sha256-internal.c 6.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243
  1. /*
  2. * SHA-256 hash implementation and interface functions
  3. * Copyright (c) 2003-2007, Jouni Malinen <j@w1.fi>
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License version 2 as
  7. * published by the Free Software Foundation.
  8. *
  9. * Alternatively, this software may be distributed under the terms of BSD
  10. * license.
  11. *
  12. * See README and COPYING for more details.
  13. */
  14. #include "includes.h"
  15. #include "common.h"
  16. #include "sha256.h"
  17. #include "crypto.h"
  18. struct sha256_state {
  19. u64 length;
  20. u32 state[8], curlen;
  21. u8 buf[64];
  22. };
  23. static void sha256_init(struct sha256_state *md);
  24. static int sha256_process(struct sha256_state *md, const unsigned char *in,
  25. unsigned long inlen);
  26. static int sha256_done(struct sha256_state *md, unsigned char *out);
  27. /**
  28. * sha256_vector - SHA256 hash for data vector
  29. * @num_elem: Number of elements in the data vector
  30. * @addr: Pointers to the data areas
  31. * @len: Lengths of the data blocks
  32. * @mac: Buffer for the hash
  33. * Returns: 0 on success, -1 of failure
  34. */
  35. int sha256_vector(size_t num_elem, const u8 *addr[], const size_t *len,
  36. u8 *mac)
  37. {
  38. struct sha256_state ctx;
  39. size_t i;
  40. sha256_init(&ctx);
  41. for (i = 0; i < num_elem; i++)
  42. if (sha256_process(&ctx, addr[i], len[i]))
  43. return -1;
  44. if (sha256_done(&ctx, mac))
  45. return -1;
  46. return 0;
  47. }
  48. /* ===== start - public domain SHA256 implementation ===== */
  49. /* This is based on SHA256 implementation in LibTomCrypt that was released into
  50. * public domain by Tom St Denis. */
  51. /* the K array */
  52. static const unsigned long K[64] = {
  53. 0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL, 0x3956c25bUL,
  54. 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL, 0xd807aa98UL, 0x12835b01UL,
  55. 0x243185beUL, 0x550c7dc3UL, 0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL,
  56. 0xc19bf174UL, 0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
  57. 0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL, 0x983e5152UL,
  58. 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL, 0xc6e00bf3UL, 0xd5a79147UL,
  59. 0x06ca6351UL, 0x14292967UL, 0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL,
  60. 0x53380d13UL, 0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
  61. 0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL, 0xd192e819UL,
  62. 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL, 0x19a4c116UL, 0x1e376c08UL,
  63. 0x2748774cUL, 0x34b0bcb5UL, 0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL,
  64. 0x682e6ff3UL, 0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
  65. 0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL
  66. };
  67. /* Various logical functions */
  68. #define RORc(x, y) \
  69. ( ((((unsigned long) (x) & 0xFFFFFFFFUL) >> (unsigned long) ((y) & 31)) | \
  70. ((unsigned long) (x) << (unsigned long) (32 - ((y) & 31)))) & 0xFFFFFFFFUL)
  71. #define Ch(x,y,z) (z ^ (x & (y ^ z)))
  72. #define Maj(x,y,z) (((x | y) & z) | (x & y))
  73. #define S(x, n) RORc((x), (n))
  74. #define R(x, n) (((x)&0xFFFFFFFFUL)>>(n))
  75. #define Sigma0(x) (S(x, 2) ^ S(x, 13) ^ S(x, 22))
  76. #define Sigma1(x) (S(x, 6) ^ S(x, 11) ^ S(x, 25))
  77. #define Gamma0(x) (S(x, 7) ^ S(x, 18) ^ R(x, 3))
  78. #define Gamma1(x) (S(x, 17) ^ S(x, 19) ^ R(x, 10))
  79. #ifndef MIN
  80. #define MIN(x, y) (((x) < (y)) ? (x) : (y))
  81. #endif
  82. /* compress 512-bits */
  83. static int sha256_compress(struct sha256_state *md, unsigned char *buf)
  84. {
  85. u32 S[8], W[64], t0, t1;
  86. u32 t;
  87. int i;
  88. /* copy state into S */
  89. for (i = 0; i < 8; i++) {
  90. S[i] = md->state[i];
  91. }
  92. /* copy the state into 512-bits into W[0..15] */
  93. for (i = 0; i < 16; i++)
  94. W[i] = WPA_GET_BE32(buf + (4 * i));
  95. /* fill W[16..63] */
  96. for (i = 16; i < 64; i++) {
  97. W[i] = Gamma1(W[i - 2]) + W[i - 7] + Gamma0(W[i - 15]) +
  98. W[i - 16];
  99. }
  100. /* Compress */
  101. #define RND(a,b,c,d,e,f,g,h,i) \
  102. t0 = h + Sigma1(e) + Ch(e, f, g) + K[i] + W[i]; \
  103. t1 = Sigma0(a) + Maj(a, b, c); \
  104. d += t0; \
  105. h = t0 + t1;
  106. for (i = 0; i < 64; ++i) {
  107. RND(S[0], S[1], S[2], S[3], S[4], S[5], S[6], S[7], i);
  108. t = S[7]; S[7] = S[6]; S[6] = S[5]; S[5] = S[4];
  109. S[4] = S[3]; S[3] = S[2]; S[2] = S[1]; S[1] = S[0]; S[0] = t;
  110. }
  111. /* feedback */
  112. for (i = 0; i < 8; i++) {
  113. md->state[i] = md->state[i] + S[i];
  114. }
  115. return 0;
  116. }
  117. /* Initialize the hash state */
  118. static void sha256_init(struct sha256_state *md)
  119. {
  120. md->curlen = 0;
  121. md->length = 0;
  122. md->state[0] = 0x6A09E667UL;
  123. md->state[1] = 0xBB67AE85UL;
  124. md->state[2] = 0x3C6EF372UL;
  125. md->state[3] = 0xA54FF53AUL;
  126. md->state[4] = 0x510E527FUL;
  127. md->state[5] = 0x9B05688CUL;
  128. md->state[6] = 0x1F83D9ABUL;
  129. md->state[7] = 0x5BE0CD19UL;
  130. }
  131. /**
  132. Process a block of memory though the hash
  133. @param md The hash state
  134. @param in The data to hash
  135. @param inlen The length of the data (octets)
  136. @return CRYPT_OK if successful
  137. */
  138. static int sha256_process(struct sha256_state *md, const unsigned char *in,
  139. unsigned long inlen)
  140. {
  141. unsigned long n;
  142. #define block_size 64
  143. if (md->curlen > sizeof(md->buf))
  144. return -1;
  145. while (inlen > 0) {
  146. if (md->curlen == 0 && inlen >= block_size) {
  147. if (sha256_compress(md, (unsigned char *) in) < 0)
  148. return -1;
  149. md->length += block_size * 8;
  150. in += block_size;
  151. inlen -= block_size;
  152. } else {
  153. n = MIN(inlen, (block_size - md->curlen));
  154. os_memcpy(md->buf + md->curlen, in, n);
  155. md->curlen += n;
  156. in += n;
  157. inlen -= n;
  158. if (md->curlen == block_size) {
  159. if (sha256_compress(md, md->buf) < 0)
  160. return -1;
  161. md->length += 8 * block_size;
  162. md->curlen = 0;
  163. }
  164. }
  165. }
  166. return 0;
  167. }
  168. /**
  169. Terminate the hash to get the digest
  170. @param md The hash state
  171. @param out [out] The destination of the hash (32 bytes)
  172. @return CRYPT_OK if successful
  173. */
  174. static int sha256_done(struct sha256_state *md, unsigned char *out)
  175. {
  176. int i;
  177. if (md->curlen >= sizeof(md->buf))
  178. return -1;
  179. /* increase the length of the message */
  180. md->length += md->curlen * 8;
  181. /* append the '1' bit */
  182. md->buf[md->curlen++] = (unsigned char) 0x80;
  183. /* if the length is currently above 56 bytes we append zeros
  184. * then compress. Then we can fall back to padding zeros and length
  185. * encoding like normal.
  186. */
  187. if (md->curlen > 56) {
  188. while (md->curlen < 64) {
  189. md->buf[md->curlen++] = (unsigned char) 0;
  190. }
  191. sha256_compress(md, md->buf);
  192. md->curlen = 0;
  193. }
  194. /* pad upto 56 bytes of zeroes */
  195. while (md->curlen < 56) {
  196. md->buf[md->curlen++] = (unsigned char) 0;
  197. }
  198. /* store length */
  199. WPA_PUT_BE64(md->buf + 56, md->length);
  200. sha256_compress(md, md->buf);
  201. /* copy output */
  202. for (i = 0; i < 8; i++)
  203. WPA_PUT_BE32(out + (4 * i), md->state[i]);
  204. return 0;
  205. }
  206. /* ===== end - public domain SHA256 implementation ===== */