123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323 |
- /*
- * 3GPP AKA - Milenage algorithm (3GPP TS 35.205, .206, .207, .208)
- * Copyright (c) 2006-2007 <j@w1.fi>
- *
- * This software may be distributed under the terms of the BSD license.
- * See README for more details.
- *
- * This file implements an example authentication algorithm defined for 3GPP
- * AKA. This can be used to implement a simple HLR/AuC into hlr_auc_gw to allow
- * EAP-AKA to be tested properly with real USIM cards.
- *
- * This implementations assumes that the r1..r5 and c1..c5 constants defined in
- * TS 35.206 are used, i.e., r1=64, r2=0, r3=32, r4=64, r5=96, c1=00..00,
- * c2=00..01, c3=00..02, c4=00..04, c5=00..08. The block cipher is assumed to
- * be AES (Rijndael).
- */
- #include "includes.h"
- #include "common.h"
- #include "crypto/aes_wrap.h"
- #include "milenage.h"
- /**
- * milenage_f1 - Milenage f1 and f1* algorithms
- * @opc: OPc = 128-bit value derived from OP and K
- * @k: K = 128-bit subscriber key
- * @_rand: RAND = 128-bit random challenge
- * @sqn: SQN = 48-bit sequence number
- * @amf: AMF = 16-bit authentication management field
- * @mac_a: Buffer for MAC-A = 64-bit network authentication code, or %NULL
- * @mac_s: Buffer for MAC-S = 64-bit resync authentication code, or %NULL
- * Returns: 0 on success, -1 on failure
- */
- int milenage_f1(const u8 *opc, const u8 *k, const u8 *_rand,
- const u8 *sqn, const u8 *amf, u8 *mac_a, u8 *mac_s)
- {
- u8 tmp1[16], tmp2[16], tmp3[16];
- int i;
- /* tmp1 = TEMP = E_K(RAND XOR OP_C) */
- for (i = 0; i < 16; i++)
- tmp1[i] = _rand[i] ^ opc[i];
- if (aes_128_encrypt_block(k, tmp1, tmp1))
- return -1;
- /* tmp2 = IN1 = SQN || AMF || SQN || AMF */
- os_memcpy(tmp2, sqn, 6);
- os_memcpy(tmp2 + 6, amf, 2);
- os_memcpy(tmp2 + 8, tmp2, 8);
- /* OUT1 = E_K(TEMP XOR rot(IN1 XOR OP_C, r1) XOR c1) XOR OP_C */
- /* rotate (tmp2 XOR OP_C) by r1 (= 0x40 = 8 bytes) */
- for (i = 0; i < 16; i++)
- tmp3[(i + 8) % 16] = tmp2[i] ^ opc[i];
- /* XOR with TEMP = E_K(RAND XOR OP_C) */
- for (i = 0; i < 16; i++)
- tmp3[i] ^= tmp1[i];
- /* XOR with c1 (= ..00, i.e., NOP) */
- /* f1 || f1* = E_K(tmp3) XOR OP_c */
- if (aes_128_encrypt_block(k, tmp3, tmp1))
- return -1;
- for (i = 0; i < 16; i++)
- tmp1[i] ^= opc[i];
- if (mac_a)
- os_memcpy(mac_a, tmp1, 8); /* f1 */
- if (mac_s)
- os_memcpy(mac_s, tmp1 + 8, 8); /* f1* */
- return 0;
- }
- /**
- * milenage_f2345 - Milenage f2, f3, f4, f5, f5* algorithms
- * @opc: OPc = 128-bit value derived from OP and K
- * @k: K = 128-bit subscriber key
- * @_rand: RAND = 128-bit random challenge
- * @res: Buffer for RES = 64-bit signed response (f2), or %NULL
- * @ck: Buffer for CK = 128-bit confidentiality key (f3), or %NULL
- * @ik: Buffer for IK = 128-bit integrity key (f4), or %NULL
- * @ak: Buffer for AK = 48-bit anonymity key (f5), or %NULL
- * @akstar: Buffer for AK = 48-bit anonymity key (f5*), or %NULL
- * Returns: 0 on success, -1 on failure
- */
- int milenage_f2345(const u8 *opc, const u8 *k, const u8 *_rand,
- u8 *res, u8 *ck, u8 *ik, u8 *ak, u8 *akstar)
- {
- u8 tmp1[16], tmp2[16], tmp3[16];
- int i;
- /* tmp2 = TEMP = E_K(RAND XOR OP_C) */
- for (i = 0; i < 16; i++)
- tmp1[i] = _rand[i] ^ opc[i];
- if (aes_128_encrypt_block(k, tmp1, tmp2))
- return -1;
- /* OUT2 = E_K(rot(TEMP XOR OP_C, r2) XOR c2) XOR OP_C */
- /* OUT3 = E_K(rot(TEMP XOR OP_C, r3) XOR c3) XOR OP_C */
- /* OUT4 = E_K(rot(TEMP XOR OP_C, r4) XOR c4) XOR OP_C */
- /* OUT5 = E_K(rot(TEMP XOR OP_C, r5) XOR c5) XOR OP_C */
- /* f2 and f5 */
- /* rotate by r2 (= 0, i.e., NOP) */
- for (i = 0; i < 16; i++)
- tmp1[i] = tmp2[i] ^ opc[i];
- tmp1[15] ^= 1; /* XOR c2 (= ..01) */
- /* f5 || f2 = E_K(tmp1) XOR OP_c */
- if (aes_128_encrypt_block(k, tmp1, tmp3))
- return -1;
- for (i = 0; i < 16; i++)
- tmp3[i] ^= opc[i];
- if (res)
- os_memcpy(res, tmp3 + 8, 8); /* f2 */
- if (ak)
- os_memcpy(ak, tmp3, 6); /* f5 */
- /* f3 */
- if (ck) {
- /* rotate by r3 = 0x20 = 4 bytes */
- for (i = 0; i < 16; i++)
- tmp1[(i + 12) % 16] = tmp2[i] ^ opc[i];
- tmp1[15] ^= 2; /* XOR c3 (= ..02) */
- if (aes_128_encrypt_block(k, tmp1, ck))
- return -1;
- for (i = 0; i < 16; i++)
- ck[i] ^= opc[i];
- }
- /* f4 */
- if (ik) {
- /* rotate by r4 = 0x40 = 8 bytes */
- for (i = 0; i < 16; i++)
- tmp1[(i + 8) % 16] = tmp2[i] ^ opc[i];
- tmp1[15] ^= 4; /* XOR c4 (= ..04) */
- if (aes_128_encrypt_block(k, tmp1, ik))
- return -1;
- for (i = 0; i < 16; i++)
- ik[i] ^= opc[i];
- }
- /* f5* */
- if (akstar) {
- /* rotate by r5 = 0x60 = 12 bytes */
- for (i = 0; i < 16; i++)
- tmp1[(i + 4) % 16] = tmp2[i] ^ opc[i];
- tmp1[15] ^= 8; /* XOR c5 (= ..08) */
- if (aes_128_encrypt_block(k, tmp1, tmp1))
- return -1;
- for (i = 0; i < 6; i++)
- akstar[i] = tmp1[i] ^ opc[i];
- }
- return 0;
- }
- /**
- * milenage_generate - Generate AKA AUTN,IK,CK,RES
- * @opc: OPc = 128-bit operator variant algorithm configuration field (encr.)
- * @amf: AMF = 16-bit authentication management field
- * @k: K = 128-bit subscriber key
- * @sqn: SQN = 48-bit sequence number
- * @_rand: RAND = 128-bit random challenge
- * @autn: Buffer for AUTN = 128-bit authentication token
- * @ik: Buffer for IK = 128-bit integrity key (f4), or %NULL
- * @ck: Buffer for CK = 128-bit confidentiality key (f3), or %NULL
- * @res: Buffer for RES = 64-bit signed response (f2), or %NULL
- * @res_len: Max length for res; set to used length or 0 on failure
- */
- void milenage_generate(const u8 *opc, const u8 *amf, const u8 *k,
- const u8 *sqn, const u8 *_rand, u8 *autn, u8 *ik,
- u8 *ck, u8 *res, size_t *res_len)
- {
- int i;
- u8 mac_a[8], ak[6];
- if (*res_len < 8) {
- *res_len = 0;
- return;
- }
- if (milenage_f1(opc, k, _rand, sqn, amf, mac_a, NULL) ||
- milenage_f2345(opc, k, _rand, res, ck, ik, ak, NULL)) {
- *res_len = 0;
- return;
- }
- *res_len = 8;
- /* AUTN = (SQN ^ AK) || AMF || MAC */
- for (i = 0; i < 6; i++)
- autn[i] = sqn[i] ^ ak[i];
- os_memcpy(autn + 6, amf, 2);
- os_memcpy(autn + 8, mac_a, 8);
- }
- /**
- * milenage_auts - Milenage AUTS validation
- * @opc: OPc = 128-bit operator variant algorithm configuration field (encr.)
- * @k: K = 128-bit subscriber key
- * @_rand: RAND = 128-bit random challenge
- * @auts: AUTS = 112-bit authentication token from client
- * @sqn: Buffer for SQN = 48-bit sequence number
- * Returns: 0 = success (sqn filled), -1 on failure
- */
- int milenage_auts(const u8 *opc, const u8 *k, const u8 *_rand, const u8 *auts,
- u8 *sqn)
- {
- u8 amf[2] = { 0x00, 0x00 }; /* TS 33.102 v7.0.0, 6.3.3 */
- u8 ak[6], mac_s[8];
- int i;
- if (milenage_f2345(opc, k, _rand, NULL, NULL, NULL, NULL, ak))
- return -1;
- for (i = 0; i < 6; i++)
- sqn[i] = auts[i] ^ ak[i];
- if (milenage_f1(opc, k, _rand, sqn, amf, NULL, mac_s) ||
- memcmp(mac_s, auts + 6, 8) != 0)
- return -1;
- return 0;
- }
- /**
- * gsm_milenage - Generate GSM-Milenage (3GPP TS 55.205) authentication triplet
- * @opc: OPc = 128-bit operator variant algorithm configuration field (encr.)
- * @k: K = 128-bit subscriber key
- * @_rand: RAND = 128-bit random challenge
- * @sres: Buffer for SRES = 32-bit SRES
- * @kc: Buffer for Kc = 64-bit Kc
- * Returns: 0 on success, -1 on failure
- */
- int gsm_milenage(const u8 *opc, const u8 *k, const u8 *_rand, u8 *sres, u8 *kc)
- {
- u8 res[8], ck[16], ik[16];
- int i;
- if (milenage_f2345(opc, k, _rand, res, ck, ik, NULL, NULL))
- return -1;
- for (i = 0; i < 8; i++)
- kc[i] = ck[i] ^ ck[i + 8] ^ ik[i] ^ ik[i + 8];
- #ifdef GSM_MILENAGE_ALT_SRES
- os_memcpy(sres, res, 4);
- #else /* GSM_MILENAGE_ALT_SRES */
- for (i = 0; i < 4; i++)
- sres[i] = res[i] ^ res[i + 4];
- #endif /* GSM_MILENAGE_ALT_SRES */
- return 0;
- }
- /**
- * milenage_generate - Generate AKA AUTN,IK,CK,RES
- * @opc: OPc = 128-bit operator variant algorithm configuration field (encr.)
- * @k: K = 128-bit subscriber key
- * @sqn: SQN = 48-bit sequence number
- * @_rand: RAND = 128-bit random challenge
- * @autn: AUTN = 128-bit authentication token
- * @ik: Buffer for IK = 128-bit integrity key (f4), or %NULL
- * @ck: Buffer for CK = 128-bit confidentiality key (f3), or %NULL
- * @res: Buffer for RES = 64-bit signed response (f2), or %NULL
- * @res_len: Variable that will be set to RES length
- * @auts: 112-bit buffer for AUTS
- * Returns: 0 on success, -1 on failure, or -2 on synchronization failure
- */
- int milenage_check(const u8 *opc, const u8 *k, const u8 *sqn, const u8 *_rand,
- const u8 *autn, u8 *ik, u8 *ck, u8 *res, size_t *res_len,
- u8 *auts)
- {
- int i;
- u8 mac_a[8], ak[6], rx_sqn[6];
- const u8 *amf;
- wpa_hexdump(MSG_DEBUG, "Milenage: AUTN", autn, 16);
- wpa_hexdump(MSG_DEBUG, "Milenage: RAND", _rand, 16);
- if (milenage_f2345(opc, k, _rand, res, ck, ik, ak, NULL))
- return -1;
- *res_len = 8;
- wpa_hexdump_key(MSG_DEBUG, "Milenage: RES", res, *res_len);
- wpa_hexdump_key(MSG_DEBUG, "Milenage: CK", ck, 16);
- wpa_hexdump_key(MSG_DEBUG, "Milenage: IK", ik, 16);
- wpa_hexdump_key(MSG_DEBUG, "Milenage: AK", ak, 6);
- /* AUTN = (SQN ^ AK) || AMF || MAC */
- for (i = 0; i < 6; i++)
- rx_sqn[i] = autn[i] ^ ak[i];
- wpa_hexdump(MSG_DEBUG, "Milenage: SQN", rx_sqn, 6);
- if (os_memcmp(rx_sqn, sqn, 6) <= 0) {
- u8 auts_amf[2] = { 0x00, 0x00 }; /* TS 33.102 v7.0.0, 6.3.3 */
- if (milenage_f2345(opc, k, _rand, NULL, NULL, NULL, NULL, ak))
- return -1;
- wpa_hexdump_key(MSG_DEBUG, "Milenage: AK*", ak, 6);
- for (i = 0; i < 6; i++)
- auts[i] = sqn[i] ^ ak[i];
- if (milenage_f1(opc, k, _rand, sqn, auts_amf, NULL, auts + 6))
- return -1;
- wpa_hexdump(MSG_DEBUG, "Milenage: AUTS", auts, 14);
- return -2;
- }
- amf = autn + 6;
- wpa_hexdump(MSG_DEBUG, "Milenage: AMF", amf, 2);
- if (milenage_f1(opc, k, _rand, rx_sqn, amf, mac_a, NULL))
- return -1;
- wpa_hexdump(MSG_DEBUG, "Milenage: MAC_A", mac_a, 8);
- if (os_memcmp(mac_a, autn + 8, 8) != 0) {
- wpa_printf(MSG_DEBUG, "Milenage: MAC mismatch");
- wpa_hexdump(MSG_DEBUG, "Milenage: Received MAC_A",
- autn + 8, 8);
- return -1;
- }
- return 0;
- }
|