "config_ssid.h"
  30. #include "config.h"
  31. #include "wpa_supplicant_i.h"
  32. #include "driver_i.h"
  33. #include "p2p_supplicant.h"
  34. #include "ap.h"
  35. #include "ap/sta_info.h"
  36. #include "notify.h"
  37. #ifdef CONFIG_WPS
  38. static void wpas_wps_ap_pin_timeout(void *eloop_data, void *user_ctx);
  39. #endif /* CONFIG_WPS */
  40. #ifdef CONFIG_IEEE80211N
  41. static void wpas_conf_ap_vht(struct wpa_supplicant *wpa_s,
  42. struct hostapd_config *conf,
  43. struct hostapd_hw_modes *mode)
  44. {
  45. #ifdef CONFIG_P2P
  46. u8 center_chan = 0;
  47. u8 channel = conf->channel;
  48. if (!conf->secondary_channel)
  49. goto no_vht;
  50. center_chan = wpas_p2p_get_vht80_center(wpa_s, mode, channel);
  51. if (!center_chan)
  52. goto no_vht;
  53. /* Use 80 MHz channel */
  54. conf->vht_oper_chwidth = 1;
  55. conf->vht_oper_centr_freq_seg0_idx = center_chan;
  56. return;
  57. no_vht:
  58. conf->vht_oper_centr_freq_seg0_idx =
  59. channel + conf->secondary_channel * 2;
  60. #else /* CONFIG_P2P */
  61. conf->vht_oper_centr_freq_seg0_idx =
  62. conf->channel + conf->secondary_channel * 2;
  63. #endif /* CONFIG_P2P */
  64. }
  65. #endif /* CONFIG_IEEE80211N */
  66. void wpa_supplicant_conf_ap_ht(struct wpa_supplicant *wpa_s,
  67. struct wpa_ssid *ssid,
  68. struct hostapd_config *conf)
  69. {
  70. /* TODO: enable HT40 if driver supports it;
  71. * drop to 11b if driver does not support 11g */
  72. #ifdef CONFIG_IEEE80211N
  73. /*
  74. * Enable HT20 if the driver supports it, by setting conf->ieee80211n
  75. * and a mask of allowed capabilities within conf->ht_capab.
  76. * Using default config settings for: conf->ht_op_mode_fixed,
  77. * conf->secondary_channel, conf->require_ht
  78. */
  79. if (wpa_s->hw.modes) {
  80. struct hostapd_hw_modes *mode = NULL;
  81. int i, no_ht = 0;
  82. for (i = 0; i < wpa_s->hw.num_modes; i++) {
  83. if (wpa_s->hw.modes[i].mode == conf->hw_mode) {
  84. mode = &wpa_s->hw.modes[i];
  85. break;
  86. }
  87. }
  88. #ifdef CONFIG_HT_OVERRIDES
  89. if (ssid->disable_ht) {
  90. conf->ieee80211n = 0;
  91. conf->ht_capab = 0;
  92. no_ht = 1;
  93. }
  94. #endif /* CONFIG_HT_OVERRIDES */
  95. if (!no_ht && mode && mode->ht_capab) {
  96. conf->ieee80211n = 1;
  97. #ifdef CONFIG_P2P
  98. if (conf->hw_mode == HOSTAPD_MODE_IEEE80211A &&
  99. (mode->ht_capab &
  100. HT_CAP_INFO_SUPP_CHANNEL_WIDTH_SET) &&
  101. ssid->ht40)
  102. conf->secondary_channel =
  103. wpas_p2p_get_ht40_mode(wpa_s, mode,
  104. conf->channel);
  105. if (conf->secondary_channel)
  106. conf->ht_capab |=
  107. HT_CAP_INFO_SUPP_CHANNEL_WIDTH_SET;
  108. #endif /* CONFIG_P2P */
  109. /*
  110. * white-list capabilities that won't cause issues
  111. * to connecting stations, while leaving the current
  112. * capabilities intact (currently disabled SMPS).
  113. */
  114. conf->ht_capab |= mode->ht_capab &
  115. (HT_CAP_INFO_GREEN_FIELD |
  116. HT_CAP_INFO_SHORT_GI20MHZ |
  117. HT_CAP_INFO_SHORT_GI40MHZ |
  118. HT_CAP_INFO_RX_STBC_MASK |
  119. HT_CAP_INFO_TX_STBC |
  120. HT_CAP_INFO_MAX_AMSDU_SIZE);
  121. if (mode->vht_capab && ssid->vht) {
  122. conf->ieee80211ac = 1;
  123. wpas_conf_ap_vht(wpa_s, conf, mode);
  124. }
  125. }
  126. }
  127. #endif /* CONFIG_IEEE80211N */
  128. }
  129. static int wpa_supplicant_conf_ap(struct wpa_supplicant *wpa_s,
  130. struct wpa_ssid *ssid,
  131. struct hostapd_config *conf)
  132. {
  133. struct hostapd_bss_config *bss = conf->bss[0];
  134. conf->driver = wpa_s->driver;
  135. os_strlcpy(bss->iface, wpa_s->ifname, sizeof(bss->iface));
  136. conf->hw_mode = ieee80211_freq_to_chan(ssid->frequency,
  137. &conf->channel);
  138. if (conf->hw_mode == NUM_HOSTAPD_MODES) {
  139. wpa_printf(MSG_ERROR, "Unsupported AP mode frequency: %d MHz",
  140. ssid->frequency);
  141. return -1;
  142. }
  143. wpa_supplicant_conf_ap_ht(wpa_s, ssid, conf);
  144. #ifdef CONFIG_P2P
  145. if (conf->hw_mode == HOSTAPD_MODE_IEEE80211G &&
  146. (ssid->mode == WPAS_MODE_P2P_GO ||
  147. ssid->mode == WPAS_MODE_P2P_GROUP_FORMATION)) {
  148. /* Remove 802.11b rates from supported and basic rate sets */
  149. int *list = os_malloc(4 * sizeof(int));
  150. if (list) {
  151. list[0] = 60;
  152. list[1] = 120;
  153. list[2] = 240;
  154. list[3] = -1;
  155. }
  156. conf->basic_rates = list;
  157. list = os_malloc(9 * sizeof(int));
  158. if (list) {
  159. list[0] = 60;
  160. list[1] = 90;
  161. list[2] = 120;
  162. list[3] = 180;
  163. list[4] = 240;
  164. list[5] = 360;
  165. list[6] = 480;
  166. list[7] = 540;
  167. list[8] = -1;
  168. }
  169. conf->supported_rates = list;
  170. }
  171. bss->isolate = !wpa_s->conf->p2p_intra_bss;
  172. bss->force_per_enrollee_psk = wpa_s->global->p2p_per_sta_psk;
  173. if (ssid->p2p_group) {
  174. os_memcpy(bss->ip_addr_go, wpa_s->parent->conf->ip_addr_go, 4);
  175. os_memcpy(bss->ip_addr_mask, wpa_s->parent->conf->ip_addr_mask,
  176. 4);
  177. os_memcpy(bss->ip_addr_start,
  178. wpa_s->parent->conf->ip_addr_start, 4);
  179. os_memcpy(bss->ip_addr_end, wpa_s->parent->conf->ip_addr_end,
  180. 4);
  181. }
  182. #endif /* CONFIG_P2P */
  183. if (ssid->ssid_len == 0) {
  184. wpa_printf(MSG_ERROR, "No SSID configured for AP mode");
  185. return -1;
  186. }
  187. os_memcpy(bss->ssid.ssid, ssid->ssid, ssid->ssid_len);
  188. bss->ssid.ssid_len = ssid->ssid_len;
  189. bss->ssid.ssid_set = 1;
  190. bss->ignore_broadcast_ssid = ssid->ignore_broadcast_ssid;
  191. if (ssid->auth_alg)
  192. bss->auth_algs = ssid->auth_alg;
  193. if (wpa_key_mgmt_wpa_psk(ssid->key_mgmt))
  194. bss->wpa = ssid->proto;
  195. bss->wpa_key_mgmt = ssid->key_mgmt;
  196. bss->wpa_pairwise = ssid->pairwise_cipher;
  197. if (ssid->psk_set) {
  198. bin_clear_free(bss->ssid.wpa_psk, sizeof(*bss->ssid.wpa_psk));
  199. bss->ssid.wpa_psk = os_zalloc(sizeof(struct hostapd_wpa_psk));
  200. if (bss->ssid.wpa_psk == NULL)
  201. return -1;
  202. os_memcpy(bss->ssid.wpa_psk->psk, ssid->psk, PMK_LEN);
  203. bss->ssid.wpa_psk->group = 1;
  204. } else if (ssid->passphrase) {
  205. bss->ssid.wpa_passphrase = os_strdup(ssid->passphrase);
  206. } else if (ssid->wep_key_len[0] || ssid->wep_key_len[1] ||
  207. ssid->wep_key_len[2] || ssid->wep_key_len[3]) {
  208. struct hostapd_wep_keys *wep = &bss->ssid.wep;
  209. int i;
  210. for (i = 0; i < NUM_WEP_KEYS; i++) {
  211. if (ssid->wep_key_len[i] == 0)
  212. continue;
  213. wep->key[i] = os_malloc(ssid->wep_key_len[i]);
  214. if (wep->key[i] == NULL)
  215. return -1;
  216. os_memcpy(wep->key[i], ssid->wep_key[i],
  217. ssid->wep_key_len[i]);
  218. wep->len[i] = ssid->wep_key_len[i];
  219. }
  220. wep->idx = ssid->wep_tx_keyidx;
  221. wep->keys_set = 1;
  222. }
  223. if (ssid->ap_max_inactivity)
  224. bss->ap_max_inactivity = ssid->ap_max_inactivity;
  225. if (ssid->dtim_period)
  226. bss->dtim_period = ssid->dtim_period;
  227. else if (wpa_s->conf->dtim_period)
  228. bss->dtim_period = wpa_s->conf->dtim_period;
  229. if (ssid->beacon_int)
  230. conf->beacon_int = ssid->beacon_int;
  231. else if (wpa_s->conf->beacon_int)
  232. conf->beacon_int = wpa_s->conf->beacon_int;
  233. if ((bss->wpa & 2) && bss->rsn_pairwise == 0)
  234. bss->rsn_pairwise = bss->wpa_pairwise;
  235. bss->wpa_group = wpa_select_ap_group_cipher(bss->wpa, bss->wpa_pairwise,
  236. bss->rsn_pairwise);
  237. if (bss->wpa && bss->ieee802_1x)
  238. bss->ssid.security_policy = SECURITY_WPA;
  239. else if (bss->wpa)
  240. bss->ssid.security_policy = SECURITY_WPA_PSK;
  241. else if (bss->ieee802_1x) {
  242. int cipher = WPA_CIPHER_NONE;
  243. bss->ssid.security_policy = SECURITY_IEEE_802_1X;
  244. bss->ssid.wep.default_len = bss->default_wep_key_len;
  245. if (bss->default_wep_key_len)
  246. cipher = bss->default_wep_key_len >= 13 ?
  247. WPA_CIPHER_WEP104 : WPA_CIPHER_WEP40;
  248. bss->wpa_group = cipher;
  249. bss->wpa_pairwise = cipher;
  250. bss->rsn_pairwise = cipher;
  251. } else if (bss->ssid.wep.keys_set) {
  252. int cipher = WPA_CIPHER_WEP40;
  253. if (bss->ssid.wep.len[0] >= 13)
  254. cipher = WPA_CIPHER_WEP104;
  255. bss->ssid.security_policy = SECURITY_STATIC_WEP;
  256. bss->wpa_group = cipher;
  257. bss->wpa_pairwise = cipher;
  258. bss->rsn_pairwise = cipher;
  259. } else {
  260. bss->ssid.security_policy = SECURITY_PLAINTEXT;
  261. bss->wpa_group = WPA_CIPHER_NONE;
  262. bss->wpa_pairwise = WPA_CIPHER_NONE;
  263. bss->rsn_pairwise = WPA_CIPHER_NONE;
  264. }
  265. if (bss->wpa_group_rekey < 86400 && (bss->wpa & 2) &&
  266. (bss->wpa_group == WPA_CIPHER_CCMP ||
  267. bss->wpa_group == WPA_CIPHER_GCMP ||
  268. bss->wpa_group == WPA_CIPHER_CCMP_256 ||
  269. bss->wpa_group == WPA_CIPHER_GCMP_256)) {
  270. /*
  271. * Strong ciphers do not need frequent rekeying, so increase
  272. * the default GTK rekeying period to 24 hours.
  273. */
  274. bss->wpa_group_rekey = 86400;
  275. }
  276. #ifdef CONFIG_IEEE80211W
  277. if (ssid->ieee80211w != MGMT_FRAME_PROTECTION_DEFAULT)
  278. bss->ieee80211w = ssid->ieee80211w;
  279. #endif /* CONFIG_IEEE80211W */
  280. #ifdef CONFIG_WPS
  281. /*
  282. * Enable WPS by default for open and WPA/WPA2-Personal network, but
  283. * require user interaction to actually use it. Only the internal
  284. * Registrar is supported.
  285. */
  286. if (bss->ssid.security_policy != SECURITY_WPA_PSK &&
  287. bss->ssid.security_policy != SECURITY_PLAINTEXT)
  288. goto no_wps;
  289. if (bss->ssid.security_policy == SECURITY_WPA_PSK &&
  290. (!(bss->rsn_pairwise & (WPA_CIPHER_CCMP | WPA_CIPHER_GCMP)) ||
  291. !(bss->wpa & 2)))
  292. goto no_wps; /* WPS2 does not allow WPA/TKIP-only
  293. * configuration */
  294. bss->eap_server = 1;
  295. if (!ssid->ignore_broadcast_ssid)
  296. bss->wps_state = 2;
  297. bss->ap_setup_locked = 2;
  298. if (wpa_s->conf->config_methods)
  299. bss->config_methods = os_strdup(wpa_s->conf->config_methods);
  300. os_memcpy(bss->device_type, wpa_s->conf->device_type,
  301. WPS_DEV_TYPE_LEN);
  302. if (wpa_s->conf->device_name) {
  303. bss->device_name = os_strdup(wpa_s->conf->device_name);
  304. bss->friendly_name = os_strdup(wpa_s->conf->device_name);
  305. }
  306. if (wpa_s->conf->manufacturer)
  307. bss->manufacturer = os_strdup(wpa_s->conf->manufacturer);
  308. if (wpa_s->conf->model_name)
  309. bss->model_name = os_strdup(wpa_s->conf->model_name);
  310. if (wpa_s->conf->model_number)
  311. bss->model_number = os_strdup(wpa_s->conf->model_number);
  312. if (wpa_s->conf->serial_number)
  313. bss->serial_number = os_strdup(wpa_s->conf->serial_number);
  314. if (is_nil_uuid(wpa_s->conf->uuid))
  315. os_memcpy(bss->uuid, wpa_s->wps->uuid, WPS_UUID_LEN);
  316. else
  317. os_memcpy(bss->uuid, wpa_s->conf->uuid, WPS_UUID_LEN);
  318. os_memcpy(bss->os_version, wpa_s->conf->os_version, 4);
  319. bss->pbc_in_m1 = wpa_s->conf->pbc_in_m1;
  320. no_wps:
  321. #endif /* CONFIG_WPS */
  322. if (wpa_s->max_stations &&
  323. wpa_s->max_stations < wpa_s->conf->max_num_sta)
  324. bss->max_num_sta = wpa_s->max_stations;
  325. else
  326. bss->max_num_sta = wpa_s->conf->max_num_sta;
  327. bss->disassoc_low_ack = wpa_s->conf->disassoc_low_ack;
  328. if (wpa_s->conf->ap_vendor_elements) {
  329. bss->vendor_elements =
  330. wpabuf_dup(wpa_s->conf->ap_vendor_elements);
  331. }
  332. return 0;
  333. }
  334. static void ap_public_action_rx(void *ctx, const u8 *buf, size_t len, int freq)
  335. {
  336. #ifdef CONFIG_P2P
  337. struct wpa_supplicant *wpa_s = ctx;
  338. const struct ieee80211_mgmt *mgmt;
  339. mgmt = (const struct ieee80211_mgmt *) buf;
  340. if (len < IEEE80211_HDRLEN + 1)
  341. return;
  342. if (mgmt->u.action.category != WLAN_ACTION_PUBLIC)
  343. return;
  344. wpas_p2p_rx_action(wpa_s, mgmt->da, mgmt->sa, mgmt->bssid,
  345. mgmt->u.action.category,
  346. buf + IEEE80211_HDRLEN + 1,
  347. len - IEEE80211_HDRLEN - 1, freq);
  348. #endif /* CONFIG_P2P */
  349. }
  350. static void ap_wps_event_cb(void *ctx, enum wps_event event,
  351. union wps_event_data *data)
  352. {
  353. #ifdef CONFIG_P2P
  354. struct wpa_supplicant *wpa_s = ctx;
  355. if (event == WPS_EV_FAIL) {
  356. struct wps_event_fail *fail = &data->fail;
  357. if (wpa_s->parent && wpa_s->parent != wpa_s &&
  358. wpa_s == wpa_s->global->p2p_group_formation) {
  359. /*
  360. * src/ap/wps_hostapd.c has already sent this on the
  361. * main interface, so only send on the parent interface
  362. * here if needed.
  363. */
  364. wpa_msg(wpa_s->parent, MSG_INFO, WPS_EVENT_FAIL
  365. "msg=%d config_error=%d",
  366. fail->msg, fail->config_error);
  367. }
  368. wpas_p2p_wps_failed(wpa_s, fail);
  369. }
  370. #endif /* CONFIG_P2P */
  371. }
  372. static void ap_sta_authorized_cb(void *ctx, const u8 *mac_addr,
  373. int authorized, const u8 *p2p_dev_addr)
  374. {
  375. wpas_notify_sta_authorized(ctx, mac_addr, authorized, p2p_dev_addr);
  376. }
  377. #ifdef CONFIG_P2P
  378. static void ap_new_psk_cb(void *ctx, const u8 *mac_addr, const u8 *p2p_dev_addr,
  379. const u8 *psk, size_t psk_len)
  380. {
  381. struct wpa_supplicant *wpa_s = ctx;
  382. if (wpa_s->ap_iface == NULL || wpa_s->current_ssid == NULL)
  383. return;
  384. wpas_p2p_new_psk_cb(wpa_s, mac_addr, p2p_dev_addr, psk, psk_len);
  385. }
  386. #endif /* CONFIG_P2P */
  387. static int ap_vendor_action_rx(void *ctx, const u8 *buf, size_t len, int freq)
  388. {
  389. #ifdef CONFIG_P2P
  390. struct wpa_supplicant *wpa_s = ctx;
  391. const struct ieee80211_mgmt *mgmt;
  392. mgmt = (const struct ieee80211_mgmt *) buf;
  393. if (len < IEEE80211_HDRLEN + 1)
  394. return -1;
  395. wpas_p2p_rx_action(wpa_s, mgmt->da, mgmt->sa, mgmt->bssid,
  396. mgmt->u.action.category,
  397. buf + IEEE80211_HDRLEN + 1,
  398. len - IEEE80211_HDRLEN - 1, freq);
  399. #endif /* CONFIG_P2P */
  400. return 0;
  401. }
  402. static int ap_probe_req_rx(void *ctx, const u8 *sa, const u8 *da,
  403. const u8 *bssid, const u8 *ie, size_t ie_len,
  404. int ssi_signal)
  405. {
  406. struct wpa_supplicant *wpa_s = ctx;
  407. return wpas_p2p_probe_req_rx(wpa_s, sa, da, bssid, ie, ie_len,
  408. ssi_signal);
  409. }
  410. static void ap_wps_reg_success_cb(void *ctx, const u8 *mac_addr,
  411. const u8 *uuid_e)
  412. {
  413. struct wpa_supplicant *wpa_s = ctx;
  414. wpas_p2p_wps_success(wpa_s, mac_addr, 1);
  415. }
  416. static void wpas_ap_configured_cb(void *ctx)
  417. {
  418. struct wpa_supplicant *wpa_s = ctx;
  419. wpa_supplicant_set_state(wpa_s, WPA_COMPLETED);
  420. if (wpa_s->ap_configured_cb)
  421. wpa_s->ap_configured_cb(wpa_s->ap_configured_cb_ctx,
  422. wpa_s->ap_configured_cb_data);
  423. }
  424. int wpa_supplicant_create_ap(struct wpa_supplicant *wpa_s,
  425. struct wpa_ssid *ssid)
  426. {
  427. struct wpa_driver_associate_params params;
  428. struct hostapd_iface *hapd_iface;
  429. struct hostapd_config *conf;
  430. size_t i;
  431. if (ssid->ssid == NULL || ssid->ssid_len == 0) {
  432. wpa_printf(MSG_ERROR, "No SSID configured for AP mode");
  433. return -1;
  434. }
  435. wpa_supplicant_ap_deinit(wpa_s);
  436. wpa_printf(MSG_DEBUG, "Setting up AP (SSID='%s')",
  437. wpa_ssid_txt(ssid->ssid, ssid->ssid_len));
  438. os_memset(&params, 0, sizeof(params));
  439. params.ssid = ssid->ssid;
  440. params.ssid_len = ssid->ssid_len;
  441. switch (ssid->mode) {
  442. case WPAS_MODE_AP:
  443. case WPAS_MODE_P2P_GO:
  444. case WPAS_MODE_P2P_GROUP_FORMATION:
  445. params.mode = IEEE80211_MODE_AP;
  446. break;
  447. default:
  448. return -1;
  449. }
  450. if (ssid->frequency == 0)
  451. ssid->frequency = 2462; /* default channel 11 */
  452. params.freq.freq = ssid->frequency;
  453. params.wpa_proto = ssid->proto;
  454. if (ssid->key_mgmt & WPA_KEY_MGMT_PSK)
  455. wpa_s->key_mgmt = WPA_KEY_MGMT_PSK;
  456. else
  457. wpa_s->key_mgmt = WPA_KEY_MGMT_NONE;
  458. params.key_mgmt_suite = wpa_s->key_mgmt;
  459. wpa_s->pairwise_cipher = wpa_pick_pairwise_cipher(ssid->pairwise_cipher,
  460. 1);
  461. if (wpa_s->pairwise_cipher < 0) {
  462. wpa_printf(MSG_WARNING, "WPA: Failed to select pairwise "
  463. "cipher.");
  464. return -1;
  465. }
  466. params.pairwise_suite = wpa_s->pairwise_cipher;
  467. params.group_suite = params.pairwise_suite;
  468. #ifdef CONFIG_P2P
  469. if (ssid->mode == WPAS_MODE_P2P_GO ||
  470. ssid->mode == WPAS_MODE_P2P_GROUP_FORMATION)
  471. params.p2p = 1;
  472. #endif /* CONFIG_P2P */
  473. if (wpa_s->parent->set_ap_uapsd)
  474. params.uapsd = wpa_s->parent->ap_uapsd;
  475. else if (params.p2p && (wpa_s->drv_flags & WPA_DRIVER_FLAGS_AP_UAPSD))
  476. params.uapsd = 1; /* mandatory for P2P GO */
  477. else
  478. params.uapsd = -1;
  479. if (wpa_drv_associate(wpa_s, &params) < 0) {
  480. wpa_msg(wpa_s, MSG_INFO, "Failed to start AP functionality");
  481. return -1;
  482. }
  483. wpa_s->ap_iface = hapd_iface = os_zalloc(sizeof(*wpa_s->ap_iface));
  484. if (hapd_iface == NULL)
  485. return -1;
  486. hapd_iface->owner = wpa_s;
  487. hapd_iface->drv_flags = wpa_s->drv_flags;
  488. hapd_iface->smps_modes = wpa_s->drv_smps_modes;
  489. hapd_iface->probe_resp_offloads = wpa_s->probe_resp_offloads;
  490. hapd_iface->extended_capa = wpa_s->extended_capa;
  491. hapd_iface->extended_capa_mask = wpa_s->extended_capa_mask;
  492. hapd_iface->extended_capa_len = wpa_s->extended_capa_len;
  493. wpa_s->ap_iface->conf = conf = hostapd_config_defaults();
  494. if (conf == NULL) {
  495. wpa_supplicant_ap_deinit(wpa_s);
  496. return -1;
  497. }
  498. os_memcpy(wpa_s->ap_iface->conf->wmm_ac_params,
  499. wpa_s->conf->wmm_ac_params,
  500. sizeof(wpa_s->conf->wmm_ac_params));
  501. if (params.uapsd > 0) {
  502. conf->bss[0]->wmm_enabled = 1;
  503. conf->bss[0]->wmm_uapsd = 1;
  504. }
  505. if (wpa_supplicant_conf_ap(wpa_s, ssid, conf)) {
  506. wpa_printf(MSG_ERROR, "Failed to create AP configuration");
  507. wpa_supplicant_ap_deinit(wpa_s);
  508. return -1;
  509. }
  510. #ifdef CONFIG_P2P
  511. if (ssid->mode == WPAS_MODE_P2P_GO)
  512. conf->bss[0]->p2p = P2P_ENABLED | P2P_GROUP_OWNER;
  513. else if (ssid->mode == WPAS_MODE_P2P_GROUP_FORMATION)
  514. conf->bss[0]->p2p = P2P_ENABLED | P2P_GROUP_OWNER |
  515. P2P_GROUP_FORMATION;
  516. #endif /* CONFIG_P2P */
  517. hapd_iface->num_bss = conf->num_bss;
  518. hapd_iface->bss = os_calloc(conf->num_bss,
  519. sizeof(struct hostapd_data *));
  520. if (hapd_iface->bss == NULL) {
  521. wpa_supplicant_ap_deinit(wpa_s);
  522. return -1;
  523. }
  524. for (i = 0; i < conf->num_bss; i++) {
  525. hapd_iface->bss[i] =
  526. hostapd_alloc_bss_data(hapd_iface, conf,
  527. conf->bss[i]);
  528. if (hapd_iface->bss[i] == NULL) {
  529. wpa_supplicant_ap_deinit(wpa_s);
  530. return -1;
  531. }
  532. hapd_iface->bss[i]->msg_ctx = wpa_s;
  533. hapd_iface->bss[i]->msg_ctx_parent = wpa_s->parent;
  534. hapd_iface->bss[i]->public_action_cb = ap_public_action_rx;
  535. hapd_iface->bss[i]->public_action_cb_ctx = wpa_s;
  536. hapd_iface->bss[i]->vendor_action_cb = ap_vendor_action_rx;
  537. hapd_iface->bss[i]->vendor_action_cb_ctx = wpa_s;
  538. hostapd_register_probereq_cb(hapd_iface->bss[i],
  539. ap_probe_req_rx, wpa_s);
  540. hapd_iface->bss[i]->wps_reg_success_cb = ap_wps_reg_success_cb;
  541. hapd_iface->bss[i]->wps_reg_success_cb_ctx = wpa_s;
  542. hapd_iface->bss[i]->wps_event_cb = ap_wps_event_cb;
  543. hapd_iface->bss[i]->wps_event_cb_ctx = wpa_s;
  544. hapd_iface->bss[i]->sta_authorized_cb = ap_sta_authorized_cb;
  545. hapd_iface->bss[i]->sta_authorized_cb_ctx = wpa_s;
  546. #ifdef CONFIG_P2P
  547. hapd_iface->bss[i]->new_psk_cb = ap_new_psk_cb;
  548. hapd_iface->bss[i]->new_psk_cb_ctx = wpa_s;
  549. hapd_iface->bss[i]->p2p = wpa_s->global->p2p;
  550. hapd_iface->bss[i]->p2p_group = wpas_p2p_group_init(wpa_s,
  551. ssid);
  552. #endif /* CONFIG_P2P */
  553. hapd_iface->bss[i]->setup_complete_cb = wpas_ap_configured_cb;
  554. hapd_iface->bss[i]->setup_complete_cb_ctx = wpa_s;
  555. #ifdef CONFIG_TESTING_OPTIONS
  556. hapd_iface->bss[i]->ext_eapol_frame_io =
  557. wpa_s->ext_eapol_frame_io;
  558. #endif /* CONFIG_TESTING_OPTIONS */
  559. }
  560. os_memcpy(hapd_iface->bss[0]->own_addr, wpa_s->own_addr, ETH_ALEN);
  561. hapd_iface->bss[0]->driver = wpa_s->driver;
  562. hapd_iface->bss[0]->drv_priv = wpa_s->drv_priv;
  563. wpa_s->current_ssid = ssid;
  564. eapol_sm_notify_config(wpa_s->eapol, NULL, NULL);
  565. os_memcpy(wpa_s->bssid, wpa_s->own_addr, ETH_ALEN);
  566. wpa_s->assoc_freq = ssid->frequency;
  567. if (hostapd_setup_interface(wpa_s->ap_iface)) {
  568. wpa_printf(MSG_ERROR, "Failed to initialize AP interface");
  569. wpa_supplicant_ap_deinit(wpa_s);
  570. return -1;
  571. }
  572. return 0;
  573. }
  574. void wpa_supplicant_ap_deinit(struct wpa_supplicant *wpa_s)
  575. {
  576. #ifdef CONFIG_WPS
  577. eloop_cancel_timeout(wpas_wps_ap_pin_timeout, wpa_s, NULL);
  578. #endif /* CONFIG_WPS */
  579. if (wpa_s->ap_iface == NULL)
  580. return;
  581. wpa_s->current_ssid = NULL;
  582. eapol_sm_notify_config(wpa_s->eapol, NULL, NULL);
  583. wpa_s->assoc_freq = 0;
  584. wpas_p2p_ap_deinit(wpa_s);
  585. wpa_s->ap_iface->driver_ap_teardown =
  586. !!(wpa_s->drv_flags & WPA_DRIVER_FLAGS_AP_TEARDOWN_SUPPORT);
  587. hostapd_interface_deinit(wpa_s->ap_iface);
  588. hostapd_interface_free(wpa_s->ap_iface);
  589. wpa_s->ap_iface = NULL;
  590. wpa_drv_deinit_ap(wpa_s);
  591. }
  592. void ap_tx_status(void *ctx, const u8 *addr,
  593. const u8 *buf, size_t len, int ack)
  594. {
  595. #ifdef NEED_AP_MLME
  596. struct wpa_supplicant *wpa_s = ctx;
  597. hostapd_tx_status(wpa_s->ap_iface->bss[0], addr, buf, len, ack);
  598. #endif /* NEED_AP_MLME */
  599. }
  600. void ap_eapol_tx_status(void *ctx, const u8 *dst,
  601. const u8 *data, size_t len, int ack)
  602. {
  603. #ifdef NEED_AP_MLME
  604. struct wpa_supplicant *wpa_s = ctx;
  605. if (!wpa_s->ap_iface)
  606. return;
  607. hostapd_tx_status(wpa_s->ap_iface->bss[0], dst, data, len, ack);
  608. #endif /* NEED_AP_MLME */
  609. }
  610. void ap_client_poll_ok(void *ctx, const u8 *addr)
  611. {
  612. #ifdef NEED_AP_MLME
  613. struct wpa_supplicant *wpa_s = ctx;
  614. if (wpa_s->ap_iface)
  615. hostapd_client_poll_ok(wpa_s->ap_iface->bss[0], addr);
  616. #endif /* NEED_AP_MLME */
  617. }
  618. void ap_rx_from_unknown_sta(void *ctx, const u8 *addr, int wds)
  619. {
  620. #ifdef NEED_AP_MLME
  621. struct wpa_supplicant *wpa_s = ctx;
  622. ieee802_11_rx_from_unknown(wpa_s->ap_iface->bss[0], addr, wds);
  623. #endif /* NEED_AP_MLME */
  624. }
  625. void ap_mgmt_rx(void *ctx, struct rx_mgmt *rx_mgmt)
  626. {
  627. #ifdef NEED_AP_MLME
  628. struct wpa_supplicant *wpa_s = ctx;
  629. struct hostapd_frame_info fi;
  630. os_memset(&fi, 0, sizeof(fi));
  631. fi.datarate = rx_mgmt->datarate;
  632. fi.ssi_signal = rx_mgmt->ssi_signal;
  633. ieee802_11_mgmt(wpa_s->ap_iface->bss[0], rx_mgmt->frame,
  634. rx_mgmt->frame_len, &fi);
  635. #endif /* NEED_AP_MLME */
  636. }
  637. void ap_mgmt_tx_cb(void *ctx, const u8 *buf, size_t len, u16 stype, int ok)
  638. {
  639. #ifdef NEED_AP_MLME
  640. struct wpa_supplicant *wpa_s = ctx;
  641. ieee802_11_mgmt_cb(wpa_s->ap_iface->bss[0], buf, len, stype, ok);
  642. #endif /* NEED_AP_MLME */
  643. }
  644. void wpa_supplicant_ap_rx_eapol(struct wpa_supplicant *wpa_s,
  645. const u8 *src_addr, const u8 *buf, size_t len)
  646. {
  647. ieee802_1x_receive(wpa_s->ap_iface->bss[0], src_addr, buf, len);
  648. }
  649. #ifdef CONFIG_WPS
  650. int wpa_supplicant_ap_wps_pbc(struct wpa_supplicant *wpa_s, const u8 *bssid,
  651. const u8 *p2p_dev_addr)
  652. {
  653. if (!wpa_s->ap_iface)
  654. return -1;
  655. return hostapd_wps_button_pushed(wpa_s->ap_iface->bss[0],
  656. p2p_dev_addr);
  657. }
  658. int wpa_supplicant_ap_wps_cancel(struct wpa_supplicant *wpa_s)
  659. {
  660. struct wps_registrar *reg;
  661. int reg_sel = 0, wps_sta = 0;
  662. if (!wpa_s->ap_iface || !wpa_s->ap_iface->bss[0]->wps)
  663. return -1;
  664. reg = wpa_s->ap_iface->bss[0]->wps->registrar;
  665. reg_sel = wps_registrar_wps_cancel(reg);
  666. wps_sta = ap_for_each_sta(wpa_s->ap_iface->bss[0],
  667. ap_sta_wps_cancel, NULL);
  668. if (!reg_sel && !wps_sta) {
  669. wpa_printf(MSG_DEBUG, "No WPS operation in progress at this "
  670. "time");
  671. return -1;
  672. }
  673. /*
  674. * There are 2 cases to return wps cancel as success:
  675. * 1. When wps cancel was initiated but no connection has been
  676. * established with client yet.
  677. * 2. Client is in the middle of exchanging WPS messages.
  678. */
  679. return 0;
  680. }
  681. int wpa_supplicant_ap_wps_pin(struct wpa_supplicant *wpa_s, const u8 *bssid,
  682. const char *pin, char *buf, size_t buflen,
  683. int timeout)
  684. {
  685. int ret, ret_len = 0;
  686. if (!wpa_s->ap_iface)
  687. return -1;
  688. if (pin == NULL) {
  689. unsigned int rpin = wps_generate_pin();
  690. ret_len = os_snprintf(buf, buflen, "%08d", rpin);
  691. if (os_snprintf_error(buflen, ret_len))
  692. return -1;
  693. pin = buf;
  694. } else if (buf) {
  695. ret_len = os_snprintf(buf, buflen, "%s", pin);
  696. if (os_snprintf_error(buflen, ret_len))
  697. return -1;
  698. }
  699. ret = hostapd_wps_add_pin(wpa_s->ap_iface->bss[0], bssid, "any", pin,
  700. timeout);
  701. if (ret)
  702. return -1;
  703. return ret_len;
  704. }
  705. static void wpas_wps_ap_pin_timeout(void *eloop_data, void *user_ctx)
  706. {
  707. struct wpa_supplicant *wpa_s = eloop_data;
  708. wpa_printf(MSG_DEBUG, "WPS: AP PIN timed out");
  709. wpas_wps_ap_pin_disable(wpa_s);
  710. }
  711. static void wpas_wps_ap_pin_enable(struct wpa_supplicant *wpa_s, int timeout)
  712. {
  713. struct hostapd_data *hapd;
  714. if (wpa_s->ap_iface == NULL)
  715. return;
  716. hapd = wpa_s->ap_iface->bss[0];
  717. wpa_printf(MSG_DEBUG, "WPS: Enabling AP PIN (timeout=%d)", timeout);
  718. hapd->ap_pin_failures = 0;
  719. eloop_cancel_timeout(wpas_wps_ap_pin_timeout, wpa_s, NULL);
  720. if (timeout > 0)
  721. eloop_register_timeout(timeout, 0,
  722. wpas_wps_ap_pin_timeout, wpa_s, NULL);
  723. }
  724. void wpas_wps_ap_pin_disable(struct wpa_supplicant *wpa_s)
  725. {
  726. struct hostapd_data *hapd;
  727. if (wpa_s->ap_iface == NULL)
  728. return;
  729. wpa_printf(MSG_DEBUG, "WPS: Disabling AP PIN");
  730. hapd = wpa_s->ap_iface->bss[0];
  731. os_free(hapd->conf->ap_pin);
  732. hapd->conf->ap_pin = NULL;
  733. eloop_cancel_timeout(wpas_wps_ap_pin_timeout, wpa_s, NULL);
  734. }
  735. const char * wpas_wps_ap_pin_random(struct wpa_supplicant *wpa_s, int timeout)
  736. {
  737. struct hostapd_data *hapd;
  738. unsigned int pin;
  739. char pin_txt[9];
  740. if (wpa_s->ap_iface == NULL)
  741. return NULL;
  742. hapd = wpa_s->ap_iface->bss[0];
  743. pin = wps_generate_pin();
  744. os_snprintf(pin_txt, sizeof(pin_txt), "%08u", pin);
  745. os_free(hapd->conf->ap_pin);
  746. hapd->conf->ap_pin = os_strdup(pin_txt);
  747. if (hapd->conf->ap_pin == NULL)
  748. return NULL;
  749. wpas_wps_ap_pin_enable(wpa_s, timeout);
  750. return hapd->conf->ap_pin;
  751. }
  752. const char * wpas_wps_ap_pin_get(struct wpa_supplicant *wpa_s)
  753. {
  754. struct hostapd_data *hapd;
  755. if (wpa_s->ap_iface == NULL)
  756. return NULL;
  757. hapd = wpa_s->ap_iface->bss[0];
  758. return hapd->conf->ap_pin;
  759. }
  760. int wpas_wps_ap_pin_set(struct wpa_supplicant *wpa_s, const char *pin,
  761. int timeout)
  762. {
  763. struct hostapd_data *hapd;
  764. char pin_txt[9];
  765. int ret;
  766. if (wpa_s->ap_iface == NULL)
  767. return -1;
  768. hapd = wpa_s->ap_iface->bss[0];
  769. ret = os_snprintf(pin_txt, sizeof(pin_txt), "%s", pin);
  770. if (os_snprintf_error(sizeof(pin_txt), ret))
  771. return -1;
  772. os_free(hapd->conf->ap_pin);
  773. hapd->conf->ap_pin = os_strdup(pin_txt);
  774. if (hapd->conf->ap_pin == NULL)
  775. return -1;
  776. wpas_wps_ap_pin_enable(wpa_s, timeout);
  777. return 0;
  778. }
  779. void wpa_supplicant_ap_pwd_auth_fail(struct wpa_supplicant *wpa_s)
  780. {
  781. struct hostapd_data *hapd;
  782. if (wpa_s->ap_iface == NULL)
  783. return;
  784. hapd = wpa_s->ap_iface->bss[0];
  785. /*
  786. * Registrar failed to prove its knowledge of the AP PIN. Disable AP
  787. * PIN if this happens multiple times to slow down brute force attacks.
  788. */
  789. hapd->ap_pin_failures++;
  790. wpa_printf(MSG_DEBUG, "WPS: AP PIN authentication failure number %u",
  791. hapd->ap_pin_failures);
  792. if (hapd->ap_pin_failures < 3)
  793. return;
  794. wpa_printf(MSG_DEBUG, "WPS: Disable AP PIN");
  795. hapd->ap_pin_failures = 0;
  796. os_free(hapd->conf->ap_pin);
  797. hapd->conf->ap_pin = NULL;
  798. }
  799. #ifdef CONFIG_WPS_NFC
  800. struct wpabuf * wpas_ap_wps_nfc_config_token(struct wpa_supplicant *wpa_s,
  801. int ndef)
  802. {
  803. struct hostapd_data *hapd;
  804. if (wpa_s->ap_iface == NULL)
  805. return NULL;
  806. hapd = wpa_s->ap_iface->bss[0];
  807. return hostapd_wps_nfc_config_token(hapd, ndef);
  808. }
  809. struct wpabuf * wpas_ap_wps_nfc_handover_sel(struct wpa_supplicant *wpa_s,
  810. int ndef)
  811. {
  812. struct hostapd_data *hapd;
  813. if (wpa_s->ap_iface == NULL)
  814. return NULL;
  815. hapd = wpa_s->ap_iface->bss[0];
  816. return hostapd_wps_nfc_hs_cr(hapd, ndef);
  817. }
  818. int wpas_ap_wps_nfc_report_handover(struct wpa_supplicant *wpa_s,
  819. const struct wpabuf *req,
  820. const struct wpabuf *sel)
  821. {
  822. struct hostapd_data *hapd;
  823. if (wpa_s->ap_iface == NULL)
  824. return -1;
  825. hapd = wpa_s->ap_iface->bss[0];
  826. return hostapd_wps_nfc_report_handover(hapd, req, sel);
  827. }
  828. #endif /* CONFIG_WPS_NFC */
  829. #endif /* CONFIG_WPS */
  830. #ifdef CONFIG_CTRL_IFACE
  831. int ap_ctrl_iface_sta_first(struct wpa_supplicant *wpa_s,
  832. char *buf, size_t buflen)
  833. {
  834. struct hostapd_data *hapd;
  835. if (wpa_s->ap_iface)
  836. hapd = wpa_s->ap_iface->bss[0];
  837. else if (wpa_s->ifmsh)
  838. hapd = wpa_s->ifmsh->bss[0];
  839. else
  840. return -1;
  841. return hostapd_ctrl_iface_sta_first(hapd, buf, buflen);
  842. }
  843. int ap_ctrl_iface_sta(struct wpa_supplicant *wpa_s, const char *txtaddr,
  844. char *buf, size_t buflen)
  845. {
  846. struct hostapd_data *hapd;
  847. if (wpa_s->ap_iface)
  848. hapd = wpa_s->ap_iface->bss[0];
  849. else if (wpa_s->ifmsh)
  850. hapd = wpa_s->ifmsh->bss[0];
  851. else
  852. return -1;
  853. return hostapd_ctrl_iface_sta(hapd, txtaddr, buf, buflen);
  854. }
  855. int ap_ctrl_iface_sta_next(struct wpa_supplicant *wpa_s, const char *txtaddr,
  856. char *buf, size_t buflen)
  857. {
  858. struct hostapd_data *hapd;
  859. if (wpa_s->ap_iface)
  860. hapd = wpa_s->ap_iface->bss[0];
  861. else if (wpa_s->ifmsh)
  862. hapd = wpa_s->ifmsh->bss[0];
  863. else
  864. return -1;
  865. return hostapd_ctrl_iface_sta_next(hapd, txtaddr, buf, buflen);
  866. }
  867. int ap_ctrl_iface_sta_disassociate(struct wpa_supplicant *wpa_s,
  868. const char *txtaddr)
  869. {
  870. if (wpa_s->ap_iface == NULL)
  871. return -1;
  872. return hostapd_ctrl_iface_disassociate(wpa_s->ap_iface->bss[0],
  873. txtaddr);
  874. }
  875. int ap_ctrl_iface_sta_deauthenticate(struct wpa_supplicant *wpa_s,
  876. const char *txtaddr)
  877. {
  878. if (wpa_s->ap_iface == NULL)
  879. return -1;
  880. return hostapd_ctrl_iface_deauthenticate(wpa_s->ap_iface->bss[0],
  881. txtaddr);
  882. }
  883. int ap_ctrl_iface_wpa_get_status(struct wpa_supplicant *wpa_s, char *buf,
  884. size_t buflen, int verbose)
  885. {
  886. char *pos = buf, *end = buf + buflen;
  887. int ret;
  888. struct hostapd_bss_config *conf;
  889. if (wpa_s->ap_iface == NULL)
  890. return -1;
  891. conf = wpa_s->ap_iface->bss[0]->conf;
  892. if (conf->wpa == 0)
  893. return 0;
  894. ret = os_snprintf(pos, end - pos,
  895. "pairwise_cipher=%s\n"
  896. "group_cipher=%s\n"
  897. "key_mgmt=%s\n",
  898. wpa_cipher_txt(conf->rsn_pairwise),
  899. wpa_cipher_txt(conf->wpa_group),
  900. wpa_key_mgmt_txt(conf->wpa_key_mgmt,
  901. conf->wpa));
  902. if (os_snprintf_error(end - pos, ret))
  903. return pos - buf;
  904. pos += ret;
  905. return pos - buf;
  906. }
  907. #endif /* CONFIG_CTRL_IFACE */
  908. int wpa_supplicant_ap_update_beacon(struct wpa_supplicant *wpa_s)
  909. {
  910. struct hostapd_iface *iface = wpa_s->ap_iface;
  911. struct wpa_ssid *ssid = wpa_s->current_ssid;
  912. struct hostapd_data *hapd;
  913. if (ssid == NULL || wpa_s->ap_iface == NULL ||
  914. ssid->mode == WPAS_MODE_INFRA ||
  915. ssid->mode == WPAS_MODE_IBSS)
  916. return -1;
  917. #ifdef CONFIG_P2P
  918. if (ssid->mode == WPAS_MODE_P2P_GO)
  919. iface->conf->bss[0]->p2p = P2P_ENABLED | P2P_GROUP_OWNER;
  920. else if (ssid->mode == WPAS_MODE_P2P_GROUP_FORMATION)
  921. iface->conf->bss[0]->p2p = P2P_ENABLED | P2P_GROUP_OWNER |
  922. P2P_GROUP_FORMATION;
  923. #endif /* CONFIG_P2P */
  924. hapd = iface->bss[0];
  925. if (hapd->drv_priv == NULL)
  926. return -1;
  927. ieee802_11_set_beacons(iface);
  928. hostapd_set_ap_wps_ie(hapd);
  929. return 0;
  930. }
  931. int ap_switch_channel(struct wpa_supplicant *wpa_s,
  932. struct csa_settings *settings)
  933. {
  934. #ifdef NEED_AP_MLME
  935. if (!wpa_s->ap_iface || !wpa_s->ap_iface->bss[0])
  936. return -1;
  937. return hostapd_switch_channel(wpa_s->ap_iface->bss[0], settings);
  938. #else /* NEED_AP_MLME */
  939. return -1;
  940. #endif /* NEED_AP_MLME */
  941. }
  942. int ap_ctrl_iface_chanswitch(struct wpa_supplicant *wpa_s, const char *pos)
  943. {
  944. struct csa_settings settings;
  945. int ret = hostapd_parse_csa_settings(pos, &settings);
  946. if (ret)
  947. return ret;
  948. return ap_switch_channel(wpa_s, &settings);
  949. }
  950. void wpas_ap_ch_switch(struct wpa_supplicant *wpa_s, int freq, int ht,
  951. int offset, int width, int cf1, int cf2)
  952. {
  953. if (!wpa_s->ap_iface)
  954. return;
  955. wpa_s->assoc_freq = freq;
  956. hostapd_event_ch_switch(wpa_s->ap_iface->bss[0], freq, ht, offset, width, cf1, cf1);
  957. }
  958. int wpa_supplicant_ap_mac_addr_filter(struct wpa_supplicant *wpa_s,
  959. const u8 *addr)
  960. {
  961. struct hostapd_data *hapd;
  962. struct hostapd_bss_config *conf;
  963. if (!wpa_s->ap_iface)
  964. return -1;
  965. if (addr)
  966. wpa_printf(MSG_DEBUG, "AP: Set MAC address filter: " MACSTR,
  967. MAC2STR(addr));
  968. else
  969. wpa_printf(MSG_DEBUG, "AP: Clear MAC address filter");
  970. hapd = wpa_s->ap_iface->bss[0];
  971. conf = hapd->conf;
  972. os_free(conf->accept_mac);
  973. conf->accept_mac = NULL;
  974. conf->num_accept_mac = 0;
  975. os_free(conf->deny_mac);
  976. conf->deny_mac = NULL;
  977. conf->num_deny_mac = 0;
  978. if (addr == NULL) {
  979. conf->macaddr_acl = ACCEPT_UNLESS_DENIED;
  980. return 0;
  981. }
  982. conf->macaddr_acl = DENY_UNLESS_ACCEPTED;
  983. conf->accept_mac = os_zalloc(sizeof(struct mac_acl_entry));
  984. if (conf->accept_mac == NULL)
  985. return -1;
  986. os_memcpy(conf->accept_mac[0].addr, addr, ETH_ALEN);
  987. conf->num_accept_mac = 1;
  988. return 0;
  989. }
  990. #ifdef CONFIG_WPS_NFC
  991. int wpas_ap_wps_add_nfc_pw(struct wpa_supplicant *wpa_s, u16 pw_id,
  992. const struct wpabuf *pw, const u8 *pubkey_hash)
  993. {
  994. struct hostapd_data *hapd;
  995. struct wps_context *wps;
  996. if (!wpa_s->ap_iface)
  997. return -1;
  998. hapd = wpa_s->ap_iface->bss[0];
  999. wps = hapd->wps;
  1000. if (wpa_s->parent->conf->wps_nfc_dh_pubkey == NULL ||
  1001. wpa_s->parent->conf->wps_nfc_dh_privkey == NULL) {
  1002. wpa_printf(MSG_DEBUG, "P2P: No NFC DH key known");
  1003. return -1;
  1004. }
  1005. dh5_free(wps->dh_ctx);
  1006. wpabuf_free(wps->dh_pubkey);
  1007. wpabuf_free(wps->dh_privkey);
  1008. wps->dh_privkey = wpabuf_dup(
  1009. wpa_s->parent->conf->wps_nfc_dh_privkey);
  1010. wps->dh_pubkey = wpabuf_dup(
  1011. wpa_s->parent->conf->wps_nfc_dh_pubkey);
  1012. if (wps->dh_privkey == NULL || wps->dh_pubkey == NULL) {
  1013. wps->dh_ctx = NULL;
  1014. wpabuf_free(wps->dh_pubkey);
  1015. wps->dh_pubkey = NULL;
  1016. wpabuf_free(wps->dh_privkey);
  1017. wps->dh_privkey = NULL;
  1018. return -1;
  1019. }
  1020. wps->dh_ctx = dh5_init_fixed(wps->dh_privkey, wps->dh_pubkey);
  1021. if (wps->dh_ctx == NULL)
  1022. return -1;
  1023. return wps_registrar_add_nfc_pw_token(hapd->wps->registrar, pubkey_hash,
  1024. pw_id,
  1025. pw ? wpabuf_head(pw) : NULL,
  1026. pw ? wpabuf_len(pw) : 0, 1);
  1027. }
  1028. #endif /* CONFIG_WPS_NFC */
  1029. int wpas_ap_stop_ap(struct wpa_supplicant *wpa_s)
  1030. {
  1031. struct hostapd_data *hapd;
  1032. if (!wpa_s->ap_iface)
  1033. return -1;
  1034. hapd = wpa_s->ap_iface->bss[0];
  1035. return hostapd_ctrl_iface_stop_ap(hapd);
  1036. }