eap_eke_common.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750
  1. /*
  2. * EAP server/peer: EAP-EKE shared routines
  3. * Copyright (c) 2011-2013, Jouni Malinen <j@w1.fi>
  4. *
  5. * This software may be distributed under the terms of the BSD license.
  6. * See README for more details.
  7. */
  8. #include "includes.h"
  9. #include "common.h"
  10. #include "crypto/aes.h"
  11. #include "crypto/aes_wrap.h"
  12. #include "crypto/crypto.h"
  13. #include "crypto/dh_groups.h"
  14. #include "crypto/random.h"
  15. #include "crypto/sha1.h"
  16. #include "crypto/sha256.h"
  17. #include "eap_common/eap_defs.h"
  18. #include "eap_eke_common.h"
  19. static int eap_eke_dh_len(u8 group)
  20. {
  21. switch (group) {
  22. case EAP_EKE_DHGROUP_EKE_2:
  23. return 128;
  24. case EAP_EKE_DHGROUP_EKE_5:
  25. return 192;
  26. case EAP_EKE_DHGROUP_EKE_14:
  27. return 256;
  28. case EAP_EKE_DHGROUP_EKE_15:
  29. return 384;
  30. case EAP_EKE_DHGROUP_EKE_16:
  31. return 512;
  32. }
  33. return -1;
  34. }
  35. static int eap_eke_dhcomp_len(u8 dhgroup, u8 encr)
  36. {
  37. int dhlen;
  38. dhlen = eap_eke_dh_len(dhgroup);
  39. if (dhlen < 0 || encr != EAP_EKE_ENCR_AES128_CBC)
  40. return -1;
  41. return AES_BLOCK_SIZE + dhlen;
  42. }
  43. static const struct dh_group * eap_eke_dh_group(u8 group)
  44. {
  45. switch (group) {
  46. case EAP_EKE_DHGROUP_EKE_2:
  47. return dh_groups_get(2);
  48. case EAP_EKE_DHGROUP_EKE_5:
  49. return dh_groups_get(5);
  50. case EAP_EKE_DHGROUP_EKE_14:
  51. return dh_groups_get(14);
  52. case EAP_EKE_DHGROUP_EKE_15:
  53. return dh_groups_get(15);
  54. case EAP_EKE_DHGROUP_EKE_16:
  55. return dh_groups_get(16);
  56. }
  57. return NULL;
  58. }
  59. static int eap_eke_dh_generator(u8 group)
  60. {
  61. switch (group) {
  62. case EAP_EKE_DHGROUP_EKE_2:
  63. return 5;
  64. case EAP_EKE_DHGROUP_EKE_5:
  65. return 31;
  66. case EAP_EKE_DHGROUP_EKE_14:
  67. return 11;
  68. case EAP_EKE_DHGROUP_EKE_15:
  69. return 5;
  70. case EAP_EKE_DHGROUP_EKE_16:
  71. return 5;
  72. }
  73. return -1;
  74. }
  75. static int eap_eke_pnonce_len(u8 mac)
  76. {
  77. int mac_len;
  78. if (mac == EAP_EKE_MAC_HMAC_SHA1)
  79. mac_len = SHA1_MAC_LEN;
  80. else if (mac == EAP_EKE_MAC_HMAC_SHA2_256)
  81. mac_len = SHA256_MAC_LEN;
  82. else
  83. return -1;
  84. return AES_BLOCK_SIZE + 16 + mac_len;
  85. }
  86. static int eap_eke_pnonce_ps_len(u8 mac)
  87. {
  88. int mac_len;
  89. if (mac == EAP_EKE_MAC_HMAC_SHA1)
  90. mac_len = SHA1_MAC_LEN;
  91. else if (mac == EAP_EKE_MAC_HMAC_SHA2_256)
  92. mac_len = SHA256_MAC_LEN;
  93. else
  94. return -1;
  95. return AES_BLOCK_SIZE + 2 * 16 + mac_len;
  96. }
  97. static int eap_eke_prf_len(u8 prf)
  98. {
  99. if (prf == EAP_EKE_PRF_HMAC_SHA1)
  100. return 20;
  101. if (prf == EAP_EKE_PRF_HMAC_SHA2_256)
  102. return 32;
  103. return -1;
  104. }
  105. static int eap_eke_nonce_len(u8 prf)
  106. {
  107. int prf_len;
  108. prf_len = eap_eke_prf_len(prf);
  109. if (prf_len < 0)
  110. return -1;
  111. if (prf_len > 2 * 16)
  112. return (prf_len + 1) / 2;
  113. return 16;
  114. }
  115. static int eap_eke_auth_len(u8 prf)
  116. {
  117. switch (prf) {
  118. case EAP_EKE_PRF_HMAC_SHA1:
  119. return SHA1_MAC_LEN;
  120. case EAP_EKE_PRF_HMAC_SHA2_256:
  121. return SHA256_MAC_LEN;
  122. }
  123. return -1;
  124. }
  125. int eap_eke_dh_init(u8 group, u8 *ret_priv, u8 *ret_pub)
  126. {
  127. int generator;
  128. u8 gen;
  129. const struct dh_group *dh;
  130. size_t pub_len, i;
  131. generator = eap_eke_dh_generator(group);
  132. dh = eap_eke_dh_group(group);
  133. if (generator < 0 || generator > 255 || !dh)
  134. return -1;
  135. gen = generator;
  136. /* x = random number 2 .. p-1 */
  137. if (random_get_bytes(ret_priv, dh->prime_len))
  138. return -1;
  139. if (os_memcmp(ret_priv, dh->prime, dh->prime_len) > 0) {
  140. /* Make sure private value is smaller than prime */
  141. ret_priv[0] = 0;
  142. }
  143. for (i = 0; i < dh->prime_len - 1; i++) {
  144. if (ret_priv[i])
  145. break;
  146. }
  147. if (i == dh->prime_len - 1 && (ret_priv[i] == 0 || ret_priv[i] == 1))
  148. return -1;
  149. wpa_hexdump_key(MSG_DEBUG, "EAP-EKE: DH private value",
  150. ret_priv, dh->prime_len);
  151. /* y = g ^ x (mod p) */
  152. pub_len = dh->prime_len;
  153. if (crypto_mod_exp(&gen, 1, ret_priv, dh->prime_len,
  154. dh->prime, dh->prime_len, ret_pub, &pub_len) < 0)
  155. return -1;
  156. if (pub_len < dh->prime_len) {
  157. size_t pad = dh->prime_len - pub_len;
  158. os_memmove(ret_pub + pad, ret_pub, pub_len);
  159. os_memset(ret_pub, 0, pad);
  160. }
  161. wpa_hexdump(MSG_DEBUG, "EAP-EKE: DH public value",
  162. ret_pub, dh->prime_len);
  163. return 0;
  164. }
  165. static int eap_eke_prf(u8 prf, const u8 *key, size_t key_len, const u8 *data,
  166. size_t data_len, const u8 *data2, size_t data2_len,
  167. u8 *res)
  168. {
  169. const u8 *addr[2];
  170. size_t len[2];
  171. size_t num_elem = 1;
  172. addr[0] = data;
  173. len[0] = data_len;
  174. if (data2) {
  175. num_elem++;
  176. addr[1] = data2;
  177. len[1] = data2_len;
  178. }
  179. if (prf == EAP_EKE_PRF_HMAC_SHA1)
  180. return hmac_sha1_vector(key, key_len, num_elem, addr, len, res);
  181. if (prf == EAP_EKE_PRF_HMAC_SHA2_256)
  182. return hmac_sha256_vector(key, key_len, num_elem, addr, len,
  183. res);
  184. return -1;
  185. }
  186. static int eap_eke_prf_hmac_sha1(const u8 *key, size_t key_len, const u8 *data,
  187. size_t data_len, u8 *res, size_t len)
  188. {
  189. u8 hash[SHA1_MAC_LEN];
  190. u8 idx;
  191. const u8 *addr[3];
  192. size_t vlen[3];
  193. int ret;
  194. idx = 0;
  195. addr[0] = hash;
  196. vlen[0] = SHA1_MAC_LEN;
  197. addr[1] = data;
  198. vlen[1] = data_len;
  199. addr[2] = &idx;
  200. vlen[2] = 1;
  201. while (len > 0) {
  202. idx++;
  203. if (idx == 1)
  204. ret = hmac_sha1_vector(key, key_len, 2, &addr[1],
  205. &vlen[1], hash);
  206. else
  207. ret = hmac_sha1_vector(key, key_len, 3, addr, vlen,
  208. hash);
  209. if (ret < 0)
  210. return -1;
  211. if (len > SHA1_MAC_LEN) {
  212. os_memcpy(res, hash, SHA1_MAC_LEN);
  213. res += SHA1_MAC_LEN;
  214. len -= SHA1_MAC_LEN;
  215. } else {
  216. os_memcpy(res, hash, len);
  217. len = 0;
  218. }
  219. }
  220. return 0;
  221. }
  222. static int eap_eke_prf_hmac_sha256(const u8 *key, size_t key_len, const u8 *data,
  223. size_t data_len, u8 *res, size_t len)
  224. {
  225. u8 hash[SHA256_MAC_LEN];
  226. u8 idx;
  227. const u8 *addr[3];
  228. size_t vlen[3];
  229. int ret;
  230. idx = 0;
  231. addr[0] = hash;
  232. vlen[0] = SHA256_MAC_LEN;
  233. addr[1] = data;
  234. vlen[1] = data_len;
  235. addr[2] = &idx;
  236. vlen[2] = 1;
  237. while (len > 0) {
  238. idx++;
  239. if (idx == 1)
  240. ret = hmac_sha256_vector(key, key_len, 2, &addr[1],
  241. &vlen[1], hash);
  242. else
  243. ret = hmac_sha256_vector(key, key_len, 3, addr, vlen,
  244. hash);
  245. if (ret < 0)
  246. return -1;
  247. if (len > SHA256_MAC_LEN) {
  248. os_memcpy(res, hash, SHA256_MAC_LEN);
  249. res += SHA256_MAC_LEN;
  250. len -= SHA256_MAC_LEN;
  251. } else {
  252. os_memcpy(res, hash, len);
  253. len = 0;
  254. }
  255. }
  256. return 0;
  257. }
  258. static int eap_eke_prfplus(u8 prf, const u8 *key, size_t key_len,
  259. const u8 *data, size_t data_len, u8 *res, size_t len)
  260. {
  261. if (prf == EAP_EKE_PRF_HMAC_SHA1)
  262. return eap_eke_prf_hmac_sha1(key, key_len, data, data_len, res,
  263. len);
  264. if (prf == EAP_EKE_PRF_HMAC_SHA2_256)
  265. return eap_eke_prf_hmac_sha256(key, key_len, data, data_len,
  266. res, len);
  267. return -1;
  268. }
  269. int eap_eke_derive_key(struct eap_eke_session *sess,
  270. const u8 *password, size_t password_len,
  271. const u8 *id_s, size_t id_s_len, const u8 *id_p,
  272. size_t id_p_len, u8 *key)
  273. {
  274. u8 zeros[EAP_EKE_MAX_HASH_LEN];
  275. u8 temp[EAP_EKE_MAX_HASH_LEN];
  276. size_t key_len = 16; /* Only AES-128-CBC is used here */
  277. u8 *id;
  278. /* temp = prf(0+, password) */
  279. os_memset(zeros, 0, sess->prf_len);
  280. if (eap_eke_prf(sess->prf, zeros, sess->prf_len,
  281. password, password_len, NULL, 0, temp) < 0)
  282. return -1;
  283. wpa_hexdump_key(MSG_DEBUG, "EAP-EKE: temp = prf(0+, password)",
  284. temp, sess->prf_len);
  285. /* key = prf+(temp, ID_S | ID_P) */
  286. id = os_malloc(id_s_len + id_p_len);
  287. if (id == NULL)
  288. return -1;
  289. os_memcpy(id, id_s, id_s_len);
  290. os_memcpy(id + id_s_len, id_p, id_p_len);
  291. wpa_hexdump_ascii(MSG_DEBUG, "EAP-EKE: ID_S | ID_P",
  292. id, id_s_len + id_p_len);
  293. if (eap_eke_prfplus(sess->prf, temp, sess->prf_len,
  294. id, id_s_len + id_p_len, key, key_len) < 0) {
  295. os_free(id);
  296. return -1;
  297. }
  298. os_free(id);
  299. wpa_hexdump_key(MSG_DEBUG, "EAP-EKE: key = prf+(temp, ID_S | ID_P)",
  300. key, key_len);
  301. return 0;
  302. }
  303. int eap_eke_dhcomp(struct eap_eke_session *sess, const u8 *key, const u8 *dhpub,
  304. u8 *ret_dhcomp)
  305. {
  306. u8 pub[EAP_EKE_MAX_DH_LEN];
  307. int dh_len;
  308. u8 iv[AES_BLOCK_SIZE];
  309. dh_len = eap_eke_dh_len(sess->dhgroup);
  310. if (dh_len < 0)
  311. return -1;
  312. /*
  313. * DHComponent = Encr(key, y)
  314. *
  315. * All defined DH groups use primes that have length devisible by 16, so
  316. * no need to do extra padding for y (= pub).
  317. */
  318. if (sess->encr != EAP_EKE_ENCR_AES128_CBC)
  319. return -1;
  320. if (random_get_bytes(iv, AES_BLOCK_SIZE))
  321. return -1;
  322. wpa_hexdump(MSG_DEBUG, "EAP-EKE: IV for Encr(key, y)",
  323. iv, AES_BLOCK_SIZE);
  324. os_memcpy(pub, dhpub, dh_len);
  325. if (aes_128_cbc_encrypt(key, iv, pub, dh_len) < 0)
  326. return -1;
  327. os_memcpy(ret_dhcomp, iv, AES_BLOCK_SIZE);
  328. os_memcpy(ret_dhcomp + AES_BLOCK_SIZE, pub, dh_len);
  329. wpa_hexdump(MSG_DEBUG, "EAP-EKE: DHComponent = Encr(key, y)",
  330. ret_dhcomp, AES_BLOCK_SIZE + dh_len);
  331. return 0;
  332. }
  333. int eap_eke_shared_secret(struct eap_eke_session *sess, const u8 *key,
  334. const u8 *dhpriv, const u8 *peer_dhcomp)
  335. {
  336. u8 zeros[EAP_EKE_MAX_HASH_LEN];
  337. u8 peer_pub[EAP_EKE_MAX_DH_LEN];
  338. u8 modexp[EAP_EKE_MAX_DH_LEN];
  339. size_t len;
  340. const struct dh_group *dh;
  341. dh = eap_eke_dh_group(sess->dhgroup);
  342. if (sess->encr != EAP_EKE_ENCR_AES128_CBC || !dh)
  343. return -1;
  344. /* Decrypt peer DHComponent */
  345. os_memcpy(peer_pub, peer_dhcomp + AES_BLOCK_SIZE, dh->prime_len);
  346. if (aes_128_cbc_decrypt(key, peer_dhcomp, peer_pub, dh->prime_len) < 0) {
  347. wpa_printf(MSG_INFO, "EAP-EKE: Failed to decrypt DHComponent");
  348. return -1;
  349. }
  350. wpa_hexdump_key(MSG_DEBUG, "EAP-EKE: Decrypted peer DH pubkey",
  351. peer_pub, dh->prime_len);
  352. /* SharedSecret = prf(0+, g ^ (x_s * x_p) (mod p)) */
  353. len = dh->prime_len;
  354. if (crypto_mod_exp(peer_pub, dh->prime_len, dhpriv, dh->prime_len,
  355. dh->prime, dh->prime_len, modexp, &len) < 0)
  356. return -1;
  357. if (len < dh->prime_len) {
  358. size_t pad = dh->prime_len - len;
  359. os_memmove(modexp + pad, modexp, len);
  360. os_memset(modexp, 0, pad);
  361. }
  362. os_memset(zeros, 0, sess->auth_len);
  363. if (eap_eke_prf(sess->prf, zeros, sess->auth_len, modexp, dh->prime_len,
  364. NULL, 0, sess->shared_secret) < 0)
  365. return -1;
  366. wpa_hexdump_key(MSG_DEBUG, "EAP-EKE: SharedSecret",
  367. sess->shared_secret, sess->auth_len);
  368. return 0;
  369. }
  370. int eap_eke_derive_ke_ki(struct eap_eke_session *sess,
  371. const u8 *id_s, size_t id_s_len,
  372. const u8 *id_p, size_t id_p_len)
  373. {
  374. u8 buf[EAP_EKE_MAX_KE_LEN + EAP_EKE_MAX_KI_LEN];
  375. size_t ke_len, ki_len;
  376. u8 *data;
  377. size_t data_len;
  378. const char *label = "EAP-EKE Keys";
  379. size_t label_len;
  380. /*
  381. * Ke | Ki = prf+(SharedSecret, "EAP-EKE Keys" | ID_S | ID_P)
  382. * Ke = encryption key
  383. * Ki = integrity protection key
  384. * Length of each key depends on the selected algorithms.
  385. */
  386. if (sess->encr == EAP_EKE_ENCR_AES128_CBC)
  387. ke_len = 16;
  388. else
  389. return -1;
  390. if (sess->mac == EAP_EKE_PRF_HMAC_SHA1)
  391. ki_len = 20;
  392. else if (sess->mac == EAP_EKE_PRF_HMAC_SHA2_256)
  393. ki_len = 32;
  394. else
  395. return -1;
  396. label_len = os_strlen(label);
  397. data_len = label_len + id_s_len + id_p_len;
  398. data = os_malloc(data_len);
  399. if (data == NULL)
  400. return -1;
  401. os_memcpy(data, label, label_len);
  402. os_memcpy(data + label_len, id_s, id_s_len);
  403. os_memcpy(data + label_len + id_s_len, id_p, id_p_len);
  404. if (eap_eke_prfplus(sess->prf, sess->shared_secret, sess->prf_len,
  405. data, data_len, buf, ke_len + ki_len) < 0) {
  406. os_free(data);
  407. return -1;
  408. }
  409. os_memcpy(sess->ke, buf, ke_len);
  410. wpa_hexdump_key(MSG_DEBUG, "EAP-EKE: Ke", sess->ke, ke_len);
  411. os_memcpy(sess->ki, buf + ke_len, ki_len);
  412. wpa_hexdump_key(MSG_DEBUG, "EAP-EKE: Ki", sess->ki, ki_len);
  413. os_free(data);
  414. return 0;
  415. }
  416. int eap_eke_derive_ka(struct eap_eke_session *sess,
  417. const u8 *id_s, size_t id_s_len,
  418. const u8 *id_p, size_t id_p_len,
  419. const u8 *nonce_p, const u8 *nonce_s)
  420. {
  421. u8 *data, *pos;
  422. size_t data_len;
  423. const char *label = "EAP-EKE Ka";
  424. size_t label_len;
  425. /*
  426. * Ka = prf+(SharedSecret, "EAP-EKE Ka" | ID_S | ID_P | Nonce_P |
  427. * Nonce_S)
  428. * Ka = authentication key
  429. * Length of the key depends on the selected algorithms.
  430. */
  431. label_len = os_strlen(label);
  432. data_len = label_len + id_s_len + id_p_len + 2 * sess->nonce_len;
  433. data = os_malloc(data_len);
  434. if (data == NULL)
  435. return -1;
  436. pos = data;
  437. os_memcpy(pos, label, label_len);
  438. pos += label_len;
  439. os_memcpy(pos, id_s, id_s_len);
  440. pos += id_s_len;
  441. os_memcpy(pos, id_p, id_p_len);
  442. pos += id_p_len;
  443. os_memcpy(pos, nonce_p, sess->nonce_len);
  444. pos += sess->nonce_len;
  445. os_memcpy(pos, nonce_s, sess->nonce_len);
  446. if (eap_eke_prfplus(sess->prf, sess->shared_secret, sess->prf_len,
  447. data, data_len, sess->ka, sess->prf_len) < 0) {
  448. os_free(data);
  449. return -1;
  450. }
  451. os_free(data);
  452. wpa_hexdump_key(MSG_DEBUG, "EAP-EKE: Ka", sess->ka, sess->prf_len);
  453. return 0;
  454. }
  455. int eap_eke_derive_msk(struct eap_eke_session *sess,
  456. const u8 *id_s, size_t id_s_len,
  457. const u8 *id_p, size_t id_p_len,
  458. const u8 *nonce_p, const u8 *nonce_s,
  459. u8 *msk, u8 *emsk)
  460. {
  461. u8 *data, *pos;
  462. size_t data_len;
  463. const char *label = "EAP-EKE Exported Keys";
  464. size_t label_len;
  465. u8 buf[EAP_MSK_LEN + EAP_EMSK_LEN];
  466. /*
  467. * MSK | EMSK = prf+(SharedSecret, "EAP-EKE Exported Keys" | ID_S |
  468. * ID_P | Nonce_P | Nonce_S)
  469. */
  470. label_len = os_strlen(label);
  471. data_len = label_len + id_s_len + id_p_len + 2 * sess->nonce_len;
  472. data = os_malloc(data_len);
  473. if (data == NULL)
  474. return -1;
  475. pos = data;
  476. os_memcpy(pos, label, label_len);
  477. pos += label_len;
  478. os_memcpy(pos, id_s, id_s_len);
  479. pos += id_s_len;
  480. os_memcpy(pos, id_p, id_p_len);
  481. pos += id_p_len;
  482. os_memcpy(pos, nonce_p, sess->nonce_len);
  483. pos += sess->nonce_len;
  484. os_memcpy(pos, nonce_s, sess->nonce_len);
  485. if (eap_eke_prfplus(sess->prf, sess->shared_secret, sess->prf_len,
  486. data, data_len, buf, EAP_MSK_LEN + EAP_EMSK_LEN) <
  487. 0) {
  488. os_free(data);
  489. return -1;
  490. }
  491. os_free(data);
  492. os_memcpy(msk, buf, EAP_MSK_LEN);
  493. os_memcpy(emsk, buf + EAP_MSK_LEN, EAP_EMSK_LEN);
  494. os_memset(buf, 0, sizeof(buf));
  495. wpa_hexdump_key(MSG_DEBUG, "EAP-EKE: MSK", msk, EAP_MSK_LEN);
  496. wpa_hexdump_key(MSG_DEBUG, "EAP-EKE: EMSK", msk, EAP_EMSK_LEN);
  497. return 0;
  498. }
  499. static int eap_eke_mac(u8 mac, const u8 *key, const u8 *data, size_t data_len,
  500. u8 *res)
  501. {
  502. if (mac == EAP_EKE_MAC_HMAC_SHA1)
  503. return hmac_sha1(key, SHA1_MAC_LEN, data, data_len, res);
  504. if (mac == EAP_EKE_MAC_HMAC_SHA2_256)
  505. return hmac_sha256(key, SHA256_MAC_LEN, data, data_len, res);
  506. return -1;
  507. }
  508. int eap_eke_prot(struct eap_eke_session *sess,
  509. const u8 *data, size_t data_len,
  510. u8 *prot, size_t *prot_len)
  511. {
  512. size_t block_size, icv_len, pad;
  513. u8 *pos, *iv, *e;
  514. if (sess->encr == EAP_EKE_ENCR_AES128_CBC)
  515. block_size = AES_BLOCK_SIZE;
  516. else
  517. return -1;
  518. if (sess->mac == EAP_EKE_PRF_HMAC_SHA1)
  519. icv_len = SHA1_MAC_LEN;
  520. else if (sess->mac == EAP_EKE_PRF_HMAC_SHA2_256)
  521. icv_len = SHA256_MAC_LEN;
  522. else
  523. return -1;
  524. pad = data_len % block_size;
  525. if (pad)
  526. pad = block_size - pad;
  527. if (*prot_len < block_size + data_len + pad + icv_len) {
  528. wpa_printf(MSG_INFO, "EAP-EKE: Not enough room for Prot() data");
  529. return -1;
  530. }
  531. pos = prot;
  532. if (random_get_bytes(pos, block_size))
  533. return -1;
  534. iv = pos;
  535. wpa_hexdump(MSG_DEBUG, "EAP-EKE: IV for Prot()", iv, block_size);
  536. pos += block_size;
  537. e = pos;
  538. os_memcpy(pos, data, data_len);
  539. pos += data_len;
  540. if (pad) {
  541. if (random_get_bytes(pos, pad))
  542. return -1;
  543. pos += pad;
  544. }
  545. if (aes_128_cbc_encrypt(sess->ke, iv, e, data_len + pad) < 0 ||
  546. eap_eke_mac(sess->mac, sess->ki, e, data_len + pad, pos) < 0)
  547. return -1;
  548. pos += icv_len;
  549. *prot_len = pos - prot;
  550. return 0;
  551. }
  552. int eap_eke_decrypt_prot(struct eap_eke_session *sess,
  553. const u8 *prot, size_t prot_len,
  554. u8 *data, size_t *data_len)
  555. {
  556. size_t block_size, icv_len;
  557. u8 icv[EAP_EKE_MAX_HASH_LEN];
  558. if (sess->encr == EAP_EKE_ENCR_AES128_CBC)
  559. block_size = AES_BLOCK_SIZE;
  560. else
  561. return -1;
  562. if (sess->mac == EAP_EKE_PRF_HMAC_SHA1)
  563. icv_len = SHA1_MAC_LEN;
  564. else if (sess->mac == EAP_EKE_PRF_HMAC_SHA2_256)
  565. icv_len = SHA256_MAC_LEN;
  566. else
  567. return -1;
  568. if (prot_len < 2 * block_size + icv_len ||
  569. (prot_len - icv_len) % block_size)
  570. return -1;
  571. if (eap_eke_mac(sess->mac, sess->ki, prot + block_size,
  572. prot_len - block_size - icv_len, icv) < 0)
  573. return -1;
  574. if (os_memcmp_const(icv, prot + prot_len - icv_len, icv_len) != 0) {
  575. wpa_printf(MSG_INFO, "EAP-EKE: ICV mismatch in Prot() data");
  576. return -1;
  577. }
  578. if (*data_len < prot_len - block_size - icv_len) {
  579. wpa_printf(MSG_INFO, "EAP-EKE: Not enough room for decrypted Prot() data");
  580. return -1;
  581. }
  582. *data_len = prot_len - block_size - icv_len;
  583. os_memcpy(data, prot + block_size, *data_len);
  584. if (aes_128_cbc_decrypt(sess->ke, prot, data, *data_len) < 0) {
  585. wpa_printf(MSG_INFO, "EAP-EKE: Failed to decrypt Prot() data");
  586. return -1;
  587. }
  588. wpa_hexdump_key(MSG_DEBUG, "EAP-EKE: Decrypted Prot() data",
  589. data, *data_len);
  590. return 0;
  591. }
  592. int eap_eke_auth(struct eap_eke_session *sess, const char *label,
  593. const struct wpabuf *msgs, u8 *auth)
  594. {
  595. wpa_printf(MSG_DEBUG, "EAP-EKE: Auth(%s)", label);
  596. wpa_hexdump_key(MSG_DEBUG, "EAP-EKE: Ka for Auth",
  597. sess->ka, sess->auth_len);
  598. wpa_hexdump_buf(MSG_MSGDUMP, "EAP-EKE: Messages for Auth", msgs);
  599. return eap_eke_prf(sess->prf, sess->ka, sess->auth_len,
  600. (const u8 *) label, os_strlen(label),
  601. wpabuf_head(msgs), wpabuf_len(msgs), auth);
  602. }
  603. int eap_eke_session_init(struct eap_eke_session *sess, u8 dhgroup, u8 encr,
  604. u8 prf, u8 mac)
  605. {
  606. sess->dhgroup = dhgroup;
  607. sess->encr = encr;
  608. sess->prf = prf;
  609. sess->mac = mac;
  610. sess->prf_len = eap_eke_prf_len(prf);
  611. sess->nonce_len = eap_eke_nonce_len(prf);
  612. sess->auth_len = eap_eke_auth_len(prf);
  613. sess->dhcomp_len = eap_eke_dhcomp_len(sess->dhgroup, sess->encr);
  614. sess->pnonce_len = eap_eke_pnonce_len(sess->mac);
  615. sess->pnonce_ps_len = eap_eke_pnonce_ps_len(sess->mac);
  616. if (sess->prf_len < 0 || sess->nonce_len < 0 || sess->auth_len < 0 ||
  617. sess->dhcomp_len < 0 || sess->pnonce_len < 0 ||
  618. sess->pnonce_ps_len < 0)
  619. return -1;
  620. return 0;
  621. }
  622. void eap_eke_session_clean(struct eap_eke_session *sess)
  623. {
  624. os_memset(sess->shared_secret, 0, EAP_EKE_MAX_HASH_LEN);
  625. os_memset(sess->ke, 0, EAP_EKE_MAX_KE_LEN);
  626. os_memset(sess->ki, 0, EAP_EKE_MAX_KI_LEN);
  627. os_memset(sess->ka, 0, EAP_EKE_MAX_KA_LEN);
  628. }