ap.c 29 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136
  1. /*
  2. * WPA Supplicant - Basic AP mode support routines
  3. * Copyright (c) 2003-2009, Jouni Malinen <j@w1.fi>
  4. * Copyright (c) 2009, Atheros Communications
  5. *
  6. * This software may be distributed under the terms of the BSD license.
  7. * See README for more details.
  8. */
  9. #include "utils/includes.h"
  10. #include "utils/common.h"
  11. #include "utils/eloop.h"
  12. #include "utils/uuid.h"
  13. #include "common/ieee802_11_defs.h"
  14. #include "common/wpa_ctrl.h"
  15. #include "eapol_supp/eapol_supp_sm.h"
  16. #include "ap/hostapd.h"
  17. #include "ap/ap_config.h"
  18. #include "ap/ap_drv_ops.h"
  19. #ifdef NEED_AP_MLME
  20. #include "ap/ieee802_11.h"
  21. #endif /* NEED_AP_MLME */
  22. #include "ap/beacon.h"
  23. #include "ap/ieee802_1x.h"
  24. #include "ap/wps_hostapd.h"
  25. #include "ap/ctrl_iface_ap.h"
  26. #include "wps/wps.h"
  27. #include "common/ieee802_11_defs.h"
  28. #include "config_ssid.h"
  29. #include "config.h"
  30. #include "wpa_supplicant_i.h"
  31. #include "driver_i.h"
  32. #include "p2p_supplicant.h"
  33. #include "ap.h"
  34. #include "ap/sta_info.h"
  35. #include "notify.h"
  36. #ifdef CONFIG_WPS
  37. static void wpas_wps_ap_pin_timeout(void *eloop_data, void *user_ctx);
  38. #endif /* CONFIG_WPS */
  39. #ifdef CONFIG_IEEE80211N
  40. static void wpas_conf_ap_vht(struct wpa_supplicant *wpa_s,
  41. struct hostapd_config *conf,
  42. struct hostapd_hw_modes *mode)
  43. {
  44. u8 center_chan = 0;
  45. u8 channel = conf->channel;
  46. if (!conf->secondary_channel)
  47. goto no_vht;
  48. center_chan = wpas_p2p_get_vht80_center(wpa_s, mode, channel);
  49. if (!center_chan)
  50. goto no_vht;
  51. /* Use 80 MHz channel */
  52. conf->vht_oper_chwidth = 1;
  53. conf->vht_oper_centr_freq_seg0_idx = center_chan;
  54. return;
  55. no_vht:
  56. conf->vht_oper_centr_freq_seg0_idx =
  57. channel + conf->secondary_channel * 2;
  58. }
  59. #endif /* CONFIG_IEEE80211N */
  60. static int wpa_supplicant_conf_ap(struct wpa_supplicant *wpa_s,
  61. struct wpa_ssid *ssid,
  62. struct hostapd_config *conf)
  63. {
  64. struct hostapd_bss_config *bss = conf->bss[0];
  65. conf->driver = wpa_s->driver;
  66. os_strlcpy(bss->iface, wpa_s->ifname, sizeof(bss->iface));
  67. conf->hw_mode = ieee80211_freq_to_chan(ssid->frequency,
  68. &conf->channel);
  69. if (conf->hw_mode == NUM_HOSTAPD_MODES) {
  70. wpa_printf(MSG_ERROR, "Unsupported AP mode frequency: %d MHz",
  71. ssid->frequency);
  72. return -1;
  73. }
  74. /* TODO: enable HT40 if driver supports it;
  75. * drop to 11b if driver does not support 11g */
  76. #ifdef CONFIG_IEEE80211N
  77. /*
  78. * Enable HT20 if the driver supports it, by setting conf->ieee80211n
  79. * and a mask of allowed capabilities within conf->ht_capab.
  80. * Using default config settings for: conf->ht_op_mode_fixed,
  81. * conf->secondary_channel, conf->require_ht
  82. */
  83. if (wpa_s->hw.modes) {
  84. struct hostapd_hw_modes *mode = NULL;
  85. int i, no_ht = 0;
  86. for (i = 0; i < wpa_s->hw.num_modes; i++) {
  87. if (wpa_s->hw.modes[i].mode == conf->hw_mode) {
  88. mode = &wpa_s->hw.modes[i];
  89. break;
  90. }
  91. }
  92. #ifdef CONFIG_HT_OVERRIDES
  93. if (ssid->disable_ht) {
  94. conf->ieee80211n = 0;
  95. conf->ht_capab = 0;
  96. no_ht = 1;
  97. }
  98. #endif /* CONFIG_HT_OVERRIDES */
  99. if (!no_ht && mode && mode->ht_capab) {
  100. conf->ieee80211n = 1;
  101. #ifdef CONFIG_P2P
  102. if (conf->hw_mode == HOSTAPD_MODE_IEEE80211A &&
  103. (mode->ht_capab &
  104. HT_CAP_INFO_SUPP_CHANNEL_WIDTH_SET) &&
  105. ssid->ht40)
  106. conf->secondary_channel =
  107. wpas_p2p_get_ht40_mode(wpa_s, mode,
  108. conf->channel);
  109. if (conf->secondary_channel)
  110. conf->ht_capab |=
  111. HT_CAP_INFO_SUPP_CHANNEL_WIDTH_SET;
  112. #endif /* CONFIG_P2P */
  113. /*
  114. * white-list capabilities that won't cause issues
  115. * to connecting stations, while leaving the current
  116. * capabilities intact (currently disabled SMPS).
  117. */
  118. conf->ht_capab |= mode->ht_capab &
  119. (HT_CAP_INFO_GREEN_FIELD |
  120. HT_CAP_INFO_SHORT_GI20MHZ |
  121. HT_CAP_INFO_SHORT_GI40MHZ |
  122. HT_CAP_INFO_RX_STBC_MASK |
  123. HT_CAP_INFO_MAX_AMSDU_SIZE);
  124. if (mode->vht_capab && ssid->vht) {
  125. conf->ieee80211ac = 1;
  126. wpas_conf_ap_vht(wpa_s, conf, mode);
  127. }
  128. }
  129. }
  130. #endif /* CONFIG_IEEE80211N */
  131. #ifdef CONFIG_P2P
  132. if (conf->hw_mode == HOSTAPD_MODE_IEEE80211G &&
  133. (ssid->mode == WPAS_MODE_P2P_GO ||
  134. ssid->mode == WPAS_MODE_P2P_GROUP_FORMATION)) {
  135. /* Remove 802.11b rates from supported and basic rate sets */
  136. int *list = os_malloc(4 * sizeof(int));
  137. if (list) {
  138. list[0] = 60;
  139. list[1] = 120;
  140. list[2] = 240;
  141. list[3] = -1;
  142. }
  143. conf->basic_rates = list;
  144. list = os_malloc(9 * sizeof(int));
  145. if (list) {
  146. list[0] = 60;
  147. list[1] = 90;
  148. list[2] = 120;
  149. list[3] = 180;
  150. list[4] = 240;
  151. list[5] = 360;
  152. list[6] = 480;
  153. list[7] = 540;
  154. list[8] = -1;
  155. }
  156. conf->supported_rates = list;
  157. }
  158. bss->isolate = !wpa_s->conf->p2p_intra_bss;
  159. bss->force_per_enrollee_psk = wpa_s->global->p2p_per_sta_psk;
  160. #endif /* CONFIG_P2P */
  161. if (ssid->ssid_len == 0) {
  162. wpa_printf(MSG_ERROR, "No SSID configured for AP mode");
  163. return -1;
  164. }
  165. os_memcpy(bss->ssid.ssid, ssid->ssid, ssid->ssid_len);
  166. bss->ssid.ssid_len = ssid->ssid_len;
  167. bss->ssid.ssid_set = 1;
  168. bss->ignore_broadcast_ssid = ssid->ignore_broadcast_ssid;
  169. if (ssid->auth_alg)
  170. bss->auth_algs = ssid->auth_alg;
  171. if (wpa_key_mgmt_wpa_psk(ssid->key_mgmt))
  172. bss->wpa = ssid->proto;
  173. bss->wpa_key_mgmt = ssid->key_mgmt;
  174. bss->wpa_pairwise = ssid->pairwise_cipher;
  175. if (ssid->psk_set) {
  176. os_free(bss->ssid.wpa_psk);
  177. bss->ssid.wpa_psk = os_zalloc(sizeof(struct hostapd_wpa_psk));
  178. if (bss->ssid.wpa_psk == NULL)
  179. return -1;
  180. os_memcpy(bss->ssid.wpa_psk->psk, ssid->psk, PMK_LEN);
  181. bss->ssid.wpa_psk->group = 1;
  182. } else if (ssid->passphrase) {
  183. bss->ssid.wpa_passphrase = os_strdup(ssid->passphrase);
  184. } else if (ssid->wep_key_len[0] || ssid->wep_key_len[1] ||
  185. ssid->wep_key_len[2] || ssid->wep_key_len[3]) {
  186. struct hostapd_wep_keys *wep = &bss->ssid.wep;
  187. int i;
  188. for (i = 0; i < NUM_WEP_KEYS; i++) {
  189. if (ssid->wep_key_len[i] == 0)
  190. continue;
  191. wep->key[i] = os_malloc(ssid->wep_key_len[i]);
  192. if (wep->key[i] == NULL)
  193. return -1;
  194. os_memcpy(wep->key[i], ssid->wep_key[i],
  195. ssid->wep_key_len[i]);
  196. wep->len[i] = ssid->wep_key_len[i];
  197. }
  198. wep->idx = ssid->wep_tx_keyidx;
  199. wep->keys_set = 1;
  200. }
  201. if (ssid->ap_max_inactivity)
  202. bss->ap_max_inactivity = ssid->ap_max_inactivity;
  203. if (ssid->dtim_period)
  204. bss->dtim_period = ssid->dtim_period;
  205. else if (wpa_s->conf->dtim_period)
  206. bss->dtim_period = wpa_s->conf->dtim_period;
  207. if (ssid->beacon_int)
  208. conf->beacon_int = ssid->beacon_int;
  209. else if (wpa_s->conf->beacon_int)
  210. conf->beacon_int = wpa_s->conf->beacon_int;
  211. if ((bss->wpa & 2) && bss->rsn_pairwise == 0)
  212. bss->rsn_pairwise = bss->wpa_pairwise;
  213. bss->wpa_group = wpa_select_ap_group_cipher(bss->wpa, bss->wpa_pairwise,
  214. bss->rsn_pairwise);
  215. if (bss->wpa && bss->ieee802_1x)
  216. bss->ssid.security_policy = SECURITY_WPA;
  217. else if (bss->wpa)
  218. bss->ssid.security_policy = SECURITY_WPA_PSK;
  219. else if (bss->ieee802_1x) {
  220. int cipher = WPA_CIPHER_NONE;
  221. bss->ssid.security_policy = SECURITY_IEEE_802_1X;
  222. bss->ssid.wep.default_len = bss->default_wep_key_len;
  223. if (bss->default_wep_key_len)
  224. cipher = bss->default_wep_key_len >= 13 ?
  225. WPA_CIPHER_WEP104 : WPA_CIPHER_WEP40;
  226. bss->wpa_group = cipher;
  227. bss->wpa_pairwise = cipher;
  228. bss->rsn_pairwise = cipher;
  229. } else if (bss->ssid.wep.keys_set) {
  230. int cipher = WPA_CIPHER_WEP40;
  231. if (bss->ssid.wep.len[0] >= 13)
  232. cipher = WPA_CIPHER_WEP104;
  233. bss->ssid.security_policy = SECURITY_STATIC_WEP;
  234. bss->wpa_group = cipher;
  235. bss->wpa_pairwise = cipher;
  236. bss->rsn_pairwise = cipher;
  237. } else {
  238. bss->ssid.security_policy = SECURITY_PLAINTEXT;
  239. bss->wpa_group = WPA_CIPHER_NONE;
  240. bss->wpa_pairwise = WPA_CIPHER_NONE;
  241. bss->rsn_pairwise = WPA_CIPHER_NONE;
  242. }
  243. if (bss->wpa_group_rekey < 86400 && (bss->wpa & 2) &&
  244. (bss->wpa_group == WPA_CIPHER_CCMP ||
  245. bss->wpa_group == WPA_CIPHER_GCMP)) {
  246. /*
  247. * Strong ciphers do not need frequent rekeying, so increase
  248. * the default GTK rekeying period to 24 hours.
  249. */
  250. bss->wpa_group_rekey = 86400;
  251. }
  252. #ifdef CONFIG_WPS
  253. /*
  254. * Enable WPS by default for open and WPA/WPA2-Personal network, but
  255. * require user interaction to actually use it. Only the internal
  256. * Registrar is supported.
  257. */
  258. if (bss->ssid.security_policy != SECURITY_WPA_PSK &&
  259. bss->ssid.security_policy != SECURITY_PLAINTEXT)
  260. goto no_wps;
  261. #ifdef CONFIG_WPS2
  262. if (bss->ssid.security_policy == SECURITY_WPA_PSK &&
  263. (!(bss->rsn_pairwise & WPA_CIPHER_CCMP) || !(bss->wpa & 2)))
  264. goto no_wps; /* WPS2 does not allow WPA/TKIP-only
  265. * configuration */
  266. #endif /* CONFIG_WPS2 */
  267. bss->eap_server = 1;
  268. if (!ssid->ignore_broadcast_ssid)
  269. bss->wps_state = 2;
  270. bss->ap_setup_locked = 2;
  271. if (wpa_s->conf->config_methods)
  272. bss->config_methods = os_strdup(wpa_s->conf->config_methods);
  273. os_memcpy(bss->device_type, wpa_s->conf->device_type,
  274. WPS_DEV_TYPE_LEN);
  275. if (wpa_s->conf->device_name) {
  276. bss->device_name = os_strdup(wpa_s->conf->device_name);
  277. bss->friendly_name = os_strdup(wpa_s->conf->device_name);
  278. }
  279. if (wpa_s->conf->manufacturer)
  280. bss->manufacturer = os_strdup(wpa_s->conf->manufacturer);
  281. if (wpa_s->conf->model_name)
  282. bss->model_name = os_strdup(wpa_s->conf->model_name);
  283. if (wpa_s->conf->model_number)
  284. bss->model_number = os_strdup(wpa_s->conf->model_number);
  285. if (wpa_s->conf->serial_number)
  286. bss->serial_number = os_strdup(wpa_s->conf->serial_number);
  287. if (is_nil_uuid(wpa_s->conf->uuid))
  288. os_memcpy(bss->uuid, wpa_s->wps->uuid, WPS_UUID_LEN);
  289. else
  290. os_memcpy(bss->uuid, wpa_s->conf->uuid, WPS_UUID_LEN);
  291. os_memcpy(bss->os_version, wpa_s->conf->os_version, 4);
  292. bss->pbc_in_m1 = wpa_s->conf->pbc_in_m1;
  293. no_wps:
  294. #endif /* CONFIG_WPS */
  295. if (wpa_s->max_stations &&
  296. wpa_s->max_stations < wpa_s->conf->max_num_sta)
  297. bss->max_num_sta = wpa_s->max_stations;
  298. else
  299. bss->max_num_sta = wpa_s->conf->max_num_sta;
  300. bss->disassoc_low_ack = wpa_s->conf->disassoc_low_ack;
  301. if (wpa_s->conf->ap_vendor_elements) {
  302. bss->vendor_elements =
  303. wpabuf_dup(wpa_s->conf->ap_vendor_elements);
  304. }
  305. return 0;
  306. }
  307. static void ap_public_action_rx(void *ctx, const u8 *buf, size_t len, int freq)
  308. {
  309. #ifdef CONFIG_P2P
  310. struct wpa_supplicant *wpa_s = ctx;
  311. const struct ieee80211_mgmt *mgmt;
  312. size_t hdr_len;
  313. mgmt = (const struct ieee80211_mgmt *) buf;
  314. hdr_len = (const u8 *) &mgmt->u.action.u.vs_public_action.action - buf;
  315. if (hdr_len > len)
  316. return;
  317. wpas_p2p_rx_action(wpa_s, mgmt->da, mgmt->sa, mgmt->bssid,
  318. mgmt->u.action.category,
  319. &mgmt->u.action.u.vs_public_action.action,
  320. len - hdr_len, freq);
  321. #endif /* CONFIG_P2P */
  322. }
  323. static void ap_wps_event_cb(void *ctx, enum wps_event event,
  324. union wps_event_data *data)
  325. {
  326. #ifdef CONFIG_P2P
  327. struct wpa_supplicant *wpa_s = ctx;
  328. if (event == WPS_EV_FAIL) {
  329. struct wps_event_fail *fail = &data->fail;
  330. if (wpa_s->parent && wpa_s->parent != wpa_s &&
  331. wpa_s == wpa_s->global->p2p_group_formation) {
  332. /*
  333. * src/ap/wps_hostapd.c has already sent this on the
  334. * main interface, so only send on the parent interface
  335. * here if needed.
  336. */
  337. wpa_msg(wpa_s->parent, MSG_INFO, WPS_EVENT_FAIL
  338. "msg=%d config_error=%d",
  339. fail->msg, fail->config_error);
  340. }
  341. wpas_p2p_wps_failed(wpa_s, fail);
  342. }
  343. #endif /* CONFIG_P2P */
  344. }
  345. static void ap_sta_authorized_cb(void *ctx, const u8 *mac_addr,
  346. int authorized, const u8 *p2p_dev_addr)
  347. {
  348. wpas_notify_sta_authorized(ctx, mac_addr, authorized, p2p_dev_addr);
  349. }
  350. #ifdef CONFIG_P2P
  351. static void ap_new_psk_cb(void *ctx, const u8 *mac_addr, const u8 *p2p_dev_addr,
  352. const u8 *psk, size_t psk_len)
  353. {
  354. struct wpa_supplicant *wpa_s = ctx;
  355. if (wpa_s->ap_iface == NULL || wpa_s->current_ssid == NULL)
  356. return;
  357. wpas_p2p_new_psk_cb(wpa_s, mac_addr, p2p_dev_addr, psk, psk_len);
  358. }
  359. #endif /* CONFIG_P2P */
  360. static int ap_vendor_action_rx(void *ctx, const u8 *buf, size_t len, int freq)
  361. {
  362. #ifdef CONFIG_P2P
  363. struct wpa_supplicant *wpa_s = ctx;
  364. const struct ieee80211_mgmt *mgmt;
  365. size_t hdr_len;
  366. mgmt = (const struct ieee80211_mgmt *) buf;
  367. hdr_len = (const u8 *) &mgmt->u.action.u.vs_public_action.action - buf;
  368. if (hdr_len > len)
  369. return -1;
  370. wpas_p2p_rx_action(wpa_s, mgmt->da, mgmt->sa, mgmt->bssid,
  371. mgmt->u.action.category,
  372. &mgmt->u.action.u.vs_public_action.action,
  373. len - hdr_len, freq);
  374. #endif /* CONFIG_P2P */
  375. return 0;
  376. }
  377. static int ap_probe_req_rx(void *ctx, const u8 *sa, const u8 *da,
  378. const u8 *bssid, const u8 *ie, size_t ie_len,
  379. int ssi_signal)
  380. {
  381. #ifdef CONFIG_P2P
  382. struct wpa_supplicant *wpa_s = ctx;
  383. return wpas_p2p_probe_req_rx(wpa_s, sa, da, bssid, ie, ie_len,
  384. ssi_signal);
  385. #else /* CONFIG_P2P */
  386. return 0;
  387. #endif /* CONFIG_P2P */
  388. }
  389. static void ap_wps_reg_success_cb(void *ctx, const u8 *mac_addr,
  390. const u8 *uuid_e)
  391. {
  392. #ifdef CONFIG_P2P
  393. struct wpa_supplicant *wpa_s = ctx;
  394. wpas_p2p_wps_success(wpa_s, mac_addr, 1);
  395. #endif /* CONFIG_P2P */
  396. }
  397. static void wpas_ap_configured_cb(void *ctx)
  398. {
  399. struct wpa_supplicant *wpa_s = ctx;
  400. wpa_supplicant_set_state(wpa_s, WPA_COMPLETED);
  401. if (wpa_s->ap_configured_cb)
  402. wpa_s->ap_configured_cb(wpa_s->ap_configured_cb_ctx,
  403. wpa_s->ap_configured_cb_data);
  404. }
  405. int wpa_supplicant_create_ap(struct wpa_supplicant *wpa_s,
  406. struct wpa_ssid *ssid)
  407. {
  408. struct wpa_driver_associate_params params;
  409. struct hostapd_iface *hapd_iface;
  410. struct hostapd_config *conf;
  411. size_t i;
  412. if (ssid->ssid == NULL || ssid->ssid_len == 0) {
  413. wpa_printf(MSG_ERROR, "No SSID configured for AP mode");
  414. return -1;
  415. }
  416. wpa_supplicant_ap_deinit(wpa_s);
  417. wpa_printf(MSG_DEBUG, "Setting up AP (SSID='%s')",
  418. wpa_ssid_txt(ssid->ssid, ssid->ssid_len));
  419. os_memset(&params, 0, sizeof(params));
  420. params.ssid = ssid->ssid;
  421. params.ssid_len = ssid->ssid_len;
  422. switch (ssid->mode) {
  423. case WPAS_MODE_INFRA:
  424. params.mode = IEEE80211_MODE_INFRA;
  425. break;
  426. case WPAS_MODE_IBSS:
  427. params.mode = IEEE80211_MODE_IBSS;
  428. break;
  429. case WPAS_MODE_AP:
  430. case WPAS_MODE_P2P_GO:
  431. case WPAS_MODE_P2P_GROUP_FORMATION:
  432. params.mode = IEEE80211_MODE_AP;
  433. break;
  434. }
  435. if (ssid->frequency == 0)
  436. ssid->frequency = 2462; /* default channel 11 */
  437. params.freq = ssid->frequency;
  438. params.wpa_proto = ssid->proto;
  439. if (ssid->key_mgmt & WPA_KEY_MGMT_PSK)
  440. wpa_s->key_mgmt = WPA_KEY_MGMT_PSK;
  441. else
  442. wpa_s->key_mgmt = WPA_KEY_MGMT_NONE;
  443. params.key_mgmt_suite = key_mgmt2driver(wpa_s->key_mgmt);
  444. wpa_s->pairwise_cipher = wpa_pick_pairwise_cipher(ssid->pairwise_cipher,
  445. 1);
  446. if (wpa_s->pairwise_cipher < 0) {
  447. wpa_printf(MSG_WARNING, "WPA: Failed to select pairwise "
  448. "cipher.");
  449. return -1;
  450. }
  451. params.pairwise_suite =
  452. wpa_cipher_to_suite_driver(wpa_s->pairwise_cipher);
  453. params.group_suite = params.pairwise_suite;
  454. #ifdef CONFIG_P2P
  455. if (ssid->mode == WPAS_MODE_P2P_GO ||
  456. ssid->mode == WPAS_MODE_P2P_GROUP_FORMATION)
  457. params.p2p = 1;
  458. #endif /* CONFIG_P2P */
  459. if (wpa_s->parent->set_ap_uapsd)
  460. params.uapsd = wpa_s->parent->ap_uapsd;
  461. else
  462. params.uapsd = -1;
  463. if (wpa_drv_associate(wpa_s, &params) < 0) {
  464. wpa_msg(wpa_s, MSG_INFO, "Failed to start AP functionality");
  465. return -1;
  466. }
  467. wpa_s->ap_iface = hapd_iface = os_zalloc(sizeof(*wpa_s->ap_iface));
  468. if (hapd_iface == NULL)
  469. return -1;
  470. hapd_iface->owner = wpa_s;
  471. hapd_iface->drv_flags = wpa_s->drv_flags;
  472. hapd_iface->probe_resp_offloads = wpa_s->probe_resp_offloads;
  473. hapd_iface->extended_capa = wpa_s->extended_capa;
  474. hapd_iface->extended_capa_mask = wpa_s->extended_capa_mask;
  475. hapd_iface->extended_capa_len = wpa_s->extended_capa_len;
  476. wpa_s->ap_iface->conf = conf = hostapd_config_defaults();
  477. if (conf == NULL) {
  478. wpa_supplicant_ap_deinit(wpa_s);
  479. return -1;
  480. }
  481. os_memcpy(wpa_s->ap_iface->conf->wmm_ac_params,
  482. wpa_s->conf->wmm_ac_params,
  483. sizeof(wpa_s->conf->wmm_ac_params));
  484. if (params.uapsd > 0) {
  485. conf->bss[0]->wmm_enabled = 1;
  486. conf->bss[0]->wmm_uapsd = 1;
  487. }
  488. if (wpa_supplicant_conf_ap(wpa_s, ssid, conf)) {
  489. wpa_printf(MSG_ERROR, "Failed to create AP configuration");
  490. wpa_supplicant_ap_deinit(wpa_s);
  491. return -1;
  492. }
  493. #ifdef CONFIG_P2P
  494. if (ssid->mode == WPAS_MODE_P2P_GO)
  495. conf->bss[0]->p2p = P2P_ENABLED | P2P_GROUP_OWNER;
  496. else if (ssid->mode == WPAS_MODE_P2P_GROUP_FORMATION)
  497. conf->bss[0]->p2p = P2P_ENABLED | P2P_GROUP_OWNER |
  498. P2P_GROUP_FORMATION;
  499. #endif /* CONFIG_P2P */
  500. hapd_iface->num_bss = conf->num_bss;
  501. hapd_iface->bss = os_calloc(conf->num_bss,
  502. sizeof(struct hostapd_data *));
  503. if (hapd_iface->bss == NULL) {
  504. wpa_supplicant_ap_deinit(wpa_s);
  505. return -1;
  506. }
  507. for (i = 0; i < conf->num_bss; i++) {
  508. hapd_iface->bss[i] =
  509. hostapd_alloc_bss_data(hapd_iface, conf,
  510. conf->bss[i]);
  511. if (hapd_iface->bss[i] == NULL) {
  512. wpa_supplicant_ap_deinit(wpa_s);
  513. return -1;
  514. }
  515. hapd_iface->bss[i]->msg_ctx = wpa_s;
  516. hapd_iface->bss[i]->msg_ctx_parent = wpa_s->parent;
  517. hapd_iface->bss[i]->public_action_cb = ap_public_action_rx;
  518. hapd_iface->bss[i]->public_action_cb_ctx = wpa_s;
  519. hapd_iface->bss[i]->vendor_action_cb = ap_vendor_action_rx;
  520. hapd_iface->bss[i]->vendor_action_cb_ctx = wpa_s;
  521. hostapd_register_probereq_cb(hapd_iface->bss[i],
  522. ap_probe_req_rx, wpa_s);
  523. hapd_iface->bss[i]->wps_reg_success_cb = ap_wps_reg_success_cb;
  524. hapd_iface->bss[i]->wps_reg_success_cb_ctx = wpa_s;
  525. hapd_iface->bss[i]->wps_event_cb = ap_wps_event_cb;
  526. hapd_iface->bss[i]->wps_event_cb_ctx = wpa_s;
  527. hapd_iface->bss[i]->sta_authorized_cb = ap_sta_authorized_cb;
  528. hapd_iface->bss[i]->sta_authorized_cb_ctx = wpa_s;
  529. #ifdef CONFIG_P2P
  530. hapd_iface->bss[i]->new_psk_cb = ap_new_psk_cb;
  531. hapd_iface->bss[i]->new_psk_cb_ctx = wpa_s;
  532. hapd_iface->bss[i]->p2p = wpa_s->global->p2p;
  533. hapd_iface->bss[i]->p2p_group = wpas_p2p_group_init(wpa_s,
  534. ssid);
  535. #endif /* CONFIG_P2P */
  536. hapd_iface->bss[i]->setup_complete_cb = wpas_ap_configured_cb;
  537. hapd_iface->bss[i]->setup_complete_cb_ctx = wpa_s;
  538. }
  539. os_memcpy(hapd_iface->bss[0]->own_addr, wpa_s->own_addr, ETH_ALEN);
  540. hapd_iface->bss[0]->driver = wpa_s->driver;
  541. hapd_iface->bss[0]->drv_priv = wpa_s->drv_priv;
  542. wpa_s->current_ssid = ssid;
  543. eapol_sm_notify_config(wpa_s->eapol, NULL, NULL);
  544. os_memcpy(wpa_s->bssid, wpa_s->own_addr, ETH_ALEN);
  545. wpa_s->assoc_freq = ssid->frequency;
  546. if (hostapd_setup_interface(wpa_s->ap_iface)) {
  547. wpa_printf(MSG_ERROR, "Failed to initialize AP interface");
  548. wpa_supplicant_ap_deinit(wpa_s);
  549. return -1;
  550. }
  551. return 0;
  552. }
  553. void wpa_supplicant_ap_deinit(struct wpa_supplicant *wpa_s)
  554. {
  555. #ifdef CONFIG_WPS
  556. eloop_cancel_timeout(wpas_wps_ap_pin_timeout, wpa_s, NULL);
  557. #endif /* CONFIG_WPS */
  558. if (wpa_s->ap_iface == NULL)
  559. return;
  560. wpa_s->current_ssid = NULL;
  561. eapol_sm_notify_config(wpa_s->eapol, NULL, NULL);
  562. wpa_s->assoc_freq = 0;
  563. #ifdef CONFIG_P2P
  564. if (wpa_s->ap_iface->bss)
  565. wpa_s->ap_iface->bss[0]->p2p_group = NULL;
  566. wpas_p2p_group_deinit(wpa_s);
  567. #endif /* CONFIG_P2P */
  568. hostapd_interface_deinit(wpa_s->ap_iface);
  569. hostapd_interface_free(wpa_s->ap_iface);
  570. wpa_s->ap_iface = NULL;
  571. wpa_drv_deinit_ap(wpa_s);
  572. }
  573. void ap_tx_status(void *ctx, const u8 *addr,
  574. const u8 *buf, size_t len, int ack)
  575. {
  576. #ifdef NEED_AP_MLME
  577. struct wpa_supplicant *wpa_s = ctx;
  578. hostapd_tx_status(wpa_s->ap_iface->bss[0], addr, buf, len, ack);
  579. #endif /* NEED_AP_MLME */
  580. }
  581. void ap_eapol_tx_status(void *ctx, const u8 *dst,
  582. const u8 *data, size_t len, int ack)
  583. {
  584. #ifdef NEED_AP_MLME
  585. struct wpa_supplicant *wpa_s = ctx;
  586. hostapd_tx_status(wpa_s->ap_iface->bss[0], dst, data, len, ack);
  587. #endif /* NEED_AP_MLME */
  588. }
  589. void ap_client_poll_ok(void *ctx, const u8 *addr)
  590. {
  591. #ifdef NEED_AP_MLME
  592. struct wpa_supplicant *wpa_s = ctx;
  593. if (wpa_s->ap_iface)
  594. hostapd_client_poll_ok(wpa_s->ap_iface->bss[0], addr);
  595. #endif /* NEED_AP_MLME */
  596. }
  597. void ap_rx_from_unknown_sta(void *ctx, const u8 *addr, int wds)
  598. {
  599. #ifdef NEED_AP_MLME
  600. struct wpa_supplicant *wpa_s = ctx;
  601. ieee802_11_rx_from_unknown(wpa_s->ap_iface->bss[0], addr, wds);
  602. #endif /* NEED_AP_MLME */
  603. }
  604. void ap_mgmt_rx(void *ctx, struct rx_mgmt *rx_mgmt)
  605. {
  606. #ifdef NEED_AP_MLME
  607. struct wpa_supplicant *wpa_s = ctx;
  608. struct hostapd_frame_info fi;
  609. os_memset(&fi, 0, sizeof(fi));
  610. fi.datarate = rx_mgmt->datarate;
  611. fi.ssi_signal = rx_mgmt->ssi_signal;
  612. ieee802_11_mgmt(wpa_s->ap_iface->bss[0], rx_mgmt->frame,
  613. rx_mgmt->frame_len, &fi);
  614. #endif /* NEED_AP_MLME */
  615. }
  616. void ap_mgmt_tx_cb(void *ctx, const u8 *buf, size_t len, u16 stype, int ok)
  617. {
  618. #ifdef NEED_AP_MLME
  619. struct wpa_supplicant *wpa_s = ctx;
  620. ieee802_11_mgmt_cb(wpa_s->ap_iface->bss[0], buf, len, stype, ok);
  621. #endif /* NEED_AP_MLME */
  622. }
  623. void wpa_supplicant_ap_rx_eapol(struct wpa_supplicant *wpa_s,
  624. const u8 *src_addr, const u8 *buf, size_t len)
  625. {
  626. ieee802_1x_receive(wpa_s->ap_iface->bss[0], src_addr, buf, len);
  627. }
  628. #ifdef CONFIG_WPS
  629. int wpa_supplicant_ap_wps_pbc(struct wpa_supplicant *wpa_s, const u8 *bssid,
  630. const u8 *p2p_dev_addr)
  631. {
  632. if (!wpa_s->ap_iface)
  633. return -1;
  634. return hostapd_wps_button_pushed(wpa_s->ap_iface->bss[0],
  635. p2p_dev_addr);
  636. }
  637. int wpa_supplicant_ap_wps_cancel(struct wpa_supplicant *wpa_s)
  638. {
  639. struct wps_registrar *reg;
  640. int reg_sel = 0, wps_sta = 0;
  641. if (!wpa_s->ap_iface || !wpa_s->ap_iface->bss[0]->wps)
  642. return -1;
  643. reg = wpa_s->ap_iface->bss[0]->wps->registrar;
  644. reg_sel = wps_registrar_wps_cancel(reg);
  645. wps_sta = ap_for_each_sta(wpa_s->ap_iface->bss[0],
  646. ap_sta_wps_cancel, NULL);
  647. if (!reg_sel && !wps_sta) {
  648. wpa_printf(MSG_DEBUG, "No WPS operation in progress at this "
  649. "time");
  650. return -1;
  651. }
  652. /*
  653. * There are 2 cases to return wps cancel as success:
  654. * 1. When wps cancel was initiated but no connection has been
  655. * established with client yet.
  656. * 2. Client is in the middle of exchanging WPS messages.
  657. */
  658. return 0;
  659. }
  660. int wpa_supplicant_ap_wps_pin(struct wpa_supplicant *wpa_s, const u8 *bssid,
  661. const char *pin, char *buf, size_t buflen,
  662. int timeout)
  663. {
  664. int ret, ret_len = 0;
  665. if (!wpa_s->ap_iface)
  666. return -1;
  667. if (pin == NULL) {
  668. unsigned int rpin = wps_generate_pin();
  669. ret_len = os_snprintf(buf, buflen, "%08d", rpin);
  670. pin = buf;
  671. } else
  672. ret_len = os_snprintf(buf, buflen, "%s", pin);
  673. ret = hostapd_wps_add_pin(wpa_s->ap_iface->bss[0], bssid, "any", pin,
  674. timeout);
  675. if (ret)
  676. return -1;
  677. return ret_len;
  678. }
  679. static void wpas_wps_ap_pin_timeout(void *eloop_data, void *user_ctx)
  680. {
  681. struct wpa_supplicant *wpa_s = eloop_data;
  682. wpa_printf(MSG_DEBUG, "WPS: AP PIN timed out");
  683. wpas_wps_ap_pin_disable(wpa_s);
  684. }
  685. static void wpas_wps_ap_pin_enable(struct wpa_supplicant *wpa_s, int timeout)
  686. {
  687. struct hostapd_data *hapd;
  688. if (wpa_s->ap_iface == NULL)
  689. return;
  690. hapd = wpa_s->ap_iface->bss[0];
  691. wpa_printf(MSG_DEBUG, "WPS: Enabling AP PIN (timeout=%d)", timeout);
  692. hapd->ap_pin_failures = 0;
  693. eloop_cancel_timeout(wpas_wps_ap_pin_timeout, wpa_s, NULL);
  694. if (timeout > 0)
  695. eloop_register_timeout(timeout, 0,
  696. wpas_wps_ap_pin_timeout, wpa_s, NULL);
  697. }
  698. void wpas_wps_ap_pin_disable(struct wpa_supplicant *wpa_s)
  699. {
  700. struct hostapd_data *hapd;
  701. if (wpa_s->ap_iface == NULL)
  702. return;
  703. wpa_printf(MSG_DEBUG, "WPS: Disabling AP PIN");
  704. hapd = wpa_s->ap_iface->bss[0];
  705. os_free(hapd->conf->ap_pin);
  706. hapd->conf->ap_pin = NULL;
  707. eloop_cancel_timeout(wpas_wps_ap_pin_timeout, wpa_s, NULL);
  708. }
  709. const char * wpas_wps_ap_pin_random(struct wpa_supplicant *wpa_s, int timeout)
  710. {
  711. struct hostapd_data *hapd;
  712. unsigned int pin;
  713. char pin_txt[9];
  714. if (wpa_s->ap_iface == NULL)
  715. return NULL;
  716. hapd = wpa_s->ap_iface->bss[0];
  717. pin = wps_generate_pin();
  718. os_snprintf(pin_txt, sizeof(pin_txt), "%08u", pin);
  719. os_free(hapd->conf->ap_pin);
  720. hapd->conf->ap_pin = os_strdup(pin_txt);
  721. if (hapd->conf->ap_pin == NULL)
  722. return NULL;
  723. wpas_wps_ap_pin_enable(wpa_s, timeout);
  724. return hapd->conf->ap_pin;
  725. }
  726. const char * wpas_wps_ap_pin_get(struct wpa_supplicant *wpa_s)
  727. {
  728. struct hostapd_data *hapd;
  729. if (wpa_s->ap_iface == NULL)
  730. return NULL;
  731. hapd = wpa_s->ap_iface->bss[0];
  732. return hapd->conf->ap_pin;
  733. }
  734. int wpas_wps_ap_pin_set(struct wpa_supplicant *wpa_s, const char *pin,
  735. int timeout)
  736. {
  737. struct hostapd_data *hapd;
  738. char pin_txt[9];
  739. int ret;
  740. if (wpa_s->ap_iface == NULL)
  741. return -1;
  742. hapd = wpa_s->ap_iface->bss[0];
  743. ret = os_snprintf(pin_txt, sizeof(pin_txt), "%s", pin);
  744. if (ret < 0 || ret >= (int) sizeof(pin_txt))
  745. return -1;
  746. os_free(hapd->conf->ap_pin);
  747. hapd->conf->ap_pin = os_strdup(pin_txt);
  748. if (hapd->conf->ap_pin == NULL)
  749. return -1;
  750. wpas_wps_ap_pin_enable(wpa_s, timeout);
  751. return 0;
  752. }
  753. void wpa_supplicant_ap_pwd_auth_fail(struct wpa_supplicant *wpa_s)
  754. {
  755. struct hostapd_data *hapd;
  756. if (wpa_s->ap_iface == NULL)
  757. return;
  758. hapd = wpa_s->ap_iface->bss[0];
  759. /*
  760. * Registrar failed to prove its knowledge of the AP PIN. Disable AP
  761. * PIN if this happens multiple times to slow down brute force attacks.
  762. */
  763. hapd->ap_pin_failures++;
  764. wpa_printf(MSG_DEBUG, "WPS: AP PIN authentication failure number %u",
  765. hapd->ap_pin_failures);
  766. if (hapd->ap_pin_failures < 3)
  767. return;
  768. wpa_printf(MSG_DEBUG, "WPS: Disable AP PIN");
  769. hapd->ap_pin_failures = 0;
  770. os_free(hapd->conf->ap_pin);
  771. hapd->conf->ap_pin = NULL;
  772. }
  773. #ifdef CONFIG_WPS_NFC
  774. struct wpabuf * wpas_ap_wps_nfc_config_token(struct wpa_supplicant *wpa_s,
  775. int ndef)
  776. {
  777. struct hostapd_data *hapd;
  778. if (wpa_s->ap_iface == NULL)
  779. return NULL;
  780. hapd = wpa_s->ap_iface->bss[0];
  781. return hostapd_wps_nfc_config_token(hapd, ndef);
  782. }
  783. struct wpabuf * wpas_ap_wps_nfc_handover_sel(struct wpa_supplicant *wpa_s,
  784. int ndef)
  785. {
  786. struct hostapd_data *hapd;
  787. if (wpa_s->ap_iface == NULL)
  788. return NULL;
  789. hapd = wpa_s->ap_iface->bss[0];
  790. return hostapd_wps_nfc_hs_cr(hapd, ndef);
  791. }
  792. #endif /* CONFIG_WPS_NFC */
  793. #endif /* CONFIG_WPS */
  794. #ifdef CONFIG_CTRL_IFACE
  795. int ap_ctrl_iface_sta_first(struct wpa_supplicant *wpa_s,
  796. char *buf, size_t buflen)
  797. {
  798. if (wpa_s->ap_iface == NULL)
  799. return -1;
  800. return hostapd_ctrl_iface_sta_first(wpa_s->ap_iface->bss[0],
  801. buf, buflen);
  802. }
  803. int ap_ctrl_iface_sta(struct wpa_supplicant *wpa_s, const char *txtaddr,
  804. char *buf, size_t buflen)
  805. {
  806. if (wpa_s->ap_iface == NULL)
  807. return -1;
  808. return hostapd_ctrl_iface_sta(wpa_s->ap_iface->bss[0], txtaddr,
  809. buf, buflen);
  810. }
  811. int ap_ctrl_iface_sta_next(struct wpa_supplicant *wpa_s, const char *txtaddr,
  812. char *buf, size_t buflen)
  813. {
  814. if (wpa_s->ap_iface == NULL)
  815. return -1;
  816. return hostapd_ctrl_iface_sta_next(wpa_s->ap_iface->bss[0], txtaddr,
  817. buf, buflen);
  818. }
  819. int ap_ctrl_iface_sta_disassociate(struct wpa_supplicant *wpa_s,
  820. const char *txtaddr)
  821. {
  822. if (wpa_s->ap_iface == NULL)
  823. return -1;
  824. return hostapd_ctrl_iface_disassociate(wpa_s->ap_iface->bss[0],
  825. txtaddr);
  826. }
  827. int ap_ctrl_iface_sta_deauthenticate(struct wpa_supplicant *wpa_s,
  828. const char *txtaddr)
  829. {
  830. if (wpa_s->ap_iface == NULL)
  831. return -1;
  832. return hostapd_ctrl_iface_deauthenticate(wpa_s->ap_iface->bss[0],
  833. txtaddr);
  834. }
  835. int ap_ctrl_iface_wpa_get_status(struct wpa_supplicant *wpa_s, char *buf,
  836. size_t buflen, int verbose)
  837. {
  838. char *pos = buf, *end = buf + buflen;
  839. int ret;
  840. struct hostapd_bss_config *conf;
  841. if (wpa_s->ap_iface == NULL)
  842. return -1;
  843. conf = wpa_s->ap_iface->bss[0]->conf;
  844. if (conf->wpa == 0)
  845. return 0;
  846. ret = os_snprintf(pos, end - pos,
  847. "pairwise_cipher=%s\n"
  848. "group_cipher=%s\n"
  849. "key_mgmt=%s\n",
  850. wpa_cipher_txt(conf->rsn_pairwise),
  851. wpa_cipher_txt(conf->wpa_group),
  852. wpa_key_mgmt_txt(conf->wpa_key_mgmt,
  853. conf->wpa));
  854. if (ret < 0 || ret >= end - pos)
  855. return pos - buf;
  856. pos += ret;
  857. return pos - buf;
  858. }
  859. #endif /* CONFIG_CTRL_IFACE */
  860. int wpa_supplicant_ap_update_beacon(struct wpa_supplicant *wpa_s)
  861. {
  862. struct hostapd_iface *iface = wpa_s->ap_iface;
  863. struct wpa_ssid *ssid = wpa_s->current_ssid;
  864. struct hostapd_data *hapd;
  865. if (ssid == NULL || wpa_s->ap_iface == NULL ||
  866. ssid->mode == WPAS_MODE_INFRA ||
  867. ssid->mode == WPAS_MODE_IBSS)
  868. return -1;
  869. #ifdef CONFIG_P2P
  870. if (ssid->mode == WPAS_MODE_P2P_GO)
  871. iface->conf->bss[0]->p2p = P2P_ENABLED | P2P_GROUP_OWNER;
  872. else if (ssid->mode == WPAS_MODE_P2P_GROUP_FORMATION)
  873. iface->conf->bss[0]->p2p = P2P_ENABLED | P2P_GROUP_OWNER |
  874. P2P_GROUP_FORMATION;
  875. #endif /* CONFIG_P2P */
  876. hapd = iface->bss[0];
  877. if (hapd->drv_priv == NULL)
  878. return -1;
  879. ieee802_11_set_beacons(iface);
  880. hostapd_set_ap_wps_ie(hapd);
  881. return 0;
  882. }
  883. int ap_switch_channel(struct wpa_supplicant *wpa_s,
  884. struct csa_settings *settings)
  885. {
  886. #ifdef NEED_AP_MLME
  887. if (!wpa_s->ap_iface || !wpa_s->ap_iface->bss[0])
  888. return -1;
  889. return hostapd_switch_channel(wpa_s->ap_iface->bss[0], settings);
  890. #else /* NEED_AP_MLME */
  891. return -1;
  892. #endif /* NEED_AP_MLME */
  893. }
  894. int ap_ctrl_iface_chanswitch(struct wpa_supplicant *wpa_s, const char *pos)
  895. {
  896. struct csa_settings settings;
  897. int ret = hostapd_parse_csa_settings(pos, &settings);
  898. if (ret)
  899. return ret;
  900. return ap_switch_channel(wpa_s, &settings);
  901. }
  902. void wpas_ap_ch_switch(struct wpa_supplicant *wpa_s, int freq, int ht,
  903. int offset, int width, int cf1, int cf2)
  904. {
  905. if (!wpa_s->ap_iface)
  906. return;
  907. wpa_s->assoc_freq = freq;
  908. hostapd_event_ch_switch(wpa_s->ap_iface->bss[0], freq, ht, offset, width, cf1, cf1);
  909. }
  910. int wpa_supplicant_ap_mac_addr_filter(struct wpa_supplicant *wpa_s,
  911. const u8 *addr)
  912. {
  913. struct hostapd_data *hapd;
  914. struct hostapd_bss_config *conf;
  915. if (!wpa_s->ap_iface)
  916. return -1;
  917. if (addr)
  918. wpa_printf(MSG_DEBUG, "AP: Set MAC address filter: " MACSTR,
  919. MAC2STR(addr));
  920. else
  921. wpa_printf(MSG_DEBUG, "AP: Clear MAC address filter");
  922. hapd = wpa_s->ap_iface->bss[0];
  923. conf = hapd->conf;
  924. os_free(conf->accept_mac);
  925. conf->accept_mac = NULL;
  926. conf->num_accept_mac = 0;
  927. os_free(conf->deny_mac);
  928. conf->deny_mac = NULL;
  929. conf->num_deny_mac = 0;
  930. if (addr == NULL) {
  931. conf->macaddr_acl = ACCEPT_UNLESS_DENIED;
  932. return 0;
  933. }
  934. conf->macaddr_acl = DENY_UNLESS_ACCEPTED;
  935. conf->accept_mac = os_zalloc(sizeof(struct mac_acl_entry));
  936. if (conf->accept_mac == NULL)
  937. return -1;
  938. os_memcpy(conf->accept_mac[0].addr, addr, ETH_ALEN);
  939. conf->num_accept_mac = 1;
  940. return 0;
  941. }