ap.c 31 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217
  1. /*
  2. * WPA Supplicant - Basic AP mode support routines
  3. * Copyright (c) 2003-2009, Jouni Malinen <j@w1.fi>
  4. * Copyright (c) 2009, Atheros Communications
  5. *
  6. * This software may be distributed under the terms of the BSD license.
  7. * See README for more details.
  8. */
  9. #include "utils/includes.h"
  10. #include "utils/common.h"
  11. #include "utils/eloop.h"
  12. #include "utils/uuid.h"
  13. #include "common/ieee802_11_defs.h"
  14. #include "common/wpa_ctrl.h"
  15. #include "eapol_supp/eapol_supp_sm.h"
  16. #include "crypto/dh_group5.h"
  17. #include "ap/hostapd.h"
  18. #include "ap/ap_config.h"
  19. #include "ap/ap_drv_ops.h"
  20. #ifdef NEED_AP_MLME
  21. #include "ap/ieee802_11.h"
  22. #endif /* NEED_AP_MLME */
  23. #include "ap/beacon.h"
  24. #include "ap/ieee802_1x.h"
  25. #include "ap/wps_hostapd.h"
  26. #include "ap/ctrl_iface_ap.h"
  27. #include "wps/wps.h"
  28. #include "common/ieee802_11_defs.h"
  29. #include "config_ssid.h"
  30. #include "config.h"
  31. #include "wpa_supplicant_i.h"
  32. #include "driver_i.h"
  33. #include "p2p_supplicant.h"
  34. #include "ap.h"
  35. #include "ap/sta_info.h"
  36. #include "notify.h"
  37. #ifdef CONFIG_WPS
  38. static void wpas_wps_ap_pin_timeout(void *eloop_data, void *user_ctx);
  39. #endif /* CONFIG_WPS */
  40. #ifdef CONFIG_IEEE80211N
  41. static void wpas_conf_ap_vht(struct wpa_supplicant *wpa_s,
  42. struct hostapd_config *conf,
  43. struct hostapd_hw_modes *mode)
  44. {
  45. #ifdef CONFIG_P2P
  46. u8 center_chan = 0;
  47. u8 channel = conf->channel;
  48. if (!conf->secondary_channel)
  49. goto no_vht;
  50. center_chan = wpas_p2p_get_vht80_center(wpa_s, mode, channel);
  51. if (!center_chan)
  52. goto no_vht;
  53. /* Use 80 MHz channel */
  54. conf->vht_oper_chwidth = 1;
  55. conf->vht_oper_centr_freq_seg0_idx = center_chan;
  56. return;
  57. no_vht:
  58. conf->vht_oper_centr_freq_seg0_idx =
  59. channel + conf->secondary_channel * 2;
  60. #else /* CONFIG_P2P */
  61. conf->vht_oper_centr_freq_seg0_idx =
  62. conf->channel + conf->secondary_channel * 2;
  63. #endif /* CONFIG_P2P */
  64. }
  65. #endif /* CONFIG_IEEE80211N */
  66. static int wpa_supplicant_conf_ap(struct wpa_supplicant *wpa_s,
  67. struct wpa_ssid *ssid,
  68. struct hostapd_config *conf)
  69. {
  70. struct hostapd_bss_config *bss = conf->bss[0];
  71. conf->driver = wpa_s->driver;
  72. os_strlcpy(bss->iface, wpa_s->ifname, sizeof(bss->iface));
  73. conf->hw_mode = ieee80211_freq_to_chan(ssid->frequency,
  74. &conf->channel);
  75. if (conf->hw_mode == NUM_HOSTAPD_MODES) {
  76. wpa_printf(MSG_ERROR, "Unsupported AP mode frequency: %d MHz",
  77. ssid->frequency);
  78. return -1;
  79. }
  80. /* TODO: enable HT40 if driver supports it;
  81. * drop to 11b if driver does not support 11g */
  82. #ifdef CONFIG_IEEE80211N
  83. /*
  84. * Enable HT20 if the driver supports it, by setting conf->ieee80211n
  85. * and a mask of allowed capabilities within conf->ht_capab.
  86. * Using default config settings for: conf->ht_op_mode_fixed,
  87. * conf->secondary_channel, conf->require_ht
  88. */
  89. if (wpa_s->hw.modes) {
  90. struct hostapd_hw_modes *mode = NULL;
  91. int i, no_ht = 0;
  92. for (i = 0; i < wpa_s->hw.num_modes; i++) {
  93. if (wpa_s->hw.modes[i].mode == conf->hw_mode) {
  94. mode = &wpa_s->hw.modes[i];
  95. break;
  96. }
  97. }
  98. #ifdef CONFIG_HT_OVERRIDES
  99. if (ssid->disable_ht) {
  100. conf->ieee80211n = 0;
  101. conf->ht_capab = 0;
  102. no_ht = 1;
  103. }
  104. #endif /* CONFIG_HT_OVERRIDES */
  105. if (!no_ht && mode && mode->ht_capab) {
  106. conf->ieee80211n = 1;
  107. #ifdef CONFIG_P2P
  108. if (conf->hw_mode == HOSTAPD_MODE_IEEE80211A &&
  109. (mode->ht_capab &
  110. HT_CAP_INFO_SUPP_CHANNEL_WIDTH_SET) &&
  111. ssid->ht40)
  112. conf->secondary_channel =
  113. wpas_p2p_get_ht40_mode(wpa_s, mode,
  114. conf->channel);
  115. if (conf->secondary_channel)
  116. conf->ht_capab |=
  117. HT_CAP_INFO_SUPP_CHANNEL_WIDTH_SET;
  118. #endif /* CONFIG_P2P */
  119. /*
  120. * white-list capabilities that won't cause issues
  121. * to connecting stations, while leaving the current
  122. * capabilities intact (currently disabled SMPS).
  123. */
  124. conf->ht_capab |= mode->ht_capab &
  125. (HT_CAP_INFO_GREEN_FIELD |
  126. HT_CAP_INFO_SHORT_GI20MHZ |
  127. HT_CAP_INFO_SHORT_GI40MHZ |
  128. HT_CAP_INFO_RX_STBC_MASK |
  129. HT_CAP_INFO_MAX_AMSDU_SIZE);
  130. if (mode->vht_capab && ssid->vht) {
  131. conf->ieee80211ac = 1;
  132. wpas_conf_ap_vht(wpa_s, conf, mode);
  133. }
  134. }
  135. }
  136. #endif /* CONFIG_IEEE80211N */
  137. #ifdef CONFIG_P2P
  138. if (conf->hw_mode == HOSTAPD_MODE_IEEE80211G &&
  139. (ssid->mode == WPAS_MODE_P2P_GO ||
  140. ssid->mode == WPAS_MODE_P2P_GROUP_FORMATION)) {
  141. /* Remove 802.11b rates from supported and basic rate sets */
  142. int *list = os_malloc(4 * sizeof(int));
  143. if (list) {
  144. list[0] = 60;
  145. list[1] = 120;
  146. list[2] = 240;
  147. list[3] = -1;
  148. }
  149. conf->basic_rates = list;
  150. list = os_malloc(9 * sizeof(int));
  151. if (list) {
  152. list[0] = 60;
  153. list[1] = 90;
  154. list[2] = 120;
  155. list[3] = 180;
  156. list[4] = 240;
  157. list[5] = 360;
  158. list[6] = 480;
  159. list[7] = 540;
  160. list[8] = -1;
  161. }
  162. conf->supported_rates = list;
  163. }
  164. bss->isolate = !wpa_s->conf->p2p_intra_bss;
  165. bss->force_per_enrollee_psk = wpa_s->global->p2p_per_sta_psk;
  166. if (ssid->p2p_group) {
  167. os_memcpy(bss->ip_addr_go, wpa_s->parent->conf->ip_addr_go, 4);
  168. os_memcpy(bss->ip_addr_mask, wpa_s->parent->conf->ip_addr_mask,
  169. 4);
  170. os_memcpy(bss->ip_addr_start,
  171. wpa_s->parent->conf->ip_addr_start, 4);
  172. os_memcpy(bss->ip_addr_end, wpa_s->parent->conf->ip_addr_end,
  173. 4);
  174. }
  175. #endif /* CONFIG_P2P */
  176. if (ssid->ssid_len == 0) {
  177. wpa_printf(MSG_ERROR, "No SSID configured for AP mode");
  178. return -1;
  179. }
  180. os_memcpy(bss->ssid.ssid, ssid->ssid, ssid->ssid_len);
  181. bss->ssid.ssid_len = ssid->ssid_len;
  182. bss->ssid.ssid_set = 1;
  183. bss->ignore_broadcast_ssid = ssid->ignore_broadcast_ssid;
  184. if (ssid->auth_alg)
  185. bss->auth_algs = ssid->auth_alg;
  186. if (wpa_key_mgmt_wpa_psk(ssid->key_mgmt))
  187. bss->wpa = ssid->proto;
  188. bss->wpa_key_mgmt = ssid->key_mgmt;
  189. bss->wpa_pairwise = ssid->pairwise_cipher;
  190. if (ssid->psk_set) {
  191. os_free(bss->ssid.wpa_psk);
  192. bss->ssid.wpa_psk = os_zalloc(sizeof(struct hostapd_wpa_psk));
  193. if (bss->ssid.wpa_psk == NULL)
  194. return -1;
  195. os_memcpy(bss->ssid.wpa_psk->psk, ssid->psk, PMK_LEN);
  196. bss->ssid.wpa_psk->group = 1;
  197. } else if (ssid->passphrase) {
  198. bss->ssid.wpa_passphrase = os_strdup(ssid->passphrase);
  199. } else if (ssid->wep_key_len[0] || ssid->wep_key_len[1] ||
  200. ssid->wep_key_len[2] || ssid->wep_key_len[3]) {
  201. struct hostapd_wep_keys *wep = &bss->ssid.wep;
  202. int i;
  203. for (i = 0; i < NUM_WEP_KEYS; i++) {
  204. if (ssid->wep_key_len[i] == 0)
  205. continue;
  206. wep->key[i] = os_malloc(ssid->wep_key_len[i]);
  207. if (wep->key[i] == NULL)
  208. return -1;
  209. os_memcpy(wep->key[i], ssid->wep_key[i],
  210. ssid->wep_key_len[i]);
  211. wep->len[i] = ssid->wep_key_len[i];
  212. }
  213. wep->idx = ssid->wep_tx_keyidx;
  214. wep->keys_set = 1;
  215. }
  216. if (ssid->ap_max_inactivity)
  217. bss->ap_max_inactivity = ssid->ap_max_inactivity;
  218. if (ssid->dtim_period)
  219. bss->dtim_period = ssid->dtim_period;
  220. else if (wpa_s->conf->dtim_period)
  221. bss->dtim_period = wpa_s->conf->dtim_period;
  222. if (ssid->beacon_int)
  223. conf->beacon_int = ssid->beacon_int;
  224. else if (wpa_s->conf->beacon_int)
  225. conf->beacon_int = wpa_s->conf->beacon_int;
  226. if ((bss->wpa & 2) && bss->rsn_pairwise == 0)
  227. bss->rsn_pairwise = bss->wpa_pairwise;
  228. bss->wpa_group = wpa_select_ap_group_cipher(bss->wpa, bss->wpa_pairwise,
  229. bss->rsn_pairwise);
  230. if (bss->wpa && bss->ieee802_1x)
  231. bss->ssid.security_policy = SECURITY_WPA;
  232. else if (bss->wpa)
  233. bss->ssid.security_policy = SECURITY_WPA_PSK;
  234. else if (bss->ieee802_1x) {
  235. int cipher = WPA_CIPHER_NONE;
  236. bss->ssid.security_policy = SECURITY_IEEE_802_1X;
  237. bss->ssid.wep.default_len = bss->default_wep_key_len;
  238. if (bss->default_wep_key_len)
  239. cipher = bss->default_wep_key_len >= 13 ?
  240. WPA_CIPHER_WEP104 : WPA_CIPHER_WEP40;
  241. bss->wpa_group = cipher;
  242. bss->wpa_pairwise = cipher;
  243. bss->rsn_pairwise = cipher;
  244. } else if (bss->ssid.wep.keys_set) {
  245. int cipher = WPA_CIPHER_WEP40;
  246. if (bss->ssid.wep.len[0] >= 13)
  247. cipher = WPA_CIPHER_WEP104;
  248. bss->ssid.security_policy = SECURITY_STATIC_WEP;
  249. bss->wpa_group = cipher;
  250. bss->wpa_pairwise = cipher;
  251. bss->rsn_pairwise = cipher;
  252. } else {
  253. bss->ssid.security_policy = SECURITY_PLAINTEXT;
  254. bss->wpa_group = WPA_CIPHER_NONE;
  255. bss->wpa_pairwise = WPA_CIPHER_NONE;
  256. bss->rsn_pairwise = WPA_CIPHER_NONE;
  257. }
  258. if (bss->wpa_group_rekey < 86400 && (bss->wpa & 2) &&
  259. (bss->wpa_group == WPA_CIPHER_CCMP ||
  260. bss->wpa_group == WPA_CIPHER_GCMP ||
  261. bss->wpa_group == WPA_CIPHER_CCMP_256 ||
  262. bss->wpa_group == WPA_CIPHER_GCMP_256)) {
  263. /*
  264. * Strong ciphers do not need frequent rekeying, so increase
  265. * the default GTK rekeying period to 24 hours.
  266. */
  267. bss->wpa_group_rekey = 86400;
  268. }
  269. #ifdef CONFIG_IEEE80211W
  270. if (ssid->ieee80211w != MGMT_FRAME_PROTECTION_DEFAULT)
  271. bss->ieee80211w = ssid->ieee80211w;
  272. #endif /* CONFIG_IEEE80211W */
  273. #ifdef CONFIG_WPS
  274. /*
  275. * Enable WPS by default for open and WPA/WPA2-Personal network, but
  276. * require user interaction to actually use it. Only the internal
  277. * Registrar is supported.
  278. */
  279. if (bss->ssid.security_policy != SECURITY_WPA_PSK &&
  280. bss->ssid.security_policy != SECURITY_PLAINTEXT)
  281. goto no_wps;
  282. if (bss->ssid.security_policy == SECURITY_WPA_PSK &&
  283. (!(bss->rsn_pairwise & WPA_CIPHER_CCMP) || !(bss->wpa & 2)))
  284. goto no_wps; /* WPS2 does not allow WPA/TKIP-only
  285. * configuration */
  286. bss->eap_server = 1;
  287. if (!ssid->ignore_broadcast_ssid)
  288. bss->wps_state = 2;
  289. bss->ap_setup_locked = 2;
  290. if (wpa_s->conf->config_methods)
  291. bss->config_methods = os_strdup(wpa_s->conf->config_methods);
  292. os_memcpy(bss->device_type, wpa_s->conf->device_type,
  293. WPS_DEV_TYPE_LEN);
  294. if (wpa_s->conf->device_name) {
  295. bss->device_name = os_strdup(wpa_s->conf->device_name);
  296. bss->friendly_name = os_strdup(wpa_s->conf->device_name);
  297. }
  298. if (wpa_s->conf->manufacturer)
  299. bss->manufacturer = os_strdup(wpa_s->conf->manufacturer);
  300. if (wpa_s->conf->model_name)
  301. bss->model_name = os_strdup(wpa_s->conf->model_name);
  302. if (wpa_s->conf->model_number)
  303. bss->model_number = os_strdup(wpa_s->conf->model_number);
  304. if (wpa_s->conf->serial_number)
  305. bss->serial_number = os_strdup(wpa_s->conf->serial_number);
  306. if (is_nil_uuid(wpa_s->conf->uuid))
  307. os_memcpy(bss->uuid, wpa_s->wps->uuid, WPS_UUID_LEN);
  308. else
  309. os_memcpy(bss->uuid, wpa_s->conf->uuid, WPS_UUID_LEN);
  310. os_memcpy(bss->os_version, wpa_s->conf->os_version, 4);
  311. bss->pbc_in_m1 = wpa_s->conf->pbc_in_m1;
  312. no_wps:
  313. #endif /* CONFIG_WPS */
  314. if (wpa_s->max_stations &&
  315. wpa_s->max_stations < wpa_s->conf->max_num_sta)
  316. bss->max_num_sta = wpa_s->max_stations;
  317. else
  318. bss->max_num_sta = wpa_s->conf->max_num_sta;
  319. bss->disassoc_low_ack = wpa_s->conf->disassoc_low_ack;
  320. if (wpa_s->conf->ap_vendor_elements) {
  321. bss->vendor_elements =
  322. wpabuf_dup(wpa_s->conf->ap_vendor_elements);
  323. }
  324. return 0;
  325. }
  326. static void ap_public_action_rx(void *ctx, const u8 *buf, size_t len, int freq)
  327. {
  328. #ifdef CONFIG_P2P
  329. struct wpa_supplicant *wpa_s = ctx;
  330. const struct ieee80211_mgmt *mgmt;
  331. mgmt = (const struct ieee80211_mgmt *) buf;
  332. if (len < IEEE80211_HDRLEN + 1)
  333. return;
  334. if (mgmt->u.action.category != WLAN_ACTION_PUBLIC)
  335. return;
  336. wpas_p2p_rx_action(wpa_s, mgmt->da, mgmt->sa, mgmt->bssid,
  337. mgmt->u.action.category,
  338. buf + IEEE80211_HDRLEN + 1,
  339. len - IEEE80211_HDRLEN - 1, freq);
  340. #endif /* CONFIG_P2P */
  341. }
  342. static void ap_wps_event_cb(void *ctx, enum wps_event event,
  343. union wps_event_data *data)
  344. {
  345. #ifdef CONFIG_P2P
  346. struct wpa_supplicant *wpa_s = ctx;
  347. if (event == WPS_EV_FAIL) {
  348. struct wps_event_fail *fail = &data->fail;
  349. if (wpa_s->parent && wpa_s->parent != wpa_s &&
  350. wpa_s == wpa_s->global->p2p_group_formation) {
  351. /*
  352. * src/ap/wps_hostapd.c has already sent this on the
  353. * main interface, so only send on the parent interface
  354. * here if needed.
  355. */
  356. wpa_msg(wpa_s->parent, MSG_INFO, WPS_EVENT_FAIL
  357. "msg=%d config_error=%d",
  358. fail->msg, fail->config_error);
  359. }
  360. wpas_p2p_wps_failed(wpa_s, fail);
  361. }
  362. #endif /* CONFIG_P2P */
  363. }
  364. static void ap_sta_authorized_cb(void *ctx, const u8 *mac_addr,
  365. int authorized, const u8 *p2p_dev_addr)
  366. {
  367. wpas_notify_sta_authorized(ctx, mac_addr, authorized, p2p_dev_addr);
  368. }
  369. #ifdef CONFIG_P2P
  370. static void ap_new_psk_cb(void *ctx, const u8 *mac_addr, const u8 *p2p_dev_addr,
  371. const u8 *psk, size_t psk_len)
  372. {
  373. struct wpa_supplicant *wpa_s = ctx;
  374. if (wpa_s->ap_iface == NULL || wpa_s->current_ssid == NULL)
  375. return;
  376. wpas_p2p_new_psk_cb(wpa_s, mac_addr, p2p_dev_addr, psk, psk_len);
  377. }
  378. #endif /* CONFIG_P2P */
  379. static int ap_vendor_action_rx(void *ctx, const u8 *buf, size_t len, int freq)
  380. {
  381. #ifdef CONFIG_P2P
  382. struct wpa_supplicant *wpa_s = ctx;
  383. const struct ieee80211_mgmt *mgmt;
  384. size_t hdr_len;
  385. mgmt = (const struct ieee80211_mgmt *) buf;
  386. hdr_len = (const u8 *) &mgmt->u.action.u.vs_public_action.action - buf;
  387. if (hdr_len > len)
  388. return -1;
  389. wpas_p2p_rx_action(wpa_s, mgmt->da, mgmt->sa, mgmt->bssid,
  390. mgmt->u.action.category,
  391. &mgmt->u.action.u.vs_public_action.action,
  392. len - hdr_len, freq);
  393. #endif /* CONFIG_P2P */
  394. return 0;
  395. }
  396. static int ap_probe_req_rx(void *ctx, const u8 *sa, const u8 *da,
  397. const u8 *bssid, const u8 *ie, size_t ie_len,
  398. int ssi_signal)
  399. {
  400. #ifdef CONFIG_P2P
  401. struct wpa_supplicant *wpa_s = ctx;
  402. return wpas_p2p_probe_req_rx(wpa_s, sa, da, bssid, ie, ie_len,
  403. ssi_signal);
  404. #else /* CONFIG_P2P */
  405. return 0;
  406. #endif /* CONFIG_P2P */
  407. }
  408. static void ap_wps_reg_success_cb(void *ctx, const u8 *mac_addr,
  409. const u8 *uuid_e)
  410. {
  411. #ifdef CONFIG_P2P
  412. struct wpa_supplicant *wpa_s = ctx;
  413. wpas_p2p_wps_success(wpa_s, mac_addr, 1);
  414. #endif /* CONFIG_P2P */
  415. }
  416. static void wpas_ap_configured_cb(void *ctx)
  417. {
  418. struct wpa_supplicant *wpa_s = ctx;
  419. wpa_supplicant_set_state(wpa_s, WPA_COMPLETED);
  420. if (wpa_s->ap_configured_cb)
  421. wpa_s->ap_configured_cb(wpa_s->ap_configured_cb_ctx,
  422. wpa_s->ap_configured_cb_data);
  423. }
  424. int wpa_supplicant_create_ap(struct wpa_supplicant *wpa_s,
  425. struct wpa_ssid *ssid)
  426. {
  427. struct wpa_driver_associate_params params;
  428. struct hostapd_iface *hapd_iface;
  429. struct hostapd_config *conf;
  430. size_t i;
  431. if (ssid->ssid == NULL || ssid->ssid_len == 0) {
  432. wpa_printf(MSG_ERROR, "No SSID configured for AP mode");
  433. return -1;
  434. }
  435. wpa_supplicant_ap_deinit(wpa_s);
  436. wpa_printf(MSG_DEBUG, "Setting up AP (SSID='%s')",
  437. wpa_ssid_txt(ssid->ssid, ssid->ssid_len));
  438. os_memset(&params, 0, sizeof(params));
  439. params.ssid = ssid->ssid;
  440. params.ssid_len = ssid->ssid_len;
  441. switch (ssid->mode) {
  442. case WPAS_MODE_AP:
  443. case WPAS_MODE_P2P_GO:
  444. case WPAS_MODE_P2P_GROUP_FORMATION:
  445. params.mode = IEEE80211_MODE_AP;
  446. break;
  447. default:
  448. return -1;
  449. }
  450. if (ssid->frequency == 0)
  451. ssid->frequency = 2462; /* default channel 11 */
  452. params.freq = ssid->frequency;
  453. params.wpa_proto = ssid->proto;
  454. if (ssid->key_mgmt & WPA_KEY_MGMT_PSK)
  455. wpa_s->key_mgmt = WPA_KEY_MGMT_PSK;
  456. else
  457. wpa_s->key_mgmt = WPA_KEY_MGMT_NONE;
  458. params.key_mgmt_suite = wpa_s->key_mgmt;
  459. wpa_s->pairwise_cipher = wpa_pick_pairwise_cipher(ssid->pairwise_cipher,
  460. 1);
  461. if (wpa_s->pairwise_cipher < 0) {
  462. wpa_printf(MSG_WARNING, "WPA: Failed to select pairwise "
  463. "cipher.");
  464. return -1;
  465. }
  466. params.pairwise_suite = wpa_s->pairwise_cipher;
  467. params.group_suite = params.pairwise_suite;
  468. #ifdef CONFIG_P2P
  469. if (ssid->mode == WPAS_MODE_P2P_GO ||
  470. ssid->mode == WPAS_MODE_P2P_GROUP_FORMATION)
  471. params.p2p = 1;
  472. #endif /* CONFIG_P2P */
  473. if (wpa_s->parent->set_ap_uapsd)
  474. params.uapsd = wpa_s->parent->ap_uapsd;
  475. else if (params.p2p && (wpa_s->drv_flags & WPA_DRIVER_FLAGS_AP_UAPSD))
  476. params.uapsd = 1; /* mandatory for P2P GO */
  477. else
  478. params.uapsd = -1;
  479. if (wpa_drv_associate(wpa_s, &params) < 0) {
  480. wpa_msg(wpa_s, MSG_INFO, "Failed to start AP functionality");
  481. return -1;
  482. }
  483. wpa_s->ap_iface = hapd_iface = os_zalloc(sizeof(*wpa_s->ap_iface));
  484. if (hapd_iface == NULL)
  485. return -1;
  486. hapd_iface->owner = wpa_s;
  487. hapd_iface->drv_flags = wpa_s->drv_flags;
  488. hapd_iface->probe_resp_offloads = wpa_s->probe_resp_offloads;
  489. hapd_iface->extended_capa = wpa_s->extended_capa;
  490. hapd_iface->extended_capa_mask = wpa_s->extended_capa_mask;
  491. hapd_iface->extended_capa_len = wpa_s->extended_capa_len;
  492. wpa_s->ap_iface->conf = conf = hostapd_config_defaults();
  493. if (conf == NULL) {
  494. wpa_supplicant_ap_deinit(wpa_s);
  495. return -1;
  496. }
  497. os_memcpy(wpa_s->ap_iface->conf->wmm_ac_params,
  498. wpa_s->conf->wmm_ac_params,
  499. sizeof(wpa_s->conf->wmm_ac_params));
  500. if (params.uapsd > 0) {
  501. conf->bss[0]->wmm_enabled = 1;
  502. conf->bss[0]->wmm_uapsd = 1;
  503. }
  504. if (wpa_supplicant_conf_ap(wpa_s, ssid, conf)) {
  505. wpa_printf(MSG_ERROR, "Failed to create AP configuration");
  506. wpa_supplicant_ap_deinit(wpa_s);
  507. return -1;
  508. }
  509. #ifdef CONFIG_P2P
  510. if (ssid->mode == WPAS_MODE_P2P_GO)
  511. conf->bss[0]->p2p = P2P_ENABLED | P2P_GROUP_OWNER;
  512. else if (ssid->mode == WPAS_MODE_P2P_GROUP_FORMATION)
  513. conf->bss[0]->p2p = P2P_ENABLED | P2P_GROUP_OWNER |
  514. P2P_GROUP_FORMATION;
  515. #endif /* CONFIG_P2P */
  516. hapd_iface->num_bss = conf->num_bss;
  517. hapd_iface->bss = os_calloc(conf->num_bss,
  518. sizeof(struct hostapd_data *));
  519. if (hapd_iface->bss == NULL) {
  520. wpa_supplicant_ap_deinit(wpa_s);
  521. return -1;
  522. }
  523. for (i = 0; i < conf->num_bss; i++) {
  524. hapd_iface->bss[i] =
  525. hostapd_alloc_bss_data(hapd_iface, conf,
  526. conf->bss[i]);
  527. if (hapd_iface->bss[i] == NULL) {
  528. wpa_supplicant_ap_deinit(wpa_s);
  529. return -1;
  530. }
  531. hapd_iface->bss[i]->msg_ctx = wpa_s;
  532. hapd_iface->bss[i]->msg_ctx_parent = wpa_s->parent;
  533. hapd_iface->bss[i]->public_action_cb = ap_public_action_rx;
  534. hapd_iface->bss[i]->public_action_cb_ctx = wpa_s;
  535. hapd_iface->bss[i]->vendor_action_cb = ap_vendor_action_rx;
  536. hapd_iface->bss[i]->vendor_action_cb_ctx = wpa_s;
  537. hostapd_register_probereq_cb(hapd_iface->bss[i],
  538. ap_probe_req_rx, wpa_s);
  539. hapd_iface->bss[i]->wps_reg_success_cb = ap_wps_reg_success_cb;
  540. hapd_iface->bss[i]->wps_reg_success_cb_ctx = wpa_s;
  541. hapd_iface->bss[i]->wps_event_cb = ap_wps_event_cb;
  542. hapd_iface->bss[i]->wps_event_cb_ctx = wpa_s;
  543. hapd_iface->bss[i]->sta_authorized_cb = ap_sta_authorized_cb;
  544. hapd_iface->bss[i]->sta_authorized_cb_ctx = wpa_s;
  545. #ifdef CONFIG_P2P
  546. hapd_iface->bss[i]->new_psk_cb = ap_new_psk_cb;
  547. hapd_iface->bss[i]->new_psk_cb_ctx = wpa_s;
  548. hapd_iface->bss[i]->p2p = wpa_s->global->p2p;
  549. hapd_iface->bss[i]->p2p_group = wpas_p2p_group_init(wpa_s,
  550. ssid);
  551. #endif /* CONFIG_P2P */
  552. hapd_iface->bss[i]->setup_complete_cb = wpas_ap_configured_cb;
  553. hapd_iface->bss[i]->setup_complete_cb_ctx = wpa_s;
  554. }
  555. os_memcpy(hapd_iface->bss[0]->own_addr, wpa_s->own_addr, ETH_ALEN);
  556. hapd_iface->bss[0]->driver = wpa_s->driver;
  557. hapd_iface->bss[0]->drv_priv = wpa_s->drv_priv;
  558. wpa_s->current_ssid = ssid;
  559. eapol_sm_notify_config(wpa_s->eapol, NULL, NULL);
  560. os_memcpy(wpa_s->bssid, wpa_s->own_addr, ETH_ALEN);
  561. wpa_s->assoc_freq = ssid->frequency;
  562. if (hostapd_setup_interface(wpa_s->ap_iface)) {
  563. wpa_printf(MSG_ERROR, "Failed to initialize AP interface");
  564. wpa_supplicant_ap_deinit(wpa_s);
  565. return -1;
  566. }
  567. return 0;
  568. }
  569. void wpa_supplicant_ap_deinit(struct wpa_supplicant *wpa_s)
  570. {
  571. #ifdef CONFIG_WPS
  572. eloop_cancel_timeout(wpas_wps_ap_pin_timeout, wpa_s, NULL);
  573. #endif /* CONFIG_WPS */
  574. if (wpa_s->ap_iface == NULL)
  575. return;
  576. wpa_s->current_ssid = NULL;
  577. eapol_sm_notify_config(wpa_s->eapol, NULL, NULL);
  578. wpa_s->assoc_freq = 0;
  579. #ifdef CONFIG_P2P
  580. if (wpa_s->ap_iface->bss)
  581. wpa_s->ap_iface->bss[0]->p2p_group = NULL;
  582. wpas_p2p_group_deinit(wpa_s);
  583. #endif /* CONFIG_P2P */
  584. wpa_s->ap_iface->driver_ap_teardown =
  585. !!(wpa_s->drv_flags & WPA_DRIVER_FLAGS_AP_TEARDOWN_SUPPORT);
  586. hostapd_interface_deinit(wpa_s->ap_iface);
  587. hostapd_interface_free(wpa_s->ap_iface);
  588. wpa_s->ap_iface = NULL;
  589. wpa_drv_deinit_ap(wpa_s);
  590. }
  591. void ap_tx_status(void *ctx, const u8 *addr,
  592. const u8 *buf, size_t len, int ack)
  593. {
  594. #ifdef NEED_AP_MLME
  595. struct wpa_supplicant *wpa_s = ctx;
  596. hostapd_tx_status(wpa_s->ap_iface->bss[0], addr, buf, len, ack);
  597. #endif /* NEED_AP_MLME */
  598. }
  599. void ap_eapol_tx_status(void *ctx, const u8 *dst,
  600. const u8 *data, size_t len, int ack)
  601. {
  602. #ifdef NEED_AP_MLME
  603. struct wpa_supplicant *wpa_s = ctx;
  604. if (!wpa_s->ap_iface)
  605. return;
  606. hostapd_tx_status(wpa_s->ap_iface->bss[0], dst, data, len, ack);
  607. #endif /* NEED_AP_MLME */
  608. }
  609. void ap_client_poll_ok(void *ctx, const u8 *addr)
  610. {
  611. #ifdef NEED_AP_MLME
  612. struct wpa_supplicant *wpa_s = ctx;
  613. if (wpa_s->ap_iface)
  614. hostapd_client_poll_ok(wpa_s->ap_iface->bss[0], addr);
  615. #endif /* NEED_AP_MLME */
  616. }
  617. void ap_rx_from_unknown_sta(void *ctx, const u8 *addr, int wds)
  618. {
  619. #ifdef NEED_AP_MLME
  620. struct wpa_supplicant *wpa_s = ctx;
  621. ieee802_11_rx_from_unknown(wpa_s->ap_iface->bss[0], addr, wds);
  622. #endif /* NEED_AP_MLME */
  623. }
  624. void ap_mgmt_rx(void *ctx, struct rx_mgmt *rx_mgmt)
  625. {
  626. #ifdef NEED_AP_MLME
  627. struct wpa_supplicant *wpa_s = ctx;
  628. struct hostapd_frame_info fi;
  629. os_memset(&fi, 0, sizeof(fi));
  630. fi.datarate = rx_mgmt->datarate;
  631. fi.ssi_signal = rx_mgmt->ssi_signal;
  632. ieee802_11_mgmt(wpa_s->ap_iface->bss[0], rx_mgmt->frame,
  633. rx_mgmt->frame_len, &fi);
  634. #endif /* NEED_AP_MLME */
  635. }
  636. void ap_mgmt_tx_cb(void *ctx, const u8 *buf, size_t len, u16 stype, int ok)
  637. {
  638. #ifdef NEED_AP_MLME
  639. struct wpa_supplicant *wpa_s = ctx;
  640. ieee802_11_mgmt_cb(wpa_s->ap_iface->bss[0], buf, len, stype, ok);
  641. #endif /* NEED_AP_MLME */
  642. }
  643. void wpa_supplicant_ap_rx_eapol(struct wpa_supplicant *wpa_s,
  644. const u8 *src_addr, const u8 *buf, size_t len)
  645. {
  646. ieee802_1x_receive(wpa_s->ap_iface->bss[0], src_addr, buf, len);
  647. }
  648. #ifdef CONFIG_WPS
  649. int wpa_supplicant_ap_wps_pbc(struct wpa_supplicant *wpa_s, const u8 *bssid,
  650. const u8 *p2p_dev_addr)
  651. {
  652. if (!wpa_s->ap_iface)
  653. return -1;
  654. return hostapd_wps_button_pushed(wpa_s->ap_iface->bss[0],
  655. p2p_dev_addr);
  656. }
  657. int wpa_supplicant_ap_wps_cancel(struct wpa_supplicant *wpa_s)
  658. {
  659. struct wps_registrar *reg;
  660. int reg_sel = 0, wps_sta = 0;
  661. if (!wpa_s->ap_iface || !wpa_s->ap_iface->bss[0]->wps)
  662. return -1;
  663. reg = wpa_s->ap_iface->bss[0]->wps->registrar;
  664. reg_sel = wps_registrar_wps_cancel(reg);
  665. wps_sta = ap_for_each_sta(wpa_s->ap_iface->bss[0],
  666. ap_sta_wps_cancel, NULL);
  667. if (!reg_sel && !wps_sta) {
  668. wpa_printf(MSG_DEBUG, "No WPS operation in progress at this "
  669. "time");
  670. return -1;
  671. }
  672. /*
  673. * There are 2 cases to return wps cancel as success:
  674. * 1. When wps cancel was initiated but no connection has been
  675. * established with client yet.
  676. * 2. Client is in the middle of exchanging WPS messages.
  677. */
  678. return 0;
  679. }
  680. int wpa_supplicant_ap_wps_pin(struct wpa_supplicant *wpa_s, const u8 *bssid,
  681. const char *pin, char *buf, size_t buflen,
  682. int timeout)
  683. {
  684. int ret, ret_len = 0;
  685. if (!wpa_s->ap_iface)
  686. return -1;
  687. if (pin == NULL) {
  688. unsigned int rpin = wps_generate_pin();
  689. ret_len = os_snprintf(buf, buflen, "%08d", rpin);
  690. pin = buf;
  691. } else
  692. ret_len = os_snprintf(buf, buflen, "%s", pin);
  693. ret = hostapd_wps_add_pin(wpa_s->ap_iface->bss[0], bssid, "any", pin,
  694. timeout);
  695. if (ret)
  696. return -1;
  697. return ret_len;
  698. }
  699. static void wpas_wps_ap_pin_timeout(void *eloop_data, void *user_ctx)
  700. {
  701. struct wpa_supplicant *wpa_s = eloop_data;
  702. wpa_printf(MSG_DEBUG, "WPS: AP PIN timed out");
  703. wpas_wps_ap_pin_disable(wpa_s);
  704. }
  705. static void wpas_wps_ap_pin_enable(struct wpa_supplicant *wpa_s, int timeout)
  706. {
  707. struct hostapd_data *hapd;
  708. if (wpa_s->ap_iface == NULL)
  709. return;
  710. hapd = wpa_s->ap_iface->bss[0];
  711. wpa_printf(MSG_DEBUG, "WPS: Enabling AP PIN (timeout=%d)", timeout);
  712. hapd->ap_pin_failures = 0;
  713. eloop_cancel_timeout(wpas_wps_ap_pin_timeout, wpa_s, NULL);
  714. if (timeout > 0)
  715. eloop_register_timeout(timeout, 0,
  716. wpas_wps_ap_pin_timeout, wpa_s, NULL);
  717. }
  718. void wpas_wps_ap_pin_disable(struct wpa_supplicant *wpa_s)
  719. {
  720. struct hostapd_data *hapd;
  721. if (wpa_s->ap_iface == NULL)
  722. return;
  723. wpa_printf(MSG_DEBUG, "WPS: Disabling AP PIN");
  724. hapd = wpa_s->ap_iface->bss[0];
  725. os_free(hapd->conf->ap_pin);
  726. hapd->conf->ap_pin = NULL;
  727. eloop_cancel_timeout(wpas_wps_ap_pin_timeout, wpa_s, NULL);
  728. }
  729. const char * wpas_wps_ap_pin_random(struct wpa_supplicant *wpa_s, int timeout)
  730. {
  731. struct hostapd_data *hapd;
  732. unsigned int pin;
  733. char pin_txt[9];
  734. if (wpa_s->ap_iface == NULL)
  735. return NULL;
  736. hapd = wpa_s->ap_iface->bss[0];
  737. pin = wps_generate_pin();
  738. os_snprintf(pin_txt, sizeof(pin_txt), "%08u", pin);
  739. os_free(hapd->conf->ap_pin);
  740. hapd->conf->ap_pin = os_strdup(pin_txt);
  741. if (hapd->conf->ap_pin == NULL)
  742. return NULL;
  743. wpas_wps_ap_pin_enable(wpa_s, timeout);
  744. return hapd->conf->ap_pin;
  745. }
  746. const char * wpas_wps_ap_pin_get(struct wpa_supplicant *wpa_s)
  747. {
  748. struct hostapd_data *hapd;
  749. if (wpa_s->ap_iface == NULL)
  750. return NULL;
  751. hapd = wpa_s->ap_iface->bss[0];
  752. return hapd->conf->ap_pin;
  753. }
  754. int wpas_wps_ap_pin_set(struct wpa_supplicant *wpa_s, const char *pin,
  755. int timeout)
  756. {
  757. struct hostapd_data *hapd;
  758. char pin_txt[9];
  759. int ret;
  760. if (wpa_s->ap_iface == NULL)
  761. return -1;
  762. hapd = wpa_s->ap_iface->bss[0];
  763. ret = os_snprintf(pin_txt, sizeof(pin_txt), "%s", pin);
  764. if (ret < 0 || ret >= (int) sizeof(pin_txt))
  765. return -1;
  766. os_free(hapd->conf->ap_pin);
  767. hapd->conf->ap_pin = os_strdup(pin_txt);
  768. if (hapd->conf->ap_pin == NULL)
  769. return -1;
  770. wpas_wps_ap_pin_enable(wpa_s, timeout);
  771. return 0;
  772. }
  773. void wpa_supplicant_ap_pwd_auth_fail(struct wpa_supplicant *wpa_s)
  774. {
  775. struct hostapd_data *hapd;
  776. if (wpa_s->ap_iface == NULL)
  777. return;
  778. hapd = wpa_s->ap_iface->bss[0];
  779. /*
  780. * Registrar failed to prove its knowledge of the AP PIN. Disable AP
  781. * PIN if this happens multiple times to slow down brute force attacks.
  782. */
  783. hapd->ap_pin_failures++;
  784. wpa_printf(MSG_DEBUG, "WPS: AP PIN authentication failure number %u",
  785. hapd->ap_pin_failures);
  786. if (hapd->ap_pin_failures < 3)
  787. return;
  788. wpa_printf(MSG_DEBUG, "WPS: Disable AP PIN");
  789. hapd->ap_pin_failures = 0;
  790. os_free(hapd->conf->ap_pin);
  791. hapd->conf->ap_pin = NULL;
  792. }
  793. #ifdef CONFIG_WPS_NFC
  794. struct wpabuf * wpas_ap_wps_nfc_config_token(struct wpa_supplicant *wpa_s,
  795. int ndef)
  796. {
  797. struct hostapd_data *hapd;
  798. if (wpa_s->ap_iface == NULL)
  799. return NULL;
  800. hapd = wpa_s->ap_iface->bss[0];
  801. return hostapd_wps_nfc_config_token(hapd, ndef);
  802. }
  803. struct wpabuf * wpas_ap_wps_nfc_handover_sel(struct wpa_supplicant *wpa_s,
  804. int ndef)
  805. {
  806. struct hostapd_data *hapd;
  807. if (wpa_s->ap_iface == NULL)
  808. return NULL;
  809. hapd = wpa_s->ap_iface->bss[0];
  810. return hostapd_wps_nfc_hs_cr(hapd, ndef);
  811. }
  812. int wpas_ap_wps_nfc_report_handover(struct wpa_supplicant *wpa_s,
  813. const struct wpabuf *req,
  814. const struct wpabuf *sel)
  815. {
  816. struct hostapd_data *hapd;
  817. if (wpa_s->ap_iface == NULL)
  818. return -1;
  819. hapd = wpa_s->ap_iface->bss[0];
  820. return hostapd_wps_nfc_report_handover(hapd, req, sel);
  821. }
  822. #endif /* CONFIG_WPS_NFC */
  823. #endif /* CONFIG_WPS */
  824. #ifdef CONFIG_CTRL_IFACE
  825. int ap_ctrl_iface_sta_first(struct wpa_supplicant *wpa_s,
  826. char *buf, size_t buflen)
  827. {
  828. if (wpa_s->ap_iface == NULL)
  829. return -1;
  830. return hostapd_ctrl_iface_sta_first(wpa_s->ap_iface->bss[0],
  831. buf, buflen);
  832. }
  833. int ap_ctrl_iface_sta(struct wpa_supplicant *wpa_s, const char *txtaddr,
  834. char *buf, size_t buflen)
  835. {
  836. if (wpa_s->ap_iface == NULL)
  837. return -1;
  838. return hostapd_ctrl_iface_sta(wpa_s->ap_iface->bss[0], txtaddr,
  839. buf, buflen);
  840. }
  841. int ap_ctrl_iface_sta_next(struct wpa_supplicant *wpa_s, const char *txtaddr,
  842. char *buf, size_t buflen)
  843. {
  844. if (wpa_s->ap_iface == NULL)
  845. return -1;
  846. return hostapd_ctrl_iface_sta_next(wpa_s->ap_iface->bss[0], txtaddr,
  847. buf, buflen);
  848. }
  849. int ap_ctrl_iface_sta_disassociate(struct wpa_supplicant *wpa_s,
  850. const char *txtaddr)
  851. {
  852. if (wpa_s->ap_iface == NULL)
  853. return -1;
  854. return hostapd_ctrl_iface_disassociate(wpa_s->ap_iface->bss[0],
  855. txtaddr);
  856. }
  857. int ap_ctrl_iface_sta_deauthenticate(struct wpa_supplicant *wpa_s,
  858. const char *txtaddr)
  859. {
  860. if (wpa_s->ap_iface == NULL)
  861. return -1;
  862. return hostapd_ctrl_iface_deauthenticate(wpa_s->ap_iface->bss[0],
  863. txtaddr);
  864. }
  865. int ap_ctrl_iface_wpa_get_status(struct wpa_supplicant *wpa_s, char *buf,
  866. size_t buflen, int verbose)
  867. {
  868. char *pos = buf, *end = buf + buflen;
  869. int ret;
  870. struct hostapd_bss_config *conf;
  871. if (wpa_s->ap_iface == NULL)
  872. return -1;
  873. conf = wpa_s->ap_iface->bss[0]->conf;
  874. if (conf->wpa == 0)
  875. return 0;
  876. ret = os_snprintf(pos, end - pos,
  877. "pairwise_cipher=%s\n"
  878. "group_cipher=%s\n"
  879. "key_mgmt=%s\n",
  880. wpa_cipher_txt(conf->rsn_pairwise),
  881. wpa_cipher_txt(conf->wpa_group),
  882. wpa_key_mgmt_txt(conf->wpa_key_mgmt,
  883. conf->wpa));
  884. if (ret < 0 || ret >= end - pos)
  885. return pos - buf;
  886. pos += ret;
  887. return pos - buf;
  888. }
  889. #endif /* CONFIG_CTRL_IFACE */
  890. int wpa_supplicant_ap_update_beacon(struct wpa_supplicant *wpa_s)
  891. {
  892. struct hostapd_iface *iface = wpa_s->ap_iface;
  893. struct wpa_ssid *ssid = wpa_s->current_ssid;
  894. struct hostapd_data *hapd;
  895. if (ssid == NULL || wpa_s->ap_iface == NULL ||
  896. ssid->mode == WPAS_MODE_INFRA ||
  897. ssid->mode == WPAS_MODE_IBSS)
  898. return -1;
  899. #ifdef CONFIG_P2P
  900. if (ssid->mode == WPAS_MODE_P2P_GO)
  901. iface->conf->bss[0]->p2p = P2P_ENABLED | P2P_GROUP_OWNER;
  902. else if (ssid->mode == WPAS_MODE_P2P_GROUP_FORMATION)
  903. iface->conf->bss[0]->p2p = P2P_ENABLED | P2P_GROUP_OWNER |
  904. P2P_GROUP_FORMATION;
  905. #endif /* CONFIG_P2P */
  906. hapd = iface->bss[0];
  907. if (hapd->drv_priv == NULL)
  908. return -1;
  909. ieee802_11_set_beacons(iface);
  910. hostapd_set_ap_wps_ie(hapd);
  911. return 0;
  912. }
  913. int ap_switch_channel(struct wpa_supplicant *wpa_s,
  914. struct csa_settings *settings)
  915. {
  916. #ifdef NEED_AP_MLME
  917. if (!wpa_s->ap_iface || !wpa_s->ap_iface->bss[0])
  918. return -1;
  919. return hostapd_switch_channel(wpa_s->ap_iface->bss[0], settings);
  920. #else /* NEED_AP_MLME */
  921. return -1;
  922. #endif /* NEED_AP_MLME */
  923. }
  924. int ap_ctrl_iface_chanswitch(struct wpa_supplicant *wpa_s, const char *pos)
  925. {
  926. struct csa_settings settings;
  927. int ret = hostapd_parse_csa_settings(pos, &settings);
  928. if (ret)
  929. return ret;
  930. return ap_switch_channel(wpa_s, &settings);
  931. }
  932. void wpas_ap_ch_switch(struct wpa_supplicant *wpa_s, int freq, int ht,
  933. int offset, int width, int cf1, int cf2)
  934. {
  935. if (!wpa_s->ap_iface)
  936. return;
  937. wpa_s->assoc_freq = freq;
  938. hostapd_event_ch_switch(wpa_s->ap_iface->bss[0], freq, ht, offset, width, cf1, cf1);
  939. }
  940. int wpa_supplicant_ap_mac_addr_filter(struct wpa_supplicant *wpa_s,
  941. const u8 *addr)
  942. {
  943. struct hostapd_data *hapd;
  944. struct hostapd_bss_config *conf;
  945. if (!wpa_s->ap_iface)
  946. return -1;
  947. if (addr)
  948. wpa_printf(MSG_DEBUG, "AP: Set MAC address filter: " MACSTR,
  949. MAC2STR(addr));
  950. else
  951. wpa_printf(MSG_DEBUG, "AP: Clear MAC address filter");
  952. hapd = wpa_s->ap_iface->bss[0];
  953. conf = hapd->conf;
  954. os_free(conf->accept_mac);
  955. conf->accept_mac = NULL;
  956. conf->num_accept_mac = 0;
  957. os_free(conf->deny_mac);
  958. conf->deny_mac = NULL;
  959. conf->num_deny_mac = 0;
  960. if (addr == NULL) {
  961. conf->macaddr_acl = ACCEPT_UNLESS_DENIED;
  962. return 0;
  963. }
  964. conf->macaddr_acl = DENY_UNLESS_ACCEPTED;
  965. conf->accept_mac = os_zalloc(sizeof(struct mac_acl_entry));
  966. if (conf->accept_mac == NULL)
  967. return -1;
  968. os_memcpy(conf->accept_mac[0].addr, addr, ETH_ALEN);
  969. conf->num_accept_mac = 1;
  970. return 0;
  971. }
  972. #ifdef CONFIG_WPS_NFC
  973. int wpas_ap_wps_add_nfc_pw(struct wpa_supplicant *wpa_s, u16 pw_id,
  974. const struct wpabuf *pw, const u8 *pubkey_hash)
  975. {
  976. struct hostapd_data *hapd;
  977. struct wps_context *wps;
  978. if (!wpa_s->ap_iface)
  979. return -1;
  980. hapd = wpa_s->ap_iface->bss[0];
  981. wps = hapd->wps;
  982. if (wpa_s->parent->conf->wps_nfc_dh_pubkey == NULL ||
  983. wpa_s->parent->conf->wps_nfc_dh_privkey == NULL) {
  984. wpa_printf(MSG_DEBUG, "P2P: No NFC DH key known");
  985. return -1;
  986. }
  987. dh5_free(wps->dh_ctx);
  988. wpabuf_free(wps->dh_pubkey);
  989. wpabuf_free(wps->dh_privkey);
  990. wps->dh_privkey = wpabuf_dup(
  991. wpa_s->parent->conf->wps_nfc_dh_privkey);
  992. wps->dh_pubkey = wpabuf_dup(
  993. wpa_s->parent->conf->wps_nfc_dh_pubkey);
  994. if (wps->dh_privkey == NULL || wps->dh_pubkey == NULL) {
  995. wps->dh_ctx = NULL;
  996. wpabuf_free(wps->dh_pubkey);
  997. wps->dh_pubkey = NULL;
  998. wpabuf_free(wps->dh_privkey);
  999. wps->dh_privkey = NULL;
  1000. return -1;
  1001. }
  1002. wps->dh_ctx = dh5_init_fixed(wps->dh_privkey, wps->dh_pubkey);
  1003. if (wps->dh_ctx == NULL)
  1004. return -1;
  1005. return wps_registrar_add_nfc_pw_token(hapd->wps->registrar, pubkey_hash,
  1006. pw_id,
  1007. pw ? wpabuf_head(pw) : NULL,
  1008. pw ? wpabuf_len(pw) : 0, 1);
  1009. }
  1010. #endif /* CONFIG_WPS_NFC */