ap.c 31 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211
  1. /*
  2. * WPA Supplicant - Basic AP mode support routines
  3. * Copyright (c) 2003-2009, Jouni Malinen <j@w1.fi>
  4. * Copyright (c) 2009, Atheros Communications
  5. *
  6. * This software may be distributed under the terms of the BSD license.
  7. * See README for more details.
  8. */
  9. #include "utils/includes.h"
  10. #include "utils/common.h"
  11. #include "utils/eloop.h"
  12. #include "utils/uuid.h"
  13. #include "common/ieee802_11_defs.h"
  14. #include "common/wpa_ctrl.h"
  15. #include "eapol_supp/eapol_supp_sm.h"
  16. #include "crypto/dh_group5.h"
  17. #include "ap/hostapd.h"
  18. #include "ap/ap_config.h"
  19. #include "ap/ap_drv_ops.h"
  20. #ifdef NEED_AP_MLME
  21. #include "ap/ieee802_11.h"
  22. #endif /* NEED_AP_MLME */
  23. #include "ap/beacon.h"
  24. #include "ap/ieee802_1x.h"
  25. #include "ap/wps_hostapd.h"
  26. #include "ap/ctrl_iface_ap.h"
  27. #include "wps/wps.h"
  28. #include "common/ieee802_11_defs.h"
  29. #include "config_ssid.h"
  30. #include "config.h"
  31. #include "wpa_supplicant_i.h"
  32. #include "driver_i.h"
  33. #include "p2p_supplicant.h"
  34. #include "ap.h"
  35. #include "ap/sta_info.h"
  36. #include "notify.h"
  37. #ifdef CONFIG_WPS
  38. static void wpas_wps_ap_pin_timeout(void *eloop_data, void *user_ctx);
  39. #endif /* CONFIG_WPS */
  40. #ifdef CONFIG_IEEE80211N
  41. static void wpas_conf_ap_vht(struct wpa_supplicant *wpa_s,
  42. struct hostapd_config *conf,
  43. struct hostapd_hw_modes *mode)
  44. {
  45. u8 center_chan = 0;
  46. u8 channel = conf->channel;
  47. if (!conf->secondary_channel)
  48. goto no_vht;
  49. center_chan = wpas_p2p_get_vht80_center(wpa_s, mode, channel);
  50. if (!center_chan)
  51. goto no_vht;
  52. /* Use 80 MHz channel */
  53. conf->vht_oper_chwidth = 1;
  54. conf->vht_oper_centr_freq_seg0_idx = center_chan;
  55. return;
  56. no_vht:
  57. conf->vht_oper_centr_freq_seg0_idx =
  58. channel + conf->secondary_channel * 2;
  59. }
  60. #endif /* CONFIG_IEEE80211N */
  61. static int wpa_supplicant_conf_ap(struct wpa_supplicant *wpa_s,
  62. struct wpa_ssid *ssid,
  63. struct hostapd_config *conf)
  64. {
  65. struct hostapd_bss_config *bss = conf->bss[0];
  66. conf->driver = wpa_s->driver;
  67. os_strlcpy(bss->iface, wpa_s->ifname, sizeof(bss->iface));
  68. conf->hw_mode = ieee80211_freq_to_chan(ssid->frequency,
  69. &conf->channel);
  70. if (conf->hw_mode == NUM_HOSTAPD_MODES) {
  71. wpa_printf(MSG_ERROR, "Unsupported AP mode frequency: %d MHz",
  72. ssid->frequency);
  73. return -1;
  74. }
  75. /* TODO: enable HT40 if driver supports it;
  76. * drop to 11b if driver does not support 11g */
  77. #ifdef CONFIG_IEEE80211N
  78. /*
  79. * Enable HT20 if the driver supports it, by setting conf->ieee80211n
  80. * and a mask of allowed capabilities within conf->ht_capab.
  81. * Using default config settings for: conf->ht_op_mode_fixed,
  82. * conf->secondary_channel, conf->require_ht
  83. */
  84. if (wpa_s->hw.modes) {
  85. struct hostapd_hw_modes *mode = NULL;
  86. int i, no_ht = 0;
  87. for (i = 0; i < wpa_s->hw.num_modes; i++) {
  88. if (wpa_s->hw.modes[i].mode == conf->hw_mode) {
  89. mode = &wpa_s->hw.modes[i];
  90. break;
  91. }
  92. }
  93. #ifdef CONFIG_HT_OVERRIDES
  94. if (ssid->disable_ht) {
  95. conf->ieee80211n = 0;
  96. conf->ht_capab = 0;
  97. no_ht = 1;
  98. }
  99. #endif /* CONFIG_HT_OVERRIDES */
  100. if (!no_ht && mode && mode->ht_capab) {
  101. conf->ieee80211n = 1;
  102. #ifdef CONFIG_P2P
  103. if (conf->hw_mode == HOSTAPD_MODE_IEEE80211A &&
  104. (mode->ht_capab &
  105. HT_CAP_INFO_SUPP_CHANNEL_WIDTH_SET) &&
  106. ssid->ht40)
  107. conf->secondary_channel =
  108. wpas_p2p_get_ht40_mode(wpa_s, mode,
  109. conf->channel);
  110. if (conf->secondary_channel)
  111. conf->ht_capab |=
  112. HT_CAP_INFO_SUPP_CHANNEL_WIDTH_SET;
  113. #endif /* CONFIG_P2P */
  114. /*
  115. * white-list capabilities that won't cause issues
  116. * to connecting stations, while leaving the current
  117. * capabilities intact (currently disabled SMPS).
  118. */
  119. conf->ht_capab |= mode->ht_capab &
  120. (HT_CAP_INFO_GREEN_FIELD |
  121. HT_CAP_INFO_SHORT_GI20MHZ |
  122. HT_CAP_INFO_SHORT_GI40MHZ |
  123. HT_CAP_INFO_RX_STBC_MASK |
  124. HT_CAP_INFO_MAX_AMSDU_SIZE);
  125. if (mode->vht_capab && ssid->vht) {
  126. conf->ieee80211ac = 1;
  127. wpas_conf_ap_vht(wpa_s, conf, mode);
  128. }
  129. }
  130. }
  131. #endif /* CONFIG_IEEE80211N */
  132. #ifdef CONFIG_P2P
  133. if (conf->hw_mode == HOSTAPD_MODE_IEEE80211G &&
  134. (ssid->mode == WPAS_MODE_P2P_GO ||
  135. ssid->mode == WPAS_MODE_P2P_GROUP_FORMATION)) {
  136. /* Remove 802.11b rates from supported and basic rate sets */
  137. int *list = os_malloc(4 * sizeof(int));
  138. if (list) {
  139. list[0] = 60;
  140. list[1] = 120;
  141. list[2] = 240;
  142. list[3] = -1;
  143. }
  144. conf->basic_rates = list;
  145. list = os_malloc(9 * sizeof(int));
  146. if (list) {
  147. list[0] = 60;
  148. list[1] = 90;
  149. list[2] = 120;
  150. list[3] = 180;
  151. list[4] = 240;
  152. list[5] = 360;
  153. list[6] = 480;
  154. list[7] = 540;
  155. list[8] = -1;
  156. }
  157. conf->supported_rates = list;
  158. }
  159. bss->isolate = !wpa_s->conf->p2p_intra_bss;
  160. bss->force_per_enrollee_psk = wpa_s->global->p2p_per_sta_psk;
  161. if (ssid->p2p_group) {
  162. os_memcpy(bss->ip_addr_go, wpa_s->parent->conf->ip_addr_go, 4);
  163. os_memcpy(bss->ip_addr_mask, wpa_s->parent->conf->ip_addr_mask,
  164. 4);
  165. os_memcpy(bss->ip_addr_start,
  166. wpa_s->parent->conf->ip_addr_start, 4);
  167. os_memcpy(bss->ip_addr_end, wpa_s->parent->conf->ip_addr_end,
  168. 4);
  169. }
  170. #endif /* CONFIG_P2P */
  171. if (ssid->ssid_len == 0) {
  172. wpa_printf(MSG_ERROR, "No SSID configured for AP mode");
  173. return -1;
  174. }
  175. os_memcpy(bss->ssid.ssid, ssid->ssid, ssid->ssid_len);
  176. bss->ssid.ssid_len = ssid->ssid_len;
  177. bss->ssid.ssid_set = 1;
  178. bss->ignore_broadcast_ssid = ssid->ignore_broadcast_ssid;
  179. if (ssid->auth_alg)
  180. bss->auth_algs = ssid->auth_alg;
  181. if (wpa_key_mgmt_wpa_psk(ssid->key_mgmt))
  182. bss->wpa = ssid->proto;
  183. bss->wpa_key_mgmt = ssid->key_mgmt;
  184. bss->wpa_pairwise = ssid->pairwise_cipher;
  185. if (ssid->psk_set) {
  186. os_free(bss->ssid.wpa_psk);
  187. bss->ssid.wpa_psk = os_zalloc(sizeof(struct hostapd_wpa_psk));
  188. if (bss->ssid.wpa_psk == NULL)
  189. return -1;
  190. os_memcpy(bss->ssid.wpa_psk->psk, ssid->psk, PMK_LEN);
  191. bss->ssid.wpa_psk->group = 1;
  192. } else if (ssid->passphrase) {
  193. bss->ssid.wpa_passphrase = os_strdup(ssid->passphrase);
  194. } else if (ssid->wep_key_len[0] || ssid->wep_key_len[1] ||
  195. ssid->wep_key_len[2] || ssid->wep_key_len[3]) {
  196. struct hostapd_wep_keys *wep = &bss->ssid.wep;
  197. int i;
  198. for (i = 0; i < NUM_WEP_KEYS; i++) {
  199. if (ssid->wep_key_len[i] == 0)
  200. continue;
  201. wep->key[i] = os_malloc(ssid->wep_key_len[i]);
  202. if (wep->key[i] == NULL)
  203. return -1;
  204. os_memcpy(wep->key[i], ssid->wep_key[i],
  205. ssid->wep_key_len[i]);
  206. wep->len[i] = ssid->wep_key_len[i];
  207. }
  208. wep->idx = ssid->wep_tx_keyidx;
  209. wep->keys_set = 1;
  210. }
  211. if (ssid->ap_max_inactivity)
  212. bss->ap_max_inactivity = ssid->ap_max_inactivity;
  213. if (ssid->dtim_period)
  214. bss->dtim_period = ssid->dtim_period;
  215. else if (wpa_s->conf->dtim_period)
  216. bss->dtim_period = wpa_s->conf->dtim_period;
  217. if (ssid->beacon_int)
  218. conf->beacon_int = ssid->beacon_int;
  219. else if (wpa_s->conf->beacon_int)
  220. conf->beacon_int = wpa_s->conf->beacon_int;
  221. if ((bss->wpa & 2) && bss->rsn_pairwise == 0)
  222. bss->rsn_pairwise = bss->wpa_pairwise;
  223. bss->wpa_group = wpa_select_ap_group_cipher(bss->wpa, bss->wpa_pairwise,
  224. bss->rsn_pairwise);
  225. if (bss->wpa && bss->ieee802_1x)
  226. bss->ssid.security_policy = SECURITY_WPA;
  227. else if (bss->wpa)
  228. bss->ssid.security_policy = SECURITY_WPA_PSK;
  229. else if (bss->ieee802_1x) {
  230. int cipher = WPA_CIPHER_NONE;
  231. bss->ssid.security_policy = SECURITY_IEEE_802_1X;
  232. bss->ssid.wep.default_len = bss->default_wep_key_len;
  233. if (bss->default_wep_key_len)
  234. cipher = bss->default_wep_key_len >= 13 ?
  235. WPA_CIPHER_WEP104 : WPA_CIPHER_WEP40;
  236. bss->wpa_group = cipher;
  237. bss->wpa_pairwise = cipher;
  238. bss->rsn_pairwise = cipher;
  239. } else if (bss->ssid.wep.keys_set) {
  240. int cipher = WPA_CIPHER_WEP40;
  241. if (bss->ssid.wep.len[0] >= 13)
  242. cipher = WPA_CIPHER_WEP104;
  243. bss->ssid.security_policy = SECURITY_STATIC_WEP;
  244. bss->wpa_group = cipher;
  245. bss->wpa_pairwise = cipher;
  246. bss->rsn_pairwise = cipher;
  247. } else {
  248. bss->ssid.security_policy = SECURITY_PLAINTEXT;
  249. bss->wpa_group = WPA_CIPHER_NONE;
  250. bss->wpa_pairwise = WPA_CIPHER_NONE;
  251. bss->rsn_pairwise = WPA_CIPHER_NONE;
  252. }
  253. if (bss->wpa_group_rekey < 86400 && (bss->wpa & 2) &&
  254. (bss->wpa_group == WPA_CIPHER_CCMP ||
  255. bss->wpa_group == WPA_CIPHER_GCMP ||
  256. bss->wpa_group == WPA_CIPHER_CCMP_256 ||
  257. bss->wpa_group == WPA_CIPHER_GCMP_256)) {
  258. /*
  259. * Strong ciphers do not need frequent rekeying, so increase
  260. * the default GTK rekeying period to 24 hours.
  261. */
  262. bss->wpa_group_rekey = 86400;
  263. }
  264. #ifdef CONFIG_WPS
  265. /*
  266. * Enable WPS by default for open and WPA/WPA2-Personal network, but
  267. * require user interaction to actually use it. Only the internal
  268. * Registrar is supported.
  269. */
  270. if (bss->ssid.security_policy != SECURITY_WPA_PSK &&
  271. bss->ssid.security_policy != SECURITY_PLAINTEXT)
  272. goto no_wps;
  273. #ifdef CONFIG_WPS2
  274. if (bss->ssid.security_policy == SECURITY_WPA_PSK &&
  275. (!(bss->rsn_pairwise & WPA_CIPHER_CCMP) || !(bss->wpa & 2)))
  276. goto no_wps; /* WPS2 does not allow WPA/TKIP-only
  277. * configuration */
  278. #endif /* CONFIG_WPS2 */
  279. bss->eap_server = 1;
  280. if (!ssid->ignore_broadcast_ssid)
  281. bss->wps_state = 2;
  282. bss->ap_setup_locked = 2;
  283. if (wpa_s->conf->config_methods)
  284. bss->config_methods = os_strdup(wpa_s->conf->config_methods);
  285. os_memcpy(bss->device_type, wpa_s->conf->device_type,
  286. WPS_DEV_TYPE_LEN);
  287. if (wpa_s->conf->device_name) {
  288. bss->device_name = os_strdup(wpa_s->conf->device_name);
  289. bss->friendly_name = os_strdup(wpa_s->conf->device_name);
  290. }
  291. if (wpa_s->conf->manufacturer)
  292. bss->manufacturer = os_strdup(wpa_s->conf->manufacturer);
  293. if (wpa_s->conf->model_name)
  294. bss->model_name = os_strdup(wpa_s->conf->model_name);
  295. if (wpa_s->conf->model_number)
  296. bss->model_number = os_strdup(wpa_s->conf->model_number);
  297. if (wpa_s->conf->serial_number)
  298. bss->serial_number = os_strdup(wpa_s->conf->serial_number);
  299. if (is_nil_uuid(wpa_s->conf->uuid))
  300. os_memcpy(bss->uuid, wpa_s->wps->uuid, WPS_UUID_LEN);
  301. else
  302. os_memcpy(bss->uuid, wpa_s->conf->uuid, WPS_UUID_LEN);
  303. os_memcpy(bss->os_version, wpa_s->conf->os_version, 4);
  304. bss->pbc_in_m1 = wpa_s->conf->pbc_in_m1;
  305. no_wps:
  306. #endif /* CONFIG_WPS */
  307. if (wpa_s->max_stations &&
  308. wpa_s->max_stations < wpa_s->conf->max_num_sta)
  309. bss->max_num_sta = wpa_s->max_stations;
  310. else
  311. bss->max_num_sta = wpa_s->conf->max_num_sta;
  312. bss->disassoc_low_ack = wpa_s->conf->disassoc_low_ack;
  313. if (wpa_s->conf->ap_vendor_elements) {
  314. bss->vendor_elements =
  315. wpabuf_dup(wpa_s->conf->ap_vendor_elements);
  316. }
  317. return 0;
  318. }
  319. static void ap_public_action_rx(void *ctx, const u8 *buf, size_t len, int freq)
  320. {
  321. #ifdef CONFIG_P2P
  322. struct wpa_supplicant *wpa_s = ctx;
  323. const struct ieee80211_mgmt *mgmt;
  324. size_t hdr_len;
  325. mgmt = (const struct ieee80211_mgmt *) buf;
  326. hdr_len = (const u8 *) &mgmt->u.action.u.vs_public_action.action - buf;
  327. if (hdr_len > len)
  328. return;
  329. if (mgmt->u.action.category != WLAN_ACTION_PUBLIC)
  330. return;
  331. wpas_p2p_rx_action(wpa_s, mgmt->da, mgmt->sa, mgmt->bssid,
  332. mgmt->u.action.category,
  333. &mgmt->u.action.u.vs_public_action.action,
  334. len - hdr_len, freq);
  335. #endif /* CONFIG_P2P */
  336. }
  337. static void ap_wps_event_cb(void *ctx, enum wps_event event,
  338. union wps_event_data *data)
  339. {
  340. #ifdef CONFIG_P2P
  341. struct wpa_supplicant *wpa_s = ctx;
  342. if (event == WPS_EV_FAIL) {
  343. struct wps_event_fail *fail = &data->fail;
  344. if (wpa_s->parent && wpa_s->parent != wpa_s &&
  345. wpa_s == wpa_s->global->p2p_group_formation) {
  346. /*
  347. * src/ap/wps_hostapd.c has already sent this on the
  348. * main interface, so only send on the parent interface
  349. * here if needed.
  350. */
  351. wpa_msg(wpa_s->parent, MSG_INFO, WPS_EVENT_FAIL
  352. "msg=%d config_error=%d",
  353. fail->msg, fail->config_error);
  354. }
  355. wpas_p2p_wps_failed(wpa_s, fail);
  356. }
  357. #endif /* CONFIG_P2P */
  358. }
  359. static void ap_sta_authorized_cb(void *ctx, const u8 *mac_addr,
  360. int authorized, const u8 *p2p_dev_addr)
  361. {
  362. wpas_notify_sta_authorized(ctx, mac_addr, authorized, p2p_dev_addr);
  363. }
  364. #ifdef CONFIG_P2P
  365. static void ap_new_psk_cb(void *ctx, const u8 *mac_addr, const u8 *p2p_dev_addr,
  366. const u8 *psk, size_t psk_len)
  367. {
  368. struct wpa_supplicant *wpa_s = ctx;
  369. if (wpa_s->ap_iface == NULL || wpa_s->current_ssid == NULL)
  370. return;
  371. wpas_p2p_new_psk_cb(wpa_s, mac_addr, p2p_dev_addr, psk, psk_len);
  372. }
  373. #endif /* CONFIG_P2P */
  374. static int ap_vendor_action_rx(void *ctx, const u8 *buf, size_t len, int freq)
  375. {
  376. #ifdef CONFIG_P2P
  377. struct wpa_supplicant *wpa_s = ctx;
  378. const struct ieee80211_mgmt *mgmt;
  379. size_t hdr_len;
  380. mgmt = (const struct ieee80211_mgmt *) buf;
  381. hdr_len = (const u8 *) &mgmt->u.action.u.vs_public_action.action - buf;
  382. if (hdr_len > len)
  383. return -1;
  384. wpas_p2p_rx_action(wpa_s, mgmt->da, mgmt->sa, mgmt->bssid,
  385. mgmt->u.action.category,
  386. &mgmt->u.action.u.vs_public_action.action,
  387. len - hdr_len, freq);
  388. #endif /* CONFIG_P2P */
  389. return 0;
  390. }
  391. static int ap_probe_req_rx(void *ctx, const u8 *sa, const u8 *da,
  392. const u8 *bssid, const u8 *ie, size_t ie_len,
  393. int ssi_signal)
  394. {
  395. #ifdef CONFIG_P2P
  396. struct wpa_supplicant *wpa_s = ctx;
  397. return wpas_p2p_probe_req_rx(wpa_s, sa, da, bssid, ie, ie_len,
  398. ssi_signal);
  399. #else /* CONFIG_P2P */
  400. return 0;
  401. #endif /* CONFIG_P2P */
  402. }
  403. static void ap_wps_reg_success_cb(void *ctx, const u8 *mac_addr,
  404. const u8 *uuid_e)
  405. {
  406. #ifdef CONFIG_P2P
  407. struct wpa_supplicant *wpa_s = ctx;
  408. wpas_p2p_wps_success(wpa_s, mac_addr, 1);
  409. #endif /* CONFIG_P2P */
  410. }
  411. static void wpas_ap_configured_cb(void *ctx)
  412. {
  413. struct wpa_supplicant *wpa_s = ctx;
  414. wpa_supplicant_set_state(wpa_s, WPA_COMPLETED);
  415. if (wpa_s->ap_configured_cb)
  416. wpa_s->ap_configured_cb(wpa_s->ap_configured_cb_ctx,
  417. wpa_s->ap_configured_cb_data);
  418. }
  419. int wpa_supplicant_create_ap(struct wpa_supplicant *wpa_s,
  420. struct wpa_ssid *ssid)
  421. {
  422. struct wpa_driver_associate_params params;
  423. struct hostapd_iface *hapd_iface;
  424. struct hostapd_config *conf;
  425. size_t i;
  426. if (ssid->ssid == NULL || ssid->ssid_len == 0) {
  427. wpa_printf(MSG_ERROR, "No SSID configured for AP mode");
  428. return -1;
  429. }
  430. wpa_supplicant_ap_deinit(wpa_s);
  431. wpa_printf(MSG_DEBUG, "Setting up AP (SSID='%s')",
  432. wpa_ssid_txt(ssid->ssid, ssid->ssid_len));
  433. os_memset(&params, 0, sizeof(params));
  434. params.ssid = ssid->ssid;
  435. params.ssid_len = ssid->ssid_len;
  436. switch (ssid->mode) {
  437. case WPAS_MODE_AP:
  438. case WPAS_MODE_P2P_GO:
  439. case WPAS_MODE_P2P_GROUP_FORMATION:
  440. params.mode = IEEE80211_MODE_AP;
  441. break;
  442. default:
  443. return -1;
  444. }
  445. if (ssid->frequency == 0)
  446. ssid->frequency = 2462; /* default channel 11 */
  447. params.freq = ssid->frequency;
  448. params.wpa_proto = ssid->proto;
  449. if (ssid->key_mgmt & WPA_KEY_MGMT_PSK)
  450. wpa_s->key_mgmt = WPA_KEY_MGMT_PSK;
  451. else
  452. wpa_s->key_mgmt = WPA_KEY_MGMT_NONE;
  453. params.key_mgmt_suite = wpa_s->key_mgmt;
  454. wpa_s->pairwise_cipher = wpa_pick_pairwise_cipher(ssid->pairwise_cipher,
  455. 1);
  456. if (wpa_s->pairwise_cipher < 0) {
  457. wpa_printf(MSG_WARNING, "WPA: Failed to select pairwise "
  458. "cipher.");
  459. return -1;
  460. }
  461. params.pairwise_suite = wpa_s->pairwise_cipher;
  462. params.group_suite = params.pairwise_suite;
  463. #ifdef CONFIG_P2P
  464. if (ssid->mode == WPAS_MODE_P2P_GO ||
  465. ssid->mode == WPAS_MODE_P2P_GROUP_FORMATION)
  466. params.p2p = 1;
  467. #endif /* CONFIG_P2P */
  468. if (wpa_s->parent->set_ap_uapsd)
  469. params.uapsd = wpa_s->parent->ap_uapsd;
  470. else if (params.p2p && (wpa_s->drv_flags & WPA_DRIVER_FLAGS_AP_UAPSD))
  471. params.uapsd = 1; /* mandatory for P2P GO */
  472. else
  473. params.uapsd = -1;
  474. if (wpa_drv_associate(wpa_s, &params) < 0) {
  475. wpa_msg(wpa_s, MSG_INFO, "Failed to start AP functionality");
  476. return -1;
  477. }
  478. wpa_s->ap_iface = hapd_iface = os_zalloc(sizeof(*wpa_s->ap_iface));
  479. if (hapd_iface == NULL)
  480. return -1;
  481. hapd_iface->owner = wpa_s;
  482. hapd_iface->drv_flags = wpa_s->drv_flags;
  483. hapd_iface->probe_resp_offloads = wpa_s->probe_resp_offloads;
  484. hapd_iface->extended_capa = wpa_s->extended_capa;
  485. hapd_iface->extended_capa_mask = wpa_s->extended_capa_mask;
  486. hapd_iface->extended_capa_len = wpa_s->extended_capa_len;
  487. wpa_s->ap_iface->conf = conf = hostapd_config_defaults();
  488. if (conf == NULL) {
  489. wpa_supplicant_ap_deinit(wpa_s);
  490. return -1;
  491. }
  492. os_memcpy(wpa_s->ap_iface->conf->wmm_ac_params,
  493. wpa_s->conf->wmm_ac_params,
  494. sizeof(wpa_s->conf->wmm_ac_params));
  495. if (params.uapsd > 0) {
  496. conf->bss[0]->wmm_enabled = 1;
  497. conf->bss[0]->wmm_uapsd = 1;
  498. }
  499. if (wpa_supplicant_conf_ap(wpa_s, ssid, conf)) {
  500. wpa_printf(MSG_ERROR, "Failed to create AP configuration");
  501. wpa_supplicant_ap_deinit(wpa_s);
  502. return -1;
  503. }
  504. #ifdef CONFIG_P2P
  505. if (ssid->mode == WPAS_MODE_P2P_GO)
  506. conf->bss[0]->p2p = P2P_ENABLED | P2P_GROUP_OWNER;
  507. else if (ssid->mode == WPAS_MODE_P2P_GROUP_FORMATION)
  508. conf->bss[0]->p2p = P2P_ENABLED | P2P_GROUP_OWNER |
  509. P2P_GROUP_FORMATION;
  510. #endif /* CONFIG_P2P */
  511. hapd_iface->num_bss = conf->num_bss;
  512. hapd_iface->bss = os_calloc(conf->num_bss,
  513. sizeof(struct hostapd_data *));
  514. if (hapd_iface->bss == NULL) {
  515. wpa_supplicant_ap_deinit(wpa_s);
  516. return -1;
  517. }
  518. for (i = 0; i < conf->num_bss; i++) {
  519. hapd_iface->bss[i] =
  520. hostapd_alloc_bss_data(hapd_iface, conf,
  521. conf->bss[i]);
  522. if (hapd_iface->bss[i] == NULL) {
  523. wpa_supplicant_ap_deinit(wpa_s);
  524. return -1;
  525. }
  526. hapd_iface->bss[i]->msg_ctx = wpa_s;
  527. hapd_iface->bss[i]->msg_ctx_parent = wpa_s->parent;
  528. hapd_iface->bss[i]->public_action_cb = ap_public_action_rx;
  529. hapd_iface->bss[i]->public_action_cb_ctx = wpa_s;
  530. hapd_iface->bss[i]->vendor_action_cb = ap_vendor_action_rx;
  531. hapd_iface->bss[i]->vendor_action_cb_ctx = wpa_s;
  532. hostapd_register_probereq_cb(hapd_iface->bss[i],
  533. ap_probe_req_rx, wpa_s);
  534. hapd_iface->bss[i]->wps_reg_success_cb = ap_wps_reg_success_cb;
  535. hapd_iface->bss[i]->wps_reg_success_cb_ctx = wpa_s;
  536. hapd_iface->bss[i]->wps_event_cb = ap_wps_event_cb;
  537. hapd_iface->bss[i]->wps_event_cb_ctx = wpa_s;
  538. hapd_iface->bss[i]->sta_authorized_cb = ap_sta_authorized_cb;
  539. hapd_iface->bss[i]->sta_authorized_cb_ctx = wpa_s;
  540. #ifdef CONFIG_P2P
  541. hapd_iface->bss[i]->new_psk_cb = ap_new_psk_cb;
  542. hapd_iface->bss[i]->new_psk_cb_ctx = wpa_s;
  543. hapd_iface->bss[i]->p2p = wpa_s->global->p2p;
  544. hapd_iface->bss[i]->p2p_group = wpas_p2p_group_init(wpa_s,
  545. ssid);
  546. #endif /* CONFIG_P2P */
  547. hapd_iface->bss[i]->setup_complete_cb = wpas_ap_configured_cb;
  548. hapd_iface->bss[i]->setup_complete_cb_ctx = wpa_s;
  549. }
  550. os_memcpy(hapd_iface->bss[0]->own_addr, wpa_s->own_addr, ETH_ALEN);
  551. hapd_iface->bss[0]->driver = wpa_s->driver;
  552. hapd_iface->bss[0]->drv_priv = wpa_s->drv_priv;
  553. wpa_s->current_ssid = ssid;
  554. eapol_sm_notify_config(wpa_s->eapol, NULL, NULL);
  555. os_memcpy(wpa_s->bssid, wpa_s->own_addr, ETH_ALEN);
  556. wpa_s->assoc_freq = ssid->frequency;
  557. if (hostapd_setup_interface(wpa_s->ap_iface)) {
  558. wpa_printf(MSG_ERROR, "Failed to initialize AP interface");
  559. wpa_supplicant_ap_deinit(wpa_s);
  560. return -1;
  561. }
  562. return 0;
  563. }
  564. void wpa_supplicant_ap_deinit(struct wpa_supplicant *wpa_s)
  565. {
  566. #ifdef CONFIG_WPS
  567. eloop_cancel_timeout(wpas_wps_ap_pin_timeout, wpa_s, NULL);
  568. #endif /* CONFIG_WPS */
  569. if (wpa_s->ap_iface == NULL)
  570. return;
  571. wpa_s->current_ssid = NULL;
  572. eapol_sm_notify_config(wpa_s->eapol, NULL, NULL);
  573. wpa_s->assoc_freq = 0;
  574. #ifdef CONFIG_P2P
  575. if (wpa_s->ap_iface->bss)
  576. wpa_s->ap_iface->bss[0]->p2p_group = NULL;
  577. wpas_p2p_group_deinit(wpa_s);
  578. #endif /* CONFIG_P2P */
  579. wpa_s->ap_iface->driver_ap_teardown =
  580. !!(wpa_s->drv_flags & WPA_DRIVER_FLAGS_AP_TEARDOWN_SUPPORT);
  581. hostapd_interface_deinit(wpa_s->ap_iface);
  582. hostapd_interface_free(wpa_s->ap_iface);
  583. wpa_s->ap_iface = NULL;
  584. wpa_drv_deinit_ap(wpa_s);
  585. }
  586. void ap_tx_status(void *ctx, const u8 *addr,
  587. const u8 *buf, size_t len, int ack)
  588. {
  589. #ifdef NEED_AP_MLME
  590. struct wpa_supplicant *wpa_s = ctx;
  591. hostapd_tx_status(wpa_s->ap_iface->bss[0], addr, buf, len, ack);
  592. #endif /* NEED_AP_MLME */
  593. }
  594. void ap_eapol_tx_status(void *ctx, const u8 *dst,
  595. const u8 *data, size_t len, int ack)
  596. {
  597. #ifdef NEED_AP_MLME
  598. struct wpa_supplicant *wpa_s = ctx;
  599. if (!wpa_s->ap_iface)
  600. return;
  601. hostapd_tx_status(wpa_s->ap_iface->bss[0], dst, data, len, ack);
  602. #endif /* NEED_AP_MLME */
  603. }
  604. void ap_client_poll_ok(void *ctx, const u8 *addr)
  605. {
  606. #ifdef NEED_AP_MLME
  607. struct wpa_supplicant *wpa_s = ctx;
  608. if (wpa_s->ap_iface)
  609. hostapd_client_poll_ok(wpa_s->ap_iface->bss[0], addr);
  610. #endif /* NEED_AP_MLME */
  611. }
  612. void ap_rx_from_unknown_sta(void *ctx, const u8 *addr, int wds)
  613. {
  614. #ifdef NEED_AP_MLME
  615. struct wpa_supplicant *wpa_s = ctx;
  616. ieee802_11_rx_from_unknown(wpa_s->ap_iface->bss[0], addr, wds);
  617. #endif /* NEED_AP_MLME */
  618. }
  619. void ap_mgmt_rx(void *ctx, struct rx_mgmt *rx_mgmt)
  620. {
  621. #ifdef NEED_AP_MLME
  622. struct wpa_supplicant *wpa_s = ctx;
  623. struct hostapd_frame_info fi;
  624. os_memset(&fi, 0, sizeof(fi));
  625. fi.datarate = rx_mgmt->datarate;
  626. fi.ssi_signal = rx_mgmt->ssi_signal;
  627. ieee802_11_mgmt(wpa_s->ap_iface->bss[0], rx_mgmt->frame,
  628. rx_mgmt->frame_len, &fi);
  629. #endif /* NEED_AP_MLME */
  630. }
  631. void ap_mgmt_tx_cb(void *ctx, const u8 *buf, size_t len, u16 stype, int ok)
  632. {
  633. #ifdef NEED_AP_MLME
  634. struct wpa_supplicant *wpa_s = ctx;
  635. ieee802_11_mgmt_cb(wpa_s->ap_iface->bss[0], buf, len, stype, ok);
  636. #endif /* NEED_AP_MLME */
  637. }
  638. void wpa_supplicant_ap_rx_eapol(struct wpa_supplicant *wpa_s,
  639. const u8 *src_addr, const u8 *buf, size_t len)
  640. {
  641. ieee802_1x_receive(wpa_s->ap_iface->bss[0], src_addr, buf, len);
  642. }
  643. #ifdef CONFIG_WPS
  644. int wpa_supplicant_ap_wps_pbc(struct wpa_supplicant *wpa_s, const u8 *bssid,
  645. const u8 *p2p_dev_addr)
  646. {
  647. if (!wpa_s->ap_iface)
  648. return -1;
  649. return hostapd_wps_button_pushed(wpa_s->ap_iface->bss[0],
  650. p2p_dev_addr);
  651. }
  652. int wpa_supplicant_ap_wps_cancel(struct wpa_supplicant *wpa_s)
  653. {
  654. struct wps_registrar *reg;
  655. int reg_sel = 0, wps_sta = 0;
  656. if (!wpa_s->ap_iface || !wpa_s->ap_iface->bss[0]->wps)
  657. return -1;
  658. reg = wpa_s->ap_iface->bss[0]->wps->registrar;
  659. reg_sel = wps_registrar_wps_cancel(reg);
  660. wps_sta = ap_for_each_sta(wpa_s->ap_iface->bss[0],
  661. ap_sta_wps_cancel, NULL);
  662. if (!reg_sel && !wps_sta) {
  663. wpa_printf(MSG_DEBUG, "No WPS operation in progress at this "
  664. "time");
  665. return -1;
  666. }
  667. /*
  668. * There are 2 cases to return wps cancel as success:
  669. * 1. When wps cancel was initiated but no connection has been
  670. * established with client yet.
  671. * 2. Client is in the middle of exchanging WPS messages.
  672. */
  673. return 0;
  674. }
  675. int wpa_supplicant_ap_wps_pin(struct wpa_supplicant *wpa_s, const u8 *bssid,
  676. const char *pin, char *buf, size_t buflen,
  677. int timeout)
  678. {
  679. int ret, ret_len = 0;
  680. if (!wpa_s->ap_iface)
  681. return -1;
  682. if (pin == NULL) {
  683. unsigned int rpin = wps_generate_pin();
  684. ret_len = os_snprintf(buf, buflen, "%08d", rpin);
  685. pin = buf;
  686. } else
  687. ret_len = os_snprintf(buf, buflen, "%s", pin);
  688. ret = hostapd_wps_add_pin(wpa_s->ap_iface->bss[0], bssid, "any", pin,
  689. timeout);
  690. if (ret)
  691. return -1;
  692. return ret_len;
  693. }
  694. static void wpas_wps_ap_pin_timeout(void *eloop_data, void *user_ctx)
  695. {
  696. struct wpa_supplicant *wpa_s = eloop_data;
  697. wpa_printf(MSG_DEBUG, "WPS: AP PIN timed out");
  698. wpas_wps_ap_pin_disable(wpa_s);
  699. }
  700. static void wpas_wps_ap_pin_enable(struct wpa_supplicant *wpa_s, int timeout)
  701. {
  702. struct hostapd_data *hapd;
  703. if (wpa_s->ap_iface == NULL)
  704. return;
  705. hapd = wpa_s->ap_iface->bss[0];
  706. wpa_printf(MSG_DEBUG, "WPS: Enabling AP PIN (timeout=%d)", timeout);
  707. hapd->ap_pin_failures = 0;
  708. eloop_cancel_timeout(wpas_wps_ap_pin_timeout, wpa_s, NULL);
  709. if (timeout > 0)
  710. eloop_register_timeout(timeout, 0,
  711. wpas_wps_ap_pin_timeout, wpa_s, NULL);
  712. }
  713. void wpas_wps_ap_pin_disable(struct wpa_supplicant *wpa_s)
  714. {
  715. struct hostapd_data *hapd;
  716. if (wpa_s->ap_iface == NULL)
  717. return;
  718. wpa_printf(MSG_DEBUG, "WPS: Disabling AP PIN");
  719. hapd = wpa_s->ap_iface->bss[0];
  720. os_free(hapd->conf->ap_pin);
  721. hapd->conf->ap_pin = NULL;
  722. eloop_cancel_timeout(wpas_wps_ap_pin_timeout, wpa_s, NULL);
  723. }
  724. const char * wpas_wps_ap_pin_random(struct wpa_supplicant *wpa_s, int timeout)
  725. {
  726. struct hostapd_data *hapd;
  727. unsigned int pin;
  728. char pin_txt[9];
  729. if (wpa_s->ap_iface == NULL)
  730. return NULL;
  731. hapd = wpa_s->ap_iface->bss[0];
  732. pin = wps_generate_pin();
  733. os_snprintf(pin_txt, sizeof(pin_txt), "%08u", pin);
  734. os_free(hapd->conf->ap_pin);
  735. hapd->conf->ap_pin = os_strdup(pin_txt);
  736. if (hapd->conf->ap_pin == NULL)
  737. return NULL;
  738. wpas_wps_ap_pin_enable(wpa_s, timeout);
  739. return hapd->conf->ap_pin;
  740. }
  741. const char * wpas_wps_ap_pin_get(struct wpa_supplicant *wpa_s)
  742. {
  743. struct hostapd_data *hapd;
  744. if (wpa_s->ap_iface == NULL)
  745. return NULL;
  746. hapd = wpa_s->ap_iface->bss[0];
  747. return hapd->conf->ap_pin;
  748. }
  749. int wpas_wps_ap_pin_set(struct wpa_supplicant *wpa_s, const char *pin,
  750. int timeout)
  751. {
  752. struct hostapd_data *hapd;
  753. char pin_txt[9];
  754. int ret;
  755. if (wpa_s->ap_iface == NULL)
  756. return -1;
  757. hapd = wpa_s->ap_iface->bss[0];
  758. ret = os_snprintf(pin_txt, sizeof(pin_txt), "%s", pin);
  759. if (ret < 0 || ret >= (int) sizeof(pin_txt))
  760. return -1;
  761. os_free(hapd->conf->ap_pin);
  762. hapd->conf->ap_pin = os_strdup(pin_txt);
  763. if (hapd->conf->ap_pin == NULL)
  764. return -1;
  765. wpas_wps_ap_pin_enable(wpa_s, timeout);
  766. return 0;
  767. }
  768. void wpa_supplicant_ap_pwd_auth_fail(struct wpa_supplicant *wpa_s)
  769. {
  770. struct hostapd_data *hapd;
  771. if (wpa_s->ap_iface == NULL)
  772. return;
  773. hapd = wpa_s->ap_iface->bss[0];
  774. /*
  775. * Registrar failed to prove its knowledge of the AP PIN. Disable AP
  776. * PIN if this happens multiple times to slow down brute force attacks.
  777. */
  778. hapd->ap_pin_failures++;
  779. wpa_printf(MSG_DEBUG, "WPS: AP PIN authentication failure number %u",
  780. hapd->ap_pin_failures);
  781. if (hapd->ap_pin_failures < 3)
  782. return;
  783. wpa_printf(MSG_DEBUG, "WPS: Disable AP PIN");
  784. hapd->ap_pin_failures = 0;
  785. os_free(hapd->conf->ap_pin);
  786. hapd->conf->ap_pin = NULL;
  787. }
  788. #ifdef CONFIG_WPS_NFC
  789. struct wpabuf * wpas_ap_wps_nfc_config_token(struct wpa_supplicant *wpa_s,
  790. int ndef)
  791. {
  792. struct hostapd_data *hapd;
  793. if (wpa_s->ap_iface == NULL)
  794. return NULL;
  795. hapd = wpa_s->ap_iface->bss[0];
  796. return hostapd_wps_nfc_config_token(hapd, ndef);
  797. }
  798. struct wpabuf * wpas_ap_wps_nfc_handover_sel(struct wpa_supplicant *wpa_s,
  799. int ndef)
  800. {
  801. struct hostapd_data *hapd;
  802. if (wpa_s->ap_iface == NULL)
  803. return NULL;
  804. hapd = wpa_s->ap_iface->bss[0];
  805. return hostapd_wps_nfc_hs_cr(hapd, ndef);
  806. }
  807. int wpas_ap_wps_nfc_report_handover(struct wpa_supplicant *wpa_s,
  808. const struct wpabuf *req,
  809. const struct wpabuf *sel)
  810. {
  811. struct hostapd_data *hapd;
  812. if (wpa_s->ap_iface == NULL)
  813. return -1;
  814. hapd = wpa_s->ap_iface->bss[0];
  815. return hostapd_wps_nfc_report_handover(hapd, req, sel);
  816. }
  817. #endif /* CONFIG_WPS_NFC */
  818. #endif /* CONFIG_WPS */
  819. #ifdef CONFIG_CTRL_IFACE
  820. int ap_ctrl_iface_sta_first(struct wpa_supplicant *wpa_s,
  821. char *buf, size_t buflen)
  822. {
  823. if (wpa_s->ap_iface == NULL)
  824. return -1;
  825. return hostapd_ctrl_iface_sta_first(wpa_s->ap_iface->bss[0],
  826. buf, buflen);
  827. }
  828. int ap_ctrl_iface_sta(struct wpa_supplicant *wpa_s, const char *txtaddr,
  829. char *buf, size_t buflen)
  830. {
  831. if (wpa_s->ap_iface == NULL)
  832. return -1;
  833. return hostapd_ctrl_iface_sta(wpa_s->ap_iface->bss[0], txtaddr,
  834. buf, buflen);
  835. }
  836. int ap_ctrl_iface_sta_next(struct wpa_supplicant *wpa_s, const char *txtaddr,
  837. char *buf, size_t buflen)
  838. {
  839. if (wpa_s->ap_iface == NULL)
  840. return -1;
  841. return hostapd_ctrl_iface_sta_next(wpa_s->ap_iface->bss[0], txtaddr,
  842. buf, buflen);
  843. }
  844. int ap_ctrl_iface_sta_disassociate(struct wpa_supplicant *wpa_s,
  845. const char *txtaddr)
  846. {
  847. if (wpa_s->ap_iface == NULL)
  848. return -1;
  849. return hostapd_ctrl_iface_disassociate(wpa_s->ap_iface->bss[0],
  850. txtaddr);
  851. }
  852. int ap_ctrl_iface_sta_deauthenticate(struct wpa_supplicant *wpa_s,
  853. const char *txtaddr)
  854. {
  855. if (wpa_s->ap_iface == NULL)
  856. return -1;
  857. return hostapd_ctrl_iface_deauthenticate(wpa_s->ap_iface->bss[0],
  858. txtaddr);
  859. }
  860. int ap_ctrl_iface_wpa_get_status(struct wpa_supplicant *wpa_s, char *buf,
  861. size_t buflen, int verbose)
  862. {
  863. char *pos = buf, *end = buf + buflen;
  864. int ret;
  865. struct hostapd_bss_config *conf;
  866. if (wpa_s->ap_iface == NULL)
  867. return -1;
  868. conf = wpa_s->ap_iface->bss[0]->conf;
  869. if (conf->wpa == 0)
  870. return 0;
  871. ret = os_snprintf(pos, end - pos,
  872. "pairwise_cipher=%s\n"
  873. "group_cipher=%s\n"
  874. "key_mgmt=%s\n",
  875. wpa_cipher_txt(conf->rsn_pairwise),
  876. wpa_cipher_txt(conf->wpa_group),
  877. wpa_key_mgmt_txt(conf->wpa_key_mgmt,
  878. conf->wpa));
  879. if (ret < 0 || ret >= end - pos)
  880. return pos - buf;
  881. pos += ret;
  882. return pos - buf;
  883. }
  884. #endif /* CONFIG_CTRL_IFACE */
  885. int wpa_supplicant_ap_update_beacon(struct wpa_supplicant *wpa_s)
  886. {
  887. struct hostapd_iface *iface = wpa_s->ap_iface;
  888. struct wpa_ssid *ssid = wpa_s->current_ssid;
  889. struct hostapd_data *hapd;
  890. if (ssid == NULL || wpa_s->ap_iface == NULL ||
  891. ssid->mode == WPAS_MODE_INFRA ||
  892. ssid->mode == WPAS_MODE_IBSS)
  893. return -1;
  894. #ifdef CONFIG_P2P
  895. if (ssid->mode == WPAS_MODE_P2P_GO)
  896. iface->conf->bss[0]->p2p = P2P_ENABLED | P2P_GROUP_OWNER;
  897. else if (ssid->mode == WPAS_MODE_P2P_GROUP_FORMATION)
  898. iface->conf->bss[0]->p2p = P2P_ENABLED | P2P_GROUP_OWNER |
  899. P2P_GROUP_FORMATION;
  900. #endif /* CONFIG_P2P */
  901. hapd = iface->bss[0];
  902. if (hapd->drv_priv == NULL)
  903. return -1;
  904. ieee802_11_set_beacons(iface);
  905. hostapd_set_ap_wps_ie(hapd);
  906. return 0;
  907. }
  908. int ap_switch_channel(struct wpa_supplicant *wpa_s,
  909. struct csa_settings *settings)
  910. {
  911. #ifdef NEED_AP_MLME
  912. if (!wpa_s->ap_iface || !wpa_s->ap_iface->bss[0])
  913. return -1;
  914. return hostapd_switch_channel(wpa_s->ap_iface->bss[0], settings);
  915. #else /* NEED_AP_MLME */
  916. return -1;
  917. #endif /* NEED_AP_MLME */
  918. }
  919. int ap_ctrl_iface_chanswitch(struct wpa_supplicant *wpa_s, const char *pos)
  920. {
  921. struct csa_settings settings;
  922. int ret = hostapd_parse_csa_settings(pos, &settings);
  923. if (ret)
  924. return ret;
  925. return ap_switch_channel(wpa_s, &settings);
  926. }
  927. void wpas_ap_ch_switch(struct wpa_supplicant *wpa_s, int freq, int ht,
  928. int offset, int width, int cf1, int cf2)
  929. {
  930. if (!wpa_s->ap_iface)
  931. return;
  932. wpa_s->assoc_freq = freq;
  933. hostapd_event_ch_switch(wpa_s->ap_iface->bss[0], freq, ht, offset, width, cf1, cf1);
  934. }
  935. int wpa_supplicant_ap_mac_addr_filter(struct wpa_supplicant *wpa_s,
  936. const u8 *addr)
  937. {
  938. struct hostapd_data *hapd;
  939. struct hostapd_bss_config *conf;
  940. if (!wpa_s->ap_iface)
  941. return -1;
  942. if (addr)
  943. wpa_printf(MSG_DEBUG, "AP: Set MAC address filter: " MACSTR,
  944. MAC2STR(addr));
  945. else
  946. wpa_printf(MSG_DEBUG, "AP: Clear MAC address filter");
  947. hapd = wpa_s->ap_iface->bss[0];
  948. conf = hapd->conf;
  949. os_free(conf->accept_mac);
  950. conf->accept_mac = NULL;
  951. conf->num_accept_mac = 0;
  952. os_free(conf->deny_mac);
  953. conf->deny_mac = NULL;
  954. conf->num_deny_mac = 0;
  955. if (addr == NULL) {
  956. conf->macaddr_acl = ACCEPT_UNLESS_DENIED;
  957. return 0;
  958. }
  959. conf->macaddr_acl = DENY_UNLESS_ACCEPTED;
  960. conf->accept_mac = os_zalloc(sizeof(struct mac_acl_entry));
  961. if (conf->accept_mac == NULL)
  962. return -1;
  963. os_memcpy(conf->accept_mac[0].addr, addr, ETH_ALEN);
  964. conf->num_accept_mac = 1;
  965. return 0;
  966. }
  967. #ifdef CONFIG_WPS_NFC
  968. int wpas_ap_wps_add_nfc_pw(struct wpa_supplicant *wpa_s, u16 pw_id,
  969. const struct wpabuf *pw, const u8 *pubkey_hash)
  970. {
  971. struct hostapd_data *hapd;
  972. struct wps_context *wps;
  973. if (!wpa_s->ap_iface)
  974. return -1;
  975. hapd = wpa_s->ap_iface->bss[0];
  976. wps = hapd->wps;
  977. if (wpa_s->parent->conf->wps_nfc_dh_pubkey == NULL ||
  978. wpa_s->parent->conf->wps_nfc_dh_privkey == NULL) {
  979. wpa_printf(MSG_DEBUG, "P2P: No NFC DH key known");
  980. return -1;
  981. }
  982. dh5_free(wps->dh_ctx);
  983. wpabuf_free(wps->dh_pubkey);
  984. wpabuf_free(wps->dh_privkey);
  985. wps->dh_privkey = wpabuf_dup(
  986. wpa_s->parent->conf->wps_nfc_dh_privkey);
  987. wps->dh_pubkey = wpabuf_dup(
  988. wpa_s->parent->conf->wps_nfc_dh_pubkey);
  989. if (wps->dh_privkey == NULL || wps->dh_pubkey == NULL) {
  990. wps->dh_ctx = NULL;
  991. wpabuf_free(wps->dh_pubkey);
  992. wps->dh_pubkey = NULL;
  993. wpabuf_free(wps->dh_privkey);
  994. wps->dh_privkey = NULL;
  995. return -1;
  996. }
  997. wps->dh_ctx = dh5_init_fixed(wps->dh_privkey, wps->dh_pubkey);
  998. if (wps->dh_ctx == NULL)
  999. return -1;
  1000. return wps_registrar_add_nfc_pw_token(hapd->wps->registrar, pubkey_hash,
  1001. pw_id,
  1002. pw ? wpabuf_head(pw) : NULL,
  1003. pw ? wpabuf_len(pw) : 0, 1);
  1004. }
  1005. #endif /* CONFIG_WPS_NFC */