ap.c 29 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141
  1. /*
  2. * WPA Supplicant - Basic AP mode support routines
  3. * Copyright (c) 2003-2009, Jouni Malinen <j@w1.fi>
  4. * Copyright (c) 2009, Atheros Communications
  5. *
  6. * This software may be distributed under the terms of the BSD license.
  7. * See README for more details.
  8. */
  9. #include "utils/includes.h"
  10. #include "utils/common.h"
  11. #include "utils/eloop.h"
  12. #include "utils/uuid.h"
  13. #include "common/ieee802_11_defs.h"
  14. #include "common/wpa_ctrl.h"
  15. #include "eapol_supp/eapol_supp_sm.h"
  16. #include "ap/hostapd.h"
  17. #include "ap/ap_config.h"
  18. #include "ap/ap_drv_ops.h"
  19. #ifdef NEED_AP_MLME
  20. #include "ap/ieee802_11.h"
  21. #endif /* NEED_AP_MLME */
  22. #include "ap/beacon.h"
  23. #include "ap/ieee802_1x.h"
  24. #include "ap/wps_hostapd.h"
  25. #include "ap/ctrl_iface_ap.h"
  26. #include "wps/wps.h"
  27. #include "common/ieee802_11_defs.h"
  28. #include "config_ssid.h"
  29. #include "config.h"
  30. #include "wpa_supplicant_i.h"
  31. #include "driver_i.h"
  32. #include "p2p_supplicant.h"
  33. #include "ap.h"
  34. #include "ap/sta_info.h"
  35. #include "notify.h"
  36. #ifdef CONFIG_WPS
  37. static void wpas_wps_ap_pin_timeout(void *eloop_data, void *user_ctx);
  38. #endif /* CONFIG_WPS */
  39. #ifdef CONFIG_IEEE80211N
  40. static void wpas_conf_ap_vht(struct wpa_supplicant *wpa_s,
  41. struct hostapd_config *conf,
  42. struct hostapd_hw_modes *mode)
  43. {
  44. u8 center_chan = 0;
  45. u8 channel = conf->channel;
  46. if (!conf->secondary_channel)
  47. goto no_vht;
  48. center_chan = wpas_p2p_get_vht80_center(wpa_s, mode, channel);
  49. if (!center_chan)
  50. goto no_vht;
  51. /* Use 80 MHz channel */
  52. conf->vht_oper_chwidth = 1;
  53. conf->vht_oper_centr_freq_seg0_idx = center_chan;
  54. return;
  55. no_vht:
  56. conf->vht_oper_centr_freq_seg0_idx =
  57. channel + conf->secondary_channel * 2;
  58. }
  59. #endif /* CONFIG_IEEE80211N */
  60. static int wpa_supplicant_conf_ap(struct wpa_supplicant *wpa_s,
  61. struct wpa_ssid *ssid,
  62. struct hostapd_config *conf)
  63. {
  64. struct hostapd_bss_config *bss = conf->bss[0];
  65. conf->driver = wpa_s->driver;
  66. os_strlcpy(bss->iface, wpa_s->ifname, sizeof(bss->iface));
  67. conf->hw_mode = ieee80211_freq_to_chan(ssid->frequency,
  68. &conf->channel);
  69. if (conf->hw_mode == NUM_HOSTAPD_MODES) {
  70. wpa_printf(MSG_ERROR, "Unsupported AP mode frequency: %d MHz",
  71. ssid->frequency);
  72. return -1;
  73. }
  74. /* TODO: enable HT40 if driver supports it;
  75. * drop to 11b if driver does not support 11g */
  76. #ifdef CONFIG_IEEE80211N
  77. /*
  78. * Enable HT20 if the driver supports it, by setting conf->ieee80211n
  79. * and a mask of allowed capabilities within conf->ht_capab.
  80. * Using default config settings for: conf->ht_op_mode_fixed,
  81. * conf->secondary_channel, conf->require_ht
  82. */
  83. if (wpa_s->hw.modes) {
  84. struct hostapd_hw_modes *mode = NULL;
  85. int i, no_ht = 0;
  86. for (i = 0; i < wpa_s->hw.num_modes; i++) {
  87. if (wpa_s->hw.modes[i].mode == conf->hw_mode) {
  88. mode = &wpa_s->hw.modes[i];
  89. break;
  90. }
  91. }
  92. #ifdef CONFIG_HT_OVERRIDES
  93. if (ssid->disable_ht) {
  94. conf->ieee80211n = 0;
  95. conf->ht_capab = 0;
  96. no_ht = 1;
  97. }
  98. #endif /* CONFIG_HT_OVERRIDES */
  99. if (!no_ht && mode && mode->ht_capab) {
  100. conf->ieee80211n = 1;
  101. #ifdef CONFIG_P2P
  102. if (conf->hw_mode == HOSTAPD_MODE_IEEE80211A &&
  103. (mode->ht_capab &
  104. HT_CAP_INFO_SUPP_CHANNEL_WIDTH_SET) &&
  105. ssid->ht40)
  106. conf->secondary_channel =
  107. wpas_p2p_get_ht40_mode(wpa_s, mode,
  108. conf->channel);
  109. if (conf->secondary_channel)
  110. conf->ht_capab |=
  111. HT_CAP_INFO_SUPP_CHANNEL_WIDTH_SET;
  112. #endif /* CONFIG_P2P */
  113. /*
  114. * white-list capabilities that won't cause issues
  115. * to connecting stations, while leaving the current
  116. * capabilities intact (currently disabled SMPS).
  117. */
  118. conf->ht_capab |= mode->ht_capab &
  119. (HT_CAP_INFO_GREEN_FIELD |
  120. HT_CAP_INFO_SHORT_GI20MHZ |
  121. HT_CAP_INFO_SHORT_GI40MHZ |
  122. HT_CAP_INFO_RX_STBC_MASK |
  123. HT_CAP_INFO_MAX_AMSDU_SIZE);
  124. if (mode->vht_capab && ssid->vht) {
  125. conf->ieee80211ac = 1;
  126. wpas_conf_ap_vht(wpa_s, conf, mode);
  127. }
  128. }
  129. }
  130. #endif /* CONFIG_IEEE80211N */
  131. #ifdef CONFIG_P2P
  132. if (conf->hw_mode == HOSTAPD_MODE_IEEE80211G &&
  133. (ssid->mode == WPAS_MODE_P2P_GO ||
  134. ssid->mode == WPAS_MODE_P2P_GROUP_FORMATION)) {
  135. /* Remove 802.11b rates from supported and basic rate sets */
  136. int *list = os_malloc(4 * sizeof(int));
  137. if (list) {
  138. list[0] = 60;
  139. list[1] = 120;
  140. list[2] = 240;
  141. list[3] = -1;
  142. }
  143. conf->basic_rates = list;
  144. list = os_malloc(9 * sizeof(int));
  145. if (list) {
  146. list[0] = 60;
  147. list[1] = 90;
  148. list[2] = 120;
  149. list[3] = 180;
  150. list[4] = 240;
  151. list[5] = 360;
  152. list[6] = 480;
  153. list[7] = 540;
  154. list[8] = -1;
  155. }
  156. conf->supported_rates = list;
  157. }
  158. bss->isolate = !wpa_s->conf->p2p_intra_bss;
  159. bss->force_per_enrollee_psk = wpa_s->global->p2p_per_sta_psk;
  160. #endif /* CONFIG_P2P */
  161. if (ssid->ssid_len == 0) {
  162. wpa_printf(MSG_ERROR, "No SSID configured for AP mode");
  163. return -1;
  164. }
  165. os_memcpy(bss->ssid.ssid, ssid->ssid, ssid->ssid_len);
  166. bss->ssid.ssid_len = ssid->ssid_len;
  167. bss->ssid.ssid_set = 1;
  168. bss->ignore_broadcast_ssid = ssid->ignore_broadcast_ssid;
  169. if (ssid->auth_alg)
  170. bss->auth_algs = ssid->auth_alg;
  171. if (wpa_key_mgmt_wpa_psk(ssid->key_mgmt))
  172. bss->wpa = ssid->proto;
  173. bss->wpa_key_mgmt = ssid->key_mgmt;
  174. bss->wpa_pairwise = ssid->pairwise_cipher;
  175. if (ssid->psk_set) {
  176. os_free(bss->ssid.wpa_psk);
  177. bss->ssid.wpa_psk = os_zalloc(sizeof(struct hostapd_wpa_psk));
  178. if (bss->ssid.wpa_psk == NULL)
  179. return -1;
  180. os_memcpy(bss->ssid.wpa_psk->psk, ssid->psk, PMK_LEN);
  181. bss->ssid.wpa_psk->group = 1;
  182. } else if (ssid->passphrase) {
  183. bss->ssid.wpa_passphrase = os_strdup(ssid->passphrase);
  184. } else if (ssid->wep_key_len[0] || ssid->wep_key_len[1] ||
  185. ssid->wep_key_len[2] || ssid->wep_key_len[3]) {
  186. struct hostapd_wep_keys *wep = &bss->ssid.wep;
  187. int i;
  188. for (i = 0; i < NUM_WEP_KEYS; i++) {
  189. if (ssid->wep_key_len[i] == 0)
  190. continue;
  191. wep->key[i] = os_malloc(ssid->wep_key_len[i]);
  192. if (wep->key[i] == NULL)
  193. return -1;
  194. os_memcpy(wep->key[i], ssid->wep_key[i],
  195. ssid->wep_key_len[i]);
  196. wep->len[i] = ssid->wep_key_len[i];
  197. }
  198. wep->idx = ssid->wep_tx_keyidx;
  199. wep->keys_set = 1;
  200. }
  201. if (ssid->ap_max_inactivity)
  202. bss->ap_max_inactivity = ssid->ap_max_inactivity;
  203. if (ssid->dtim_period)
  204. bss->dtim_period = ssid->dtim_period;
  205. else if (wpa_s->conf->dtim_period)
  206. bss->dtim_period = wpa_s->conf->dtim_period;
  207. if (ssid->beacon_int)
  208. conf->beacon_int = ssid->beacon_int;
  209. else if (wpa_s->conf->beacon_int)
  210. conf->beacon_int = wpa_s->conf->beacon_int;
  211. if ((bss->wpa & 2) && bss->rsn_pairwise == 0)
  212. bss->rsn_pairwise = bss->wpa_pairwise;
  213. bss->wpa_group = wpa_select_ap_group_cipher(bss->wpa, bss->wpa_pairwise,
  214. bss->rsn_pairwise);
  215. if (bss->wpa && bss->ieee802_1x)
  216. bss->ssid.security_policy = SECURITY_WPA;
  217. else if (bss->wpa)
  218. bss->ssid.security_policy = SECURITY_WPA_PSK;
  219. else if (bss->ieee802_1x) {
  220. int cipher = WPA_CIPHER_NONE;
  221. bss->ssid.security_policy = SECURITY_IEEE_802_1X;
  222. bss->ssid.wep.default_len = bss->default_wep_key_len;
  223. if (bss->default_wep_key_len)
  224. cipher = bss->default_wep_key_len >= 13 ?
  225. WPA_CIPHER_WEP104 : WPA_CIPHER_WEP40;
  226. bss->wpa_group = cipher;
  227. bss->wpa_pairwise = cipher;
  228. bss->rsn_pairwise = cipher;
  229. } else if (bss->ssid.wep.keys_set) {
  230. int cipher = WPA_CIPHER_WEP40;
  231. if (bss->ssid.wep.len[0] >= 13)
  232. cipher = WPA_CIPHER_WEP104;
  233. bss->ssid.security_policy = SECURITY_STATIC_WEP;
  234. bss->wpa_group = cipher;
  235. bss->wpa_pairwise = cipher;
  236. bss->rsn_pairwise = cipher;
  237. } else {
  238. bss->ssid.security_policy = SECURITY_PLAINTEXT;
  239. bss->wpa_group = WPA_CIPHER_NONE;
  240. bss->wpa_pairwise = WPA_CIPHER_NONE;
  241. bss->rsn_pairwise = WPA_CIPHER_NONE;
  242. }
  243. if (bss->wpa_group_rekey < 86400 && (bss->wpa & 2) &&
  244. (bss->wpa_group == WPA_CIPHER_CCMP ||
  245. bss->wpa_group == WPA_CIPHER_GCMP ||
  246. bss->wpa_group == WPA_CIPHER_CCMP_256 ||
  247. bss->wpa_group == WPA_CIPHER_GCMP_256)) {
  248. /*
  249. * Strong ciphers do not need frequent rekeying, so increase
  250. * the default GTK rekeying period to 24 hours.
  251. */
  252. bss->wpa_group_rekey = 86400;
  253. }
  254. #ifdef CONFIG_WPS
  255. /*
  256. * Enable WPS by default for open and WPA/WPA2-Personal network, but
  257. * require user interaction to actually use it. Only the internal
  258. * Registrar is supported.
  259. */
  260. if (bss->ssid.security_policy != SECURITY_WPA_PSK &&
  261. bss->ssid.security_policy != SECURITY_PLAINTEXT)
  262. goto no_wps;
  263. #ifdef CONFIG_WPS2
  264. if (bss->ssid.security_policy == SECURITY_WPA_PSK &&
  265. (!(bss->rsn_pairwise & WPA_CIPHER_CCMP) || !(bss->wpa & 2)))
  266. goto no_wps; /* WPS2 does not allow WPA/TKIP-only
  267. * configuration */
  268. #endif /* CONFIG_WPS2 */
  269. bss->eap_server = 1;
  270. if (!ssid->ignore_broadcast_ssid)
  271. bss->wps_state = 2;
  272. bss->ap_setup_locked = 2;
  273. if (wpa_s->conf->config_methods)
  274. bss->config_methods = os_strdup(wpa_s->conf->config_methods);
  275. os_memcpy(bss->device_type, wpa_s->conf->device_type,
  276. WPS_DEV_TYPE_LEN);
  277. if (wpa_s->conf->device_name) {
  278. bss->device_name = os_strdup(wpa_s->conf->device_name);
  279. bss->friendly_name = os_strdup(wpa_s->conf->device_name);
  280. }
  281. if (wpa_s->conf->manufacturer)
  282. bss->manufacturer = os_strdup(wpa_s->conf->manufacturer);
  283. if (wpa_s->conf->model_name)
  284. bss->model_name = os_strdup(wpa_s->conf->model_name);
  285. if (wpa_s->conf->model_number)
  286. bss->model_number = os_strdup(wpa_s->conf->model_number);
  287. if (wpa_s->conf->serial_number)
  288. bss->serial_number = os_strdup(wpa_s->conf->serial_number);
  289. if (is_nil_uuid(wpa_s->conf->uuid))
  290. os_memcpy(bss->uuid, wpa_s->wps->uuid, WPS_UUID_LEN);
  291. else
  292. os_memcpy(bss->uuid, wpa_s->conf->uuid, WPS_UUID_LEN);
  293. os_memcpy(bss->os_version, wpa_s->conf->os_version, 4);
  294. bss->pbc_in_m1 = wpa_s->conf->pbc_in_m1;
  295. no_wps:
  296. #endif /* CONFIG_WPS */
  297. if (wpa_s->max_stations &&
  298. wpa_s->max_stations < wpa_s->conf->max_num_sta)
  299. bss->max_num_sta = wpa_s->max_stations;
  300. else
  301. bss->max_num_sta = wpa_s->conf->max_num_sta;
  302. bss->disassoc_low_ack = wpa_s->conf->disassoc_low_ack;
  303. if (wpa_s->conf->ap_vendor_elements) {
  304. bss->vendor_elements =
  305. wpabuf_dup(wpa_s->conf->ap_vendor_elements);
  306. }
  307. return 0;
  308. }
  309. static void ap_public_action_rx(void *ctx, const u8 *buf, size_t len, int freq)
  310. {
  311. #ifdef CONFIG_P2P
  312. struct wpa_supplicant *wpa_s = ctx;
  313. const struct ieee80211_mgmt *mgmt;
  314. size_t hdr_len;
  315. mgmt = (const struct ieee80211_mgmt *) buf;
  316. hdr_len = (const u8 *) &mgmt->u.action.u.vs_public_action.action - buf;
  317. if (hdr_len > len)
  318. return;
  319. if (mgmt->u.action.category != WLAN_ACTION_PUBLIC)
  320. return;
  321. wpas_p2p_rx_action(wpa_s, mgmt->da, mgmt->sa, mgmt->bssid,
  322. mgmt->u.action.category,
  323. &mgmt->u.action.u.vs_public_action.action,
  324. len - hdr_len, freq);
  325. #endif /* CONFIG_P2P */
  326. }
  327. static void ap_wps_event_cb(void *ctx, enum wps_event event,
  328. union wps_event_data *data)
  329. {
  330. #ifdef CONFIG_P2P
  331. struct wpa_supplicant *wpa_s = ctx;
  332. if (event == WPS_EV_FAIL) {
  333. struct wps_event_fail *fail = &data->fail;
  334. if (wpa_s->parent && wpa_s->parent != wpa_s &&
  335. wpa_s == wpa_s->global->p2p_group_formation) {
  336. /*
  337. * src/ap/wps_hostapd.c has already sent this on the
  338. * main interface, so only send on the parent interface
  339. * here if needed.
  340. */
  341. wpa_msg(wpa_s->parent, MSG_INFO, WPS_EVENT_FAIL
  342. "msg=%d config_error=%d",
  343. fail->msg, fail->config_error);
  344. }
  345. wpas_p2p_wps_failed(wpa_s, fail);
  346. }
  347. #endif /* CONFIG_P2P */
  348. }
  349. static void ap_sta_authorized_cb(void *ctx, const u8 *mac_addr,
  350. int authorized, const u8 *p2p_dev_addr)
  351. {
  352. wpas_notify_sta_authorized(ctx, mac_addr, authorized, p2p_dev_addr);
  353. }
  354. #ifdef CONFIG_P2P
  355. static void ap_new_psk_cb(void *ctx, const u8 *mac_addr, const u8 *p2p_dev_addr,
  356. const u8 *psk, size_t psk_len)
  357. {
  358. struct wpa_supplicant *wpa_s = ctx;
  359. if (wpa_s->ap_iface == NULL || wpa_s->current_ssid == NULL)
  360. return;
  361. wpas_p2p_new_psk_cb(wpa_s, mac_addr, p2p_dev_addr, psk, psk_len);
  362. }
  363. #endif /* CONFIG_P2P */
  364. static int ap_vendor_action_rx(void *ctx, const u8 *buf, size_t len, int freq)
  365. {
  366. #ifdef CONFIG_P2P
  367. struct wpa_supplicant *wpa_s = ctx;
  368. const struct ieee80211_mgmt *mgmt;
  369. size_t hdr_len;
  370. mgmt = (const struct ieee80211_mgmt *) buf;
  371. hdr_len = (const u8 *) &mgmt->u.action.u.vs_public_action.action - buf;
  372. if (hdr_len > len)
  373. return -1;
  374. wpas_p2p_rx_action(wpa_s, mgmt->da, mgmt->sa, mgmt->bssid,
  375. mgmt->u.action.category,
  376. &mgmt->u.action.u.vs_public_action.action,
  377. len - hdr_len, freq);
  378. #endif /* CONFIG_P2P */
  379. return 0;
  380. }
  381. static int ap_probe_req_rx(void *ctx, const u8 *sa, const u8 *da,
  382. const u8 *bssid, const u8 *ie, size_t ie_len,
  383. int ssi_signal)
  384. {
  385. #ifdef CONFIG_P2P
  386. struct wpa_supplicant *wpa_s = ctx;
  387. return wpas_p2p_probe_req_rx(wpa_s, sa, da, bssid, ie, ie_len,
  388. ssi_signal);
  389. #else /* CONFIG_P2P */
  390. return 0;
  391. #endif /* CONFIG_P2P */
  392. }
  393. static void ap_wps_reg_success_cb(void *ctx, const u8 *mac_addr,
  394. const u8 *uuid_e)
  395. {
  396. #ifdef CONFIG_P2P
  397. struct wpa_supplicant *wpa_s = ctx;
  398. wpas_p2p_wps_success(wpa_s, mac_addr, 1);
  399. #endif /* CONFIG_P2P */
  400. }
  401. static void wpas_ap_configured_cb(void *ctx)
  402. {
  403. struct wpa_supplicant *wpa_s = ctx;
  404. wpa_supplicant_set_state(wpa_s, WPA_COMPLETED);
  405. if (wpa_s->ap_configured_cb)
  406. wpa_s->ap_configured_cb(wpa_s->ap_configured_cb_ctx,
  407. wpa_s->ap_configured_cb_data);
  408. }
  409. int wpa_supplicant_create_ap(struct wpa_supplicant *wpa_s,
  410. struct wpa_ssid *ssid)
  411. {
  412. struct wpa_driver_associate_params params;
  413. struct hostapd_iface *hapd_iface;
  414. struct hostapd_config *conf;
  415. size_t i;
  416. if (ssid->ssid == NULL || ssid->ssid_len == 0) {
  417. wpa_printf(MSG_ERROR, "No SSID configured for AP mode");
  418. return -1;
  419. }
  420. wpa_supplicant_ap_deinit(wpa_s);
  421. wpa_printf(MSG_DEBUG, "Setting up AP (SSID='%s')",
  422. wpa_ssid_txt(ssid->ssid, ssid->ssid_len));
  423. os_memset(&params, 0, sizeof(params));
  424. params.ssid = ssid->ssid;
  425. params.ssid_len = ssid->ssid_len;
  426. switch (ssid->mode) {
  427. case WPAS_MODE_INFRA:
  428. params.mode = IEEE80211_MODE_INFRA;
  429. break;
  430. case WPAS_MODE_IBSS:
  431. params.mode = IEEE80211_MODE_IBSS;
  432. break;
  433. case WPAS_MODE_AP:
  434. case WPAS_MODE_P2P_GO:
  435. case WPAS_MODE_P2P_GROUP_FORMATION:
  436. params.mode = IEEE80211_MODE_AP;
  437. break;
  438. }
  439. if (ssid->frequency == 0)
  440. ssid->frequency = 2462; /* default channel 11 */
  441. params.freq = ssid->frequency;
  442. params.wpa_proto = ssid->proto;
  443. if (ssid->key_mgmt & WPA_KEY_MGMT_PSK)
  444. wpa_s->key_mgmt = WPA_KEY_MGMT_PSK;
  445. else
  446. wpa_s->key_mgmt = WPA_KEY_MGMT_NONE;
  447. params.key_mgmt_suite = wpa_s->key_mgmt;
  448. wpa_s->pairwise_cipher = wpa_pick_pairwise_cipher(ssid->pairwise_cipher,
  449. 1);
  450. if (wpa_s->pairwise_cipher < 0) {
  451. wpa_printf(MSG_WARNING, "WPA: Failed to select pairwise "
  452. "cipher.");
  453. return -1;
  454. }
  455. params.pairwise_suite = wpa_s->pairwise_cipher;
  456. params.group_suite = params.pairwise_suite;
  457. #ifdef CONFIG_P2P
  458. if (ssid->mode == WPAS_MODE_P2P_GO ||
  459. ssid->mode == WPAS_MODE_P2P_GROUP_FORMATION)
  460. params.p2p = 1;
  461. #endif /* CONFIG_P2P */
  462. if (wpa_s->parent->set_ap_uapsd)
  463. params.uapsd = wpa_s->parent->ap_uapsd;
  464. else
  465. params.uapsd = -1;
  466. if (wpa_drv_associate(wpa_s, &params) < 0) {
  467. wpa_msg(wpa_s, MSG_INFO, "Failed to start AP functionality");
  468. return -1;
  469. }
  470. wpa_s->ap_iface = hapd_iface = os_zalloc(sizeof(*wpa_s->ap_iface));
  471. if (hapd_iface == NULL)
  472. return -1;
  473. hapd_iface->owner = wpa_s;
  474. hapd_iface->drv_flags = wpa_s->drv_flags;
  475. hapd_iface->probe_resp_offloads = wpa_s->probe_resp_offloads;
  476. hapd_iface->extended_capa = wpa_s->extended_capa;
  477. hapd_iface->extended_capa_mask = wpa_s->extended_capa_mask;
  478. hapd_iface->extended_capa_len = wpa_s->extended_capa_len;
  479. wpa_s->ap_iface->conf = conf = hostapd_config_defaults();
  480. if (conf == NULL) {
  481. wpa_supplicant_ap_deinit(wpa_s);
  482. return -1;
  483. }
  484. os_memcpy(wpa_s->ap_iface->conf->wmm_ac_params,
  485. wpa_s->conf->wmm_ac_params,
  486. sizeof(wpa_s->conf->wmm_ac_params));
  487. if (params.uapsd > 0) {
  488. conf->bss[0]->wmm_enabled = 1;
  489. conf->bss[0]->wmm_uapsd = 1;
  490. }
  491. if (wpa_supplicant_conf_ap(wpa_s, ssid, conf)) {
  492. wpa_printf(MSG_ERROR, "Failed to create AP configuration");
  493. wpa_supplicant_ap_deinit(wpa_s);
  494. return -1;
  495. }
  496. #ifdef CONFIG_P2P
  497. if (ssid->mode == WPAS_MODE_P2P_GO)
  498. conf->bss[0]->p2p = P2P_ENABLED | P2P_GROUP_OWNER;
  499. else if (ssid->mode == WPAS_MODE_P2P_GROUP_FORMATION)
  500. conf->bss[0]->p2p = P2P_ENABLED | P2P_GROUP_OWNER |
  501. P2P_GROUP_FORMATION;
  502. #endif /* CONFIG_P2P */
  503. hapd_iface->num_bss = conf->num_bss;
  504. hapd_iface->bss = os_calloc(conf->num_bss,
  505. sizeof(struct hostapd_data *));
  506. if (hapd_iface->bss == NULL) {
  507. wpa_supplicant_ap_deinit(wpa_s);
  508. return -1;
  509. }
  510. for (i = 0; i < conf->num_bss; i++) {
  511. hapd_iface->bss[i] =
  512. hostapd_alloc_bss_data(hapd_iface, conf,
  513. conf->bss[i]);
  514. if (hapd_iface->bss[i] == NULL) {
  515. wpa_supplicant_ap_deinit(wpa_s);
  516. return -1;
  517. }
  518. hapd_iface->bss[i]->msg_ctx = wpa_s;
  519. hapd_iface->bss[i]->msg_ctx_parent = wpa_s->parent;
  520. hapd_iface->bss[i]->public_action_cb = ap_public_action_rx;
  521. hapd_iface->bss[i]->public_action_cb_ctx = wpa_s;
  522. hapd_iface->bss[i]->vendor_action_cb = ap_vendor_action_rx;
  523. hapd_iface->bss[i]->vendor_action_cb_ctx = wpa_s;
  524. hostapd_register_probereq_cb(hapd_iface->bss[i],
  525. ap_probe_req_rx, wpa_s);
  526. hapd_iface->bss[i]->wps_reg_success_cb = ap_wps_reg_success_cb;
  527. hapd_iface->bss[i]->wps_reg_success_cb_ctx = wpa_s;
  528. hapd_iface->bss[i]->wps_event_cb = ap_wps_event_cb;
  529. hapd_iface->bss[i]->wps_event_cb_ctx = wpa_s;
  530. hapd_iface->bss[i]->sta_authorized_cb = ap_sta_authorized_cb;
  531. hapd_iface->bss[i]->sta_authorized_cb_ctx = wpa_s;
  532. #ifdef CONFIG_P2P
  533. hapd_iface->bss[i]->new_psk_cb = ap_new_psk_cb;
  534. hapd_iface->bss[i]->new_psk_cb_ctx = wpa_s;
  535. hapd_iface->bss[i]->p2p = wpa_s->global->p2p;
  536. hapd_iface->bss[i]->p2p_group = wpas_p2p_group_init(wpa_s,
  537. ssid);
  538. #endif /* CONFIG_P2P */
  539. hapd_iface->bss[i]->setup_complete_cb = wpas_ap_configured_cb;
  540. hapd_iface->bss[i]->setup_complete_cb_ctx = wpa_s;
  541. }
  542. os_memcpy(hapd_iface->bss[0]->own_addr, wpa_s->own_addr, ETH_ALEN);
  543. hapd_iface->bss[0]->driver = wpa_s->driver;
  544. hapd_iface->bss[0]->drv_priv = wpa_s->drv_priv;
  545. wpa_s->current_ssid = ssid;
  546. eapol_sm_notify_config(wpa_s->eapol, NULL, NULL);
  547. os_memcpy(wpa_s->bssid, wpa_s->own_addr, ETH_ALEN);
  548. wpa_s->assoc_freq = ssid->frequency;
  549. if (hostapd_setup_interface(wpa_s->ap_iface)) {
  550. wpa_printf(MSG_ERROR, "Failed to initialize AP interface");
  551. wpa_supplicant_ap_deinit(wpa_s);
  552. return -1;
  553. }
  554. return 0;
  555. }
  556. void wpa_supplicant_ap_deinit(struct wpa_supplicant *wpa_s)
  557. {
  558. #ifdef CONFIG_WPS
  559. eloop_cancel_timeout(wpas_wps_ap_pin_timeout, wpa_s, NULL);
  560. #endif /* CONFIG_WPS */
  561. if (wpa_s->ap_iface == NULL)
  562. return;
  563. wpa_s->current_ssid = NULL;
  564. eapol_sm_notify_config(wpa_s->eapol, NULL, NULL);
  565. wpa_s->assoc_freq = 0;
  566. #ifdef CONFIG_P2P
  567. if (wpa_s->ap_iface->bss)
  568. wpa_s->ap_iface->bss[0]->p2p_group = NULL;
  569. wpas_p2p_group_deinit(wpa_s);
  570. #endif /* CONFIG_P2P */
  571. hostapd_interface_deinit(wpa_s->ap_iface);
  572. hostapd_interface_free(wpa_s->ap_iface);
  573. wpa_s->ap_iface = NULL;
  574. wpa_drv_deinit_ap(wpa_s);
  575. }
  576. void ap_tx_status(void *ctx, const u8 *addr,
  577. const u8 *buf, size_t len, int ack)
  578. {
  579. #ifdef NEED_AP_MLME
  580. struct wpa_supplicant *wpa_s = ctx;
  581. hostapd_tx_status(wpa_s->ap_iface->bss[0], addr, buf, len, ack);
  582. #endif /* NEED_AP_MLME */
  583. }
  584. void ap_eapol_tx_status(void *ctx, const u8 *dst,
  585. const u8 *data, size_t len, int ack)
  586. {
  587. #ifdef NEED_AP_MLME
  588. struct wpa_supplicant *wpa_s = ctx;
  589. if (!wpa_s->ap_iface)
  590. return;
  591. hostapd_tx_status(wpa_s->ap_iface->bss[0], dst, data, len, ack);
  592. #endif /* NEED_AP_MLME */
  593. }
  594. void ap_client_poll_ok(void *ctx, const u8 *addr)
  595. {
  596. #ifdef NEED_AP_MLME
  597. struct wpa_supplicant *wpa_s = ctx;
  598. if (wpa_s->ap_iface)
  599. hostapd_client_poll_ok(wpa_s->ap_iface->bss[0], addr);
  600. #endif /* NEED_AP_MLME */
  601. }
  602. void ap_rx_from_unknown_sta(void *ctx, const u8 *addr, int wds)
  603. {
  604. #ifdef NEED_AP_MLME
  605. struct wpa_supplicant *wpa_s = ctx;
  606. ieee802_11_rx_from_unknown(wpa_s->ap_iface->bss[0], addr, wds);
  607. #endif /* NEED_AP_MLME */
  608. }
  609. void ap_mgmt_rx(void *ctx, struct rx_mgmt *rx_mgmt)
  610. {
  611. #ifdef NEED_AP_MLME
  612. struct wpa_supplicant *wpa_s = ctx;
  613. struct hostapd_frame_info fi;
  614. os_memset(&fi, 0, sizeof(fi));
  615. fi.datarate = rx_mgmt->datarate;
  616. fi.ssi_signal = rx_mgmt->ssi_signal;
  617. ieee802_11_mgmt(wpa_s->ap_iface->bss[0], rx_mgmt->frame,
  618. rx_mgmt->frame_len, &fi);
  619. #endif /* NEED_AP_MLME */
  620. }
  621. void ap_mgmt_tx_cb(void *ctx, const u8 *buf, size_t len, u16 stype, int ok)
  622. {
  623. #ifdef NEED_AP_MLME
  624. struct wpa_supplicant *wpa_s = ctx;
  625. ieee802_11_mgmt_cb(wpa_s->ap_iface->bss[0], buf, len, stype, ok);
  626. #endif /* NEED_AP_MLME */
  627. }
  628. void wpa_supplicant_ap_rx_eapol(struct wpa_supplicant *wpa_s,
  629. const u8 *src_addr, const u8 *buf, size_t len)
  630. {
  631. ieee802_1x_receive(wpa_s->ap_iface->bss[0], src_addr, buf, len);
  632. }
  633. #ifdef CONFIG_WPS
  634. int wpa_supplicant_ap_wps_pbc(struct wpa_supplicant *wpa_s, const u8 *bssid,
  635. const u8 *p2p_dev_addr)
  636. {
  637. if (!wpa_s->ap_iface)
  638. return -1;
  639. return hostapd_wps_button_pushed(wpa_s->ap_iface->bss[0],
  640. p2p_dev_addr);
  641. }
  642. int wpa_supplicant_ap_wps_cancel(struct wpa_supplicant *wpa_s)
  643. {
  644. struct wps_registrar *reg;
  645. int reg_sel = 0, wps_sta = 0;
  646. if (!wpa_s->ap_iface || !wpa_s->ap_iface->bss[0]->wps)
  647. return -1;
  648. reg = wpa_s->ap_iface->bss[0]->wps->registrar;
  649. reg_sel = wps_registrar_wps_cancel(reg);
  650. wps_sta = ap_for_each_sta(wpa_s->ap_iface->bss[0],
  651. ap_sta_wps_cancel, NULL);
  652. if (!reg_sel && !wps_sta) {
  653. wpa_printf(MSG_DEBUG, "No WPS operation in progress at this "
  654. "time");
  655. return -1;
  656. }
  657. /*
  658. * There are 2 cases to return wps cancel as success:
  659. * 1. When wps cancel was initiated but no connection has been
  660. * established with client yet.
  661. * 2. Client is in the middle of exchanging WPS messages.
  662. */
  663. return 0;
  664. }
  665. int wpa_supplicant_ap_wps_pin(struct wpa_supplicant *wpa_s, const u8 *bssid,
  666. const char *pin, char *buf, size_t buflen,
  667. int timeout)
  668. {
  669. int ret, ret_len = 0;
  670. if (!wpa_s->ap_iface)
  671. return -1;
  672. if (pin == NULL) {
  673. unsigned int rpin = wps_generate_pin();
  674. ret_len = os_snprintf(buf, buflen, "%08d", rpin);
  675. pin = buf;
  676. } else
  677. ret_len = os_snprintf(buf, buflen, "%s", pin);
  678. ret = hostapd_wps_add_pin(wpa_s->ap_iface->bss[0], bssid, "any", pin,
  679. timeout);
  680. if (ret)
  681. return -1;
  682. return ret_len;
  683. }
  684. static void wpas_wps_ap_pin_timeout(void *eloop_data, void *user_ctx)
  685. {
  686. struct wpa_supplicant *wpa_s = eloop_data;
  687. wpa_printf(MSG_DEBUG, "WPS: AP PIN timed out");
  688. wpas_wps_ap_pin_disable(wpa_s);
  689. }
  690. static void wpas_wps_ap_pin_enable(struct wpa_supplicant *wpa_s, int timeout)
  691. {
  692. struct hostapd_data *hapd;
  693. if (wpa_s->ap_iface == NULL)
  694. return;
  695. hapd = wpa_s->ap_iface->bss[0];
  696. wpa_printf(MSG_DEBUG, "WPS: Enabling AP PIN (timeout=%d)", timeout);
  697. hapd->ap_pin_failures = 0;
  698. eloop_cancel_timeout(wpas_wps_ap_pin_timeout, wpa_s, NULL);
  699. if (timeout > 0)
  700. eloop_register_timeout(timeout, 0,
  701. wpas_wps_ap_pin_timeout, wpa_s, NULL);
  702. }
  703. void wpas_wps_ap_pin_disable(struct wpa_supplicant *wpa_s)
  704. {
  705. struct hostapd_data *hapd;
  706. if (wpa_s->ap_iface == NULL)
  707. return;
  708. wpa_printf(MSG_DEBUG, "WPS: Disabling AP PIN");
  709. hapd = wpa_s->ap_iface->bss[0];
  710. os_free(hapd->conf->ap_pin);
  711. hapd->conf->ap_pin = NULL;
  712. eloop_cancel_timeout(wpas_wps_ap_pin_timeout, wpa_s, NULL);
  713. }
  714. const char * wpas_wps_ap_pin_random(struct wpa_supplicant *wpa_s, int timeout)
  715. {
  716. struct hostapd_data *hapd;
  717. unsigned int pin;
  718. char pin_txt[9];
  719. if (wpa_s->ap_iface == NULL)
  720. return NULL;
  721. hapd = wpa_s->ap_iface->bss[0];
  722. pin = wps_generate_pin();
  723. os_snprintf(pin_txt, sizeof(pin_txt), "%08u", pin);
  724. os_free(hapd->conf->ap_pin);
  725. hapd->conf->ap_pin = os_strdup(pin_txt);
  726. if (hapd->conf->ap_pin == NULL)
  727. return NULL;
  728. wpas_wps_ap_pin_enable(wpa_s, timeout);
  729. return hapd->conf->ap_pin;
  730. }
  731. const char * wpas_wps_ap_pin_get(struct wpa_supplicant *wpa_s)
  732. {
  733. struct hostapd_data *hapd;
  734. if (wpa_s->ap_iface == NULL)
  735. return NULL;
  736. hapd = wpa_s->ap_iface->bss[0];
  737. return hapd->conf->ap_pin;
  738. }
  739. int wpas_wps_ap_pin_set(struct wpa_supplicant *wpa_s, const char *pin,
  740. int timeout)
  741. {
  742. struct hostapd_data *hapd;
  743. char pin_txt[9];
  744. int ret;
  745. if (wpa_s->ap_iface == NULL)
  746. return -1;
  747. hapd = wpa_s->ap_iface->bss[0];
  748. ret = os_snprintf(pin_txt, sizeof(pin_txt), "%s", pin);
  749. if (ret < 0 || ret >= (int) sizeof(pin_txt))
  750. return -1;
  751. os_free(hapd->conf->ap_pin);
  752. hapd->conf->ap_pin = os_strdup(pin_txt);
  753. if (hapd->conf->ap_pin == NULL)
  754. return -1;
  755. wpas_wps_ap_pin_enable(wpa_s, timeout);
  756. return 0;
  757. }
  758. void wpa_supplicant_ap_pwd_auth_fail(struct wpa_supplicant *wpa_s)
  759. {
  760. struct hostapd_data *hapd;
  761. if (wpa_s->ap_iface == NULL)
  762. return;
  763. hapd = wpa_s->ap_iface->bss[0];
  764. /*
  765. * Registrar failed to prove its knowledge of the AP PIN. Disable AP
  766. * PIN if this happens multiple times to slow down brute force attacks.
  767. */
  768. hapd->ap_pin_failures++;
  769. wpa_printf(MSG_DEBUG, "WPS: AP PIN authentication failure number %u",
  770. hapd->ap_pin_failures);
  771. if (hapd->ap_pin_failures < 3)
  772. return;
  773. wpa_printf(MSG_DEBUG, "WPS: Disable AP PIN");
  774. hapd->ap_pin_failures = 0;
  775. os_free(hapd->conf->ap_pin);
  776. hapd->conf->ap_pin = NULL;
  777. }
  778. #ifdef CONFIG_WPS_NFC
  779. struct wpabuf * wpas_ap_wps_nfc_config_token(struct wpa_supplicant *wpa_s,
  780. int ndef)
  781. {
  782. struct hostapd_data *hapd;
  783. if (wpa_s->ap_iface == NULL)
  784. return NULL;
  785. hapd = wpa_s->ap_iface->bss[0];
  786. return hostapd_wps_nfc_config_token(hapd, ndef);
  787. }
  788. struct wpabuf * wpas_ap_wps_nfc_handover_sel(struct wpa_supplicant *wpa_s,
  789. int ndef)
  790. {
  791. struct hostapd_data *hapd;
  792. if (wpa_s->ap_iface == NULL)
  793. return NULL;
  794. hapd = wpa_s->ap_iface->bss[0];
  795. return hostapd_wps_nfc_hs_cr(hapd, ndef);
  796. }
  797. #endif /* CONFIG_WPS_NFC */
  798. #endif /* CONFIG_WPS */
  799. #ifdef CONFIG_CTRL_IFACE
  800. int ap_ctrl_iface_sta_first(struct wpa_supplicant *wpa_s,
  801. char *buf, size_t buflen)
  802. {
  803. if (wpa_s->ap_iface == NULL)
  804. return -1;
  805. return hostapd_ctrl_iface_sta_first(wpa_s->ap_iface->bss[0],
  806. buf, buflen);
  807. }
  808. int ap_ctrl_iface_sta(struct wpa_supplicant *wpa_s, const char *txtaddr,
  809. char *buf, size_t buflen)
  810. {
  811. if (wpa_s->ap_iface == NULL)
  812. return -1;
  813. return hostapd_ctrl_iface_sta(wpa_s->ap_iface->bss[0], txtaddr,
  814. buf, buflen);
  815. }
  816. int ap_ctrl_iface_sta_next(struct wpa_supplicant *wpa_s, const char *txtaddr,
  817. char *buf, size_t buflen)
  818. {
  819. if (wpa_s->ap_iface == NULL)
  820. return -1;
  821. return hostapd_ctrl_iface_sta_next(wpa_s->ap_iface->bss[0], txtaddr,
  822. buf, buflen);
  823. }
  824. int ap_ctrl_iface_sta_disassociate(struct wpa_supplicant *wpa_s,
  825. const char *txtaddr)
  826. {
  827. if (wpa_s->ap_iface == NULL)
  828. return -1;
  829. return hostapd_ctrl_iface_disassociate(wpa_s->ap_iface->bss[0],
  830. txtaddr);
  831. }
  832. int ap_ctrl_iface_sta_deauthenticate(struct wpa_supplicant *wpa_s,
  833. const char *txtaddr)
  834. {
  835. if (wpa_s->ap_iface == NULL)
  836. return -1;
  837. return hostapd_ctrl_iface_deauthenticate(wpa_s->ap_iface->bss[0],
  838. txtaddr);
  839. }
  840. int ap_ctrl_iface_wpa_get_status(struct wpa_supplicant *wpa_s, char *buf,
  841. size_t buflen, int verbose)
  842. {
  843. char *pos = buf, *end = buf + buflen;
  844. int ret;
  845. struct hostapd_bss_config *conf;
  846. if (wpa_s->ap_iface == NULL)
  847. return -1;
  848. conf = wpa_s->ap_iface->bss[0]->conf;
  849. if (conf->wpa == 0)
  850. return 0;
  851. ret = os_snprintf(pos, end - pos,
  852. "pairwise_cipher=%s\n"
  853. "group_cipher=%s\n"
  854. "key_mgmt=%s\n",
  855. wpa_cipher_txt(conf->rsn_pairwise),
  856. wpa_cipher_txt(conf->wpa_group),
  857. wpa_key_mgmt_txt(conf->wpa_key_mgmt,
  858. conf->wpa));
  859. if (ret < 0 || ret >= end - pos)
  860. return pos - buf;
  861. pos += ret;
  862. return pos - buf;
  863. }
  864. #endif /* CONFIG_CTRL_IFACE */
  865. int wpa_supplicant_ap_update_beacon(struct wpa_supplicant *wpa_s)
  866. {
  867. struct hostapd_iface *iface = wpa_s->ap_iface;
  868. struct wpa_ssid *ssid = wpa_s->current_ssid;
  869. struct hostapd_data *hapd;
  870. if (ssid == NULL || wpa_s->ap_iface == NULL ||
  871. ssid->mode == WPAS_MODE_INFRA ||
  872. ssid->mode == WPAS_MODE_IBSS)
  873. return -1;
  874. #ifdef CONFIG_P2P
  875. if (ssid->mode == WPAS_MODE_P2P_GO)
  876. iface->conf->bss[0]->p2p = P2P_ENABLED | P2P_GROUP_OWNER;
  877. else if (ssid->mode == WPAS_MODE_P2P_GROUP_FORMATION)
  878. iface->conf->bss[0]->p2p = P2P_ENABLED | P2P_GROUP_OWNER |
  879. P2P_GROUP_FORMATION;
  880. #endif /* CONFIG_P2P */
  881. hapd = iface->bss[0];
  882. if (hapd->drv_priv == NULL)
  883. return -1;
  884. ieee802_11_set_beacons(iface);
  885. hostapd_set_ap_wps_ie(hapd);
  886. return 0;
  887. }
  888. int ap_switch_channel(struct wpa_supplicant *wpa_s,
  889. struct csa_settings *settings)
  890. {
  891. #ifdef NEED_AP_MLME
  892. if (!wpa_s->ap_iface || !wpa_s->ap_iface->bss[0])
  893. return -1;
  894. return hostapd_switch_channel(wpa_s->ap_iface->bss[0], settings);
  895. #else /* NEED_AP_MLME */
  896. return -1;
  897. #endif /* NEED_AP_MLME */
  898. }
  899. int ap_ctrl_iface_chanswitch(struct wpa_supplicant *wpa_s, const char *pos)
  900. {
  901. struct csa_settings settings;
  902. int ret = hostapd_parse_csa_settings(pos, &settings);
  903. if (ret)
  904. return ret;
  905. return ap_switch_channel(wpa_s, &settings);
  906. }
  907. void wpas_ap_ch_switch(struct wpa_supplicant *wpa_s, int freq, int ht,
  908. int offset, int width, int cf1, int cf2)
  909. {
  910. if (!wpa_s->ap_iface)
  911. return;
  912. wpa_s->assoc_freq = freq;
  913. hostapd_event_ch_switch(wpa_s->ap_iface->bss[0], freq, ht, offset, width, cf1, cf1);
  914. }
  915. int wpa_supplicant_ap_mac_addr_filter(struct wpa_supplicant *wpa_s,
  916. const u8 *addr)
  917. {
  918. struct hostapd_data *hapd;
  919. struct hostapd_bss_config *conf;
  920. if (!wpa_s->ap_iface)
  921. return -1;
  922. if (addr)
  923. wpa_printf(MSG_DEBUG, "AP: Set MAC address filter: " MACSTR,
  924. MAC2STR(addr));
  925. else
  926. wpa_printf(MSG_DEBUG, "AP: Clear MAC address filter");
  927. hapd = wpa_s->ap_iface->bss[0];
  928. conf = hapd->conf;
  929. os_free(conf->accept_mac);
  930. conf->accept_mac = NULL;
  931. conf->num_accept_mac = 0;
  932. os_free(conf->deny_mac);
  933. conf->deny_mac = NULL;
  934. conf->num_deny_mac = 0;
  935. if (addr == NULL) {
  936. conf->macaddr_acl = ACCEPT_UNLESS_DENIED;
  937. return 0;
  938. }
  939. conf->macaddr_acl = DENY_UNLESS_ACCEPTED;
  940. conf->accept_mac = os_zalloc(sizeof(struct mac_acl_entry));
  941. if (conf->accept_mac == NULL)
  942. return -1;
  943. os_memcpy(conf->accept_mac[0].addr, addr, ETH_ALEN);
  944. conf->num_accept_mac = 1;
  945. return 0;
  946. }