ap.c 27 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050
  1. /*
  2. * WPA Supplicant - Basic AP mode support routines
  3. * Copyright (c) 2003-2009, Jouni Malinen <j@w1.fi>
  4. * Copyright (c) 2009, Atheros Communications
  5. *
  6. * This software may be distributed under the terms of the BSD license.
  7. * See README for more details.
  8. */
  9. #include "utils/includes.h"
  10. #include "utils/common.h"
  11. #include "utils/eloop.h"
  12. #include "utils/uuid.h"
  13. #include "common/ieee802_11_defs.h"
  14. #include "common/wpa_ctrl.h"
  15. #include "ap/hostapd.h"
  16. #include "ap/ap_config.h"
  17. #include "ap/ap_drv_ops.h"
  18. #ifdef NEED_AP_MLME
  19. #include "ap/ieee802_11.h"
  20. #endif /* NEED_AP_MLME */
  21. #include "ap/beacon.h"
  22. #include "ap/ieee802_1x.h"
  23. #include "ap/wps_hostapd.h"
  24. #include "ap/ctrl_iface_ap.h"
  25. #include "wps/wps.h"
  26. #include "common/ieee802_11_defs.h"
  27. #include "config_ssid.h"
  28. #include "config.h"
  29. #include "wpa_supplicant_i.h"
  30. #include "driver_i.h"
  31. #include "p2p_supplicant.h"
  32. #include "ap.h"
  33. #include "ap/sta_info.h"
  34. #include "notify.h"
  35. #ifdef CONFIG_WPS
  36. static void wpas_wps_ap_pin_timeout(void *eloop_data, void *user_ctx);
  37. #endif /* CONFIG_WPS */
  38. static int wpa_supplicant_conf_ap(struct wpa_supplicant *wpa_s,
  39. struct wpa_ssid *ssid,
  40. struct hostapd_config *conf)
  41. {
  42. struct hostapd_bss_config *bss = &conf->bss[0];
  43. conf->driver = wpa_s->driver;
  44. os_strlcpy(bss->iface, wpa_s->ifname, sizeof(bss->iface));
  45. if (ssid->frequency == 0) {
  46. /* default channel 11 */
  47. conf->hw_mode = HOSTAPD_MODE_IEEE80211G;
  48. conf->channel = 11;
  49. } else if (ssid->frequency >= 2412 && ssid->frequency <= 2472) {
  50. conf->hw_mode = HOSTAPD_MODE_IEEE80211G;
  51. conf->channel = (ssid->frequency - 2407) / 5;
  52. } else if ((ssid->frequency >= 5180 && ssid->frequency <= 5240) ||
  53. (ssid->frequency >= 5745 && ssid->frequency <= 5825)) {
  54. conf->hw_mode = HOSTAPD_MODE_IEEE80211A;
  55. conf->channel = (ssid->frequency - 5000) / 5;
  56. } else if (ssid->frequency >= 56160 + 2160 * 1 &&
  57. ssid->frequency <= 56160 + 2160 * 4) {
  58. conf->hw_mode = HOSTAPD_MODE_IEEE80211AD;
  59. conf->channel = (ssid->frequency - 56160) / 2160;
  60. } else {
  61. wpa_printf(MSG_ERROR, "Unsupported AP mode frequency: %d MHz",
  62. ssid->frequency);
  63. return -1;
  64. }
  65. /* TODO: enable HT40 if driver supports it;
  66. * drop to 11b if driver does not support 11g */
  67. #ifdef CONFIG_IEEE80211N
  68. /*
  69. * Enable HT20 if the driver supports it, by setting conf->ieee80211n
  70. * and a mask of allowed capabilities within conf->ht_capab.
  71. * Using default config settings for: conf->ht_op_mode_fixed,
  72. * conf->secondary_channel, conf->require_ht
  73. */
  74. if (wpa_s->hw.modes) {
  75. struct hostapd_hw_modes *mode = NULL;
  76. int i, no_ht = 0;
  77. for (i = 0; i < wpa_s->hw.num_modes; i++) {
  78. if (wpa_s->hw.modes[i].mode == conf->hw_mode) {
  79. mode = &wpa_s->hw.modes[i];
  80. break;
  81. }
  82. }
  83. #ifdef CONFIG_HT_OVERRIDES
  84. if (ssid->disable_ht) {
  85. conf->ieee80211n = 0;
  86. conf->ht_capab = 0;
  87. no_ht = 1;
  88. }
  89. #endif /* CONFIG_HT_OVERRIDES */
  90. if (!no_ht && mode && mode->ht_capab) {
  91. conf->ieee80211n = 1;
  92. #ifdef CONFIG_P2P
  93. if (conf->hw_mode == HOSTAPD_MODE_IEEE80211A &&
  94. (mode->ht_capab &
  95. HT_CAP_INFO_SUPP_CHANNEL_WIDTH_SET) &&
  96. ssid->ht40)
  97. conf->secondary_channel =
  98. wpas_p2p_get_ht40_mode(wpa_s, mode,
  99. conf->channel);
  100. if (conf->secondary_channel)
  101. conf->ht_capab |=
  102. HT_CAP_INFO_SUPP_CHANNEL_WIDTH_SET;
  103. #endif /* CONFIG_P2P */
  104. /*
  105. * white-list capabilities that won't cause issues
  106. * to connecting stations, while leaving the current
  107. * capabilities intact (currently disabled SMPS).
  108. */
  109. conf->ht_capab |= mode->ht_capab &
  110. (HT_CAP_INFO_GREEN_FIELD |
  111. HT_CAP_INFO_SHORT_GI20MHZ |
  112. HT_CAP_INFO_SHORT_GI40MHZ |
  113. HT_CAP_INFO_RX_STBC_MASK |
  114. HT_CAP_INFO_MAX_AMSDU_SIZE);
  115. }
  116. }
  117. #endif /* CONFIG_IEEE80211N */
  118. #ifdef CONFIG_P2P
  119. if (conf->hw_mode == HOSTAPD_MODE_IEEE80211G) {
  120. /* Remove 802.11b rates from supported and basic rate sets */
  121. int *list = os_malloc(4 * sizeof(int));
  122. if (list) {
  123. list[0] = 60;
  124. list[1] = 120;
  125. list[2] = 240;
  126. list[3] = -1;
  127. }
  128. conf->basic_rates = list;
  129. list = os_malloc(9 * sizeof(int));
  130. if (list) {
  131. list[0] = 60;
  132. list[1] = 90;
  133. list[2] = 120;
  134. list[3] = 180;
  135. list[4] = 240;
  136. list[5] = 360;
  137. list[6] = 480;
  138. list[7] = 540;
  139. list[8] = -1;
  140. }
  141. conf->supported_rates = list;
  142. }
  143. bss->isolate = !wpa_s->conf->p2p_intra_bss;
  144. #endif /* CONFIG_P2P */
  145. if (ssid->ssid_len == 0) {
  146. wpa_printf(MSG_ERROR, "No SSID configured for AP mode");
  147. return -1;
  148. }
  149. os_memcpy(bss->ssid.ssid, ssid->ssid, ssid->ssid_len);
  150. bss->ssid.ssid_len = ssid->ssid_len;
  151. bss->ssid.ssid_set = 1;
  152. bss->ignore_broadcast_ssid = ssid->ignore_broadcast_ssid;
  153. if (ssid->auth_alg)
  154. bss->auth_algs = ssid->auth_alg;
  155. if (wpa_key_mgmt_wpa_psk(ssid->key_mgmt))
  156. bss->wpa = ssid->proto;
  157. bss->wpa_key_mgmt = ssid->key_mgmt;
  158. bss->wpa_pairwise = ssid->pairwise_cipher;
  159. if (ssid->psk_set) {
  160. os_free(bss->ssid.wpa_psk);
  161. bss->ssid.wpa_psk = os_zalloc(sizeof(struct hostapd_wpa_psk));
  162. if (bss->ssid.wpa_psk == NULL)
  163. return -1;
  164. os_memcpy(bss->ssid.wpa_psk->psk, ssid->psk, PMK_LEN);
  165. bss->ssid.wpa_psk->group = 1;
  166. } else if (ssid->passphrase) {
  167. bss->ssid.wpa_passphrase = os_strdup(ssid->passphrase);
  168. } else if (ssid->wep_key_len[0] || ssid->wep_key_len[1] ||
  169. ssid->wep_key_len[2] || ssid->wep_key_len[3]) {
  170. struct hostapd_wep_keys *wep = &bss->ssid.wep;
  171. int i;
  172. for (i = 0; i < NUM_WEP_KEYS; i++) {
  173. if (ssid->wep_key_len[i] == 0)
  174. continue;
  175. wep->key[i] = os_malloc(ssid->wep_key_len[i]);
  176. if (wep->key[i] == NULL)
  177. return -1;
  178. os_memcpy(wep->key[i], ssid->wep_key[i],
  179. ssid->wep_key_len[i]);
  180. wep->len[i] = ssid->wep_key_len[i];
  181. }
  182. wep->idx = ssid->wep_tx_keyidx;
  183. wep->keys_set = 1;
  184. }
  185. if (ssid->ap_max_inactivity)
  186. bss->ap_max_inactivity = ssid->ap_max_inactivity;
  187. if (ssid->dtim_period)
  188. bss->dtim_period = ssid->dtim_period;
  189. else if (wpa_s->conf->dtim_period)
  190. bss->dtim_period = wpa_s->conf->dtim_period;
  191. if (ssid->beacon_int)
  192. conf->beacon_int = ssid->beacon_int;
  193. else if (wpa_s->conf->beacon_int)
  194. conf->beacon_int = wpa_s->conf->beacon_int;
  195. if ((bss->wpa & 2) && bss->rsn_pairwise == 0)
  196. bss->rsn_pairwise = bss->wpa_pairwise;
  197. bss->wpa_group = wpa_select_ap_group_cipher(bss->wpa, bss->wpa_pairwise,
  198. bss->rsn_pairwise);
  199. if (bss->wpa && bss->ieee802_1x)
  200. bss->ssid.security_policy = SECURITY_WPA;
  201. else if (bss->wpa)
  202. bss->ssid.security_policy = SECURITY_WPA_PSK;
  203. else if (bss->ieee802_1x) {
  204. int cipher = WPA_CIPHER_NONE;
  205. bss->ssid.security_policy = SECURITY_IEEE_802_1X;
  206. bss->ssid.wep.default_len = bss->default_wep_key_len;
  207. if (bss->default_wep_key_len)
  208. cipher = bss->default_wep_key_len >= 13 ?
  209. WPA_CIPHER_WEP104 : WPA_CIPHER_WEP40;
  210. bss->wpa_group = cipher;
  211. bss->wpa_pairwise = cipher;
  212. bss->rsn_pairwise = cipher;
  213. } else if (bss->ssid.wep.keys_set) {
  214. int cipher = WPA_CIPHER_WEP40;
  215. if (bss->ssid.wep.len[0] >= 13)
  216. cipher = WPA_CIPHER_WEP104;
  217. bss->ssid.security_policy = SECURITY_STATIC_WEP;
  218. bss->wpa_group = cipher;
  219. bss->wpa_pairwise = cipher;
  220. bss->rsn_pairwise = cipher;
  221. } else {
  222. bss->ssid.security_policy = SECURITY_PLAINTEXT;
  223. bss->wpa_group = WPA_CIPHER_NONE;
  224. bss->wpa_pairwise = WPA_CIPHER_NONE;
  225. bss->rsn_pairwise = WPA_CIPHER_NONE;
  226. }
  227. #ifdef CONFIG_WPS
  228. /*
  229. * Enable WPS by default for open and WPA/WPA2-Personal network, but
  230. * require user interaction to actually use it. Only the internal
  231. * Registrar is supported.
  232. */
  233. if (bss->ssid.security_policy != SECURITY_WPA_PSK &&
  234. bss->ssid.security_policy != SECURITY_PLAINTEXT)
  235. goto no_wps;
  236. #ifdef CONFIG_WPS2
  237. if (bss->ssid.security_policy == SECURITY_WPA_PSK &&
  238. (!(bss->rsn_pairwise & WPA_CIPHER_CCMP) || !(bss->wpa & 2)))
  239. goto no_wps; /* WPS2 does not allow WPA/TKIP-only
  240. * configuration */
  241. #endif /* CONFIG_WPS2 */
  242. bss->eap_server = 1;
  243. if (!ssid->ignore_broadcast_ssid)
  244. bss->wps_state = 2;
  245. bss->ap_setup_locked = 2;
  246. if (wpa_s->conf->config_methods)
  247. bss->config_methods = os_strdup(wpa_s->conf->config_methods);
  248. os_memcpy(bss->device_type, wpa_s->conf->device_type,
  249. WPS_DEV_TYPE_LEN);
  250. if (wpa_s->conf->device_name) {
  251. bss->device_name = os_strdup(wpa_s->conf->device_name);
  252. bss->friendly_name = os_strdup(wpa_s->conf->device_name);
  253. }
  254. if (wpa_s->conf->manufacturer)
  255. bss->manufacturer = os_strdup(wpa_s->conf->manufacturer);
  256. if (wpa_s->conf->model_name)
  257. bss->model_name = os_strdup(wpa_s->conf->model_name);
  258. if (wpa_s->conf->model_number)
  259. bss->model_number = os_strdup(wpa_s->conf->model_number);
  260. if (wpa_s->conf->serial_number)
  261. bss->serial_number = os_strdup(wpa_s->conf->serial_number);
  262. if (is_nil_uuid(wpa_s->conf->uuid))
  263. os_memcpy(bss->uuid, wpa_s->wps->uuid, WPS_UUID_LEN);
  264. else
  265. os_memcpy(bss->uuid, wpa_s->conf->uuid, WPS_UUID_LEN);
  266. os_memcpy(bss->os_version, wpa_s->conf->os_version, 4);
  267. bss->pbc_in_m1 = wpa_s->conf->pbc_in_m1;
  268. no_wps:
  269. #endif /* CONFIG_WPS */
  270. if (wpa_s->max_stations &&
  271. wpa_s->max_stations < wpa_s->conf->max_num_sta)
  272. bss->max_num_sta = wpa_s->max_stations;
  273. else
  274. bss->max_num_sta = wpa_s->conf->max_num_sta;
  275. bss->disassoc_low_ack = wpa_s->conf->disassoc_low_ack;
  276. return 0;
  277. }
  278. static void ap_public_action_rx(void *ctx, const u8 *buf, size_t len, int freq)
  279. {
  280. #ifdef CONFIG_P2P
  281. struct wpa_supplicant *wpa_s = ctx;
  282. const struct ieee80211_mgmt *mgmt;
  283. size_t hdr_len;
  284. mgmt = (const struct ieee80211_mgmt *) buf;
  285. hdr_len = (const u8 *) &mgmt->u.action.u.vs_public_action.action - buf;
  286. if (hdr_len > len)
  287. return;
  288. wpas_p2p_rx_action(wpa_s, mgmt->da, mgmt->sa, mgmt->bssid,
  289. mgmt->u.action.category,
  290. &mgmt->u.action.u.vs_public_action.action,
  291. len - hdr_len, freq);
  292. #endif /* CONFIG_P2P */
  293. }
  294. static void ap_wps_event_cb(void *ctx, enum wps_event event,
  295. union wps_event_data *data)
  296. {
  297. #ifdef CONFIG_P2P
  298. struct wpa_supplicant *wpa_s = ctx;
  299. if (event == WPS_EV_FAIL) {
  300. struct wps_event_fail *fail = &data->fail;
  301. if (wpa_s->parent && wpa_s->parent != wpa_s &&
  302. wpa_s == wpa_s->global->p2p_group_formation) {
  303. /*
  304. * src/ap/wps_hostapd.c has already sent this on the
  305. * main interface, so only send on the parent interface
  306. * here if needed.
  307. */
  308. wpa_msg(wpa_s->parent, MSG_INFO, WPS_EVENT_FAIL
  309. "msg=%d config_error=%d",
  310. fail->msg, fail->config_error);
  311. }
  312. wpas_p2p_wps_failed(wpa_s, fail);
  313. }
  314. #endif /* CONFIG_P2P */
  315. }
  316. static void ap_sta_authorized_cb(void *ctx, const u8 *mac_addr,
  317. int authorized, const u8 *p2p_dev_addr)
  318. {
  319. wpas_notify_sta_authorized(ctx, mac_addr, authorized, p2p_dev_addr);
  320. }
  321. static int ap_vendor_action_rx(void *ctx, const u8 *buf, size_t len, int freq)
  322. {
  323. #ifdef CONFIG_P2P
  324. struct wpa_supplicant *wpa_s = ctx;
  325. const struct ieee80211_mgmt *mgmt;
  326. size_t hdr_len;
  327. mgmt = (const struct ieee80211_mgmt *) buf;
  328. hdr_len = (const u8 *) &mgmt->u.action.u.vs_public_action.action - buf;
  329. if (hdr_len > len)
  330. return -1;
  331. wpas_p2p_rx_action(wpa_s, mgmt->da, mgmt->sa, mgmt->bssid,
  332. mgmt->u.action.category,
  333. &mgmt->u.action.u.vs_public_action.action,
  334. len - hdr_len, freq);
  335. #endif /* CONFIG_P2P */
  336. return 0;
  337. }
  338. static int ap_probe_req_rx(void *ctx, const u8 *sa, const u8 *da,
  339. const u8 *bssid, const u8 *ie, size_t ie_len,
  340. int ssi_signal)
  341. {
  342. #ifdef CONFIG_P2P
  343. struct wpa_supplicant *wpa_s = ctx;
  344. return wpas_p2p_probe_req_rx(wpa_s, sa, da, bssid, ie, ie_len,
  345. ssi_signal);
  346. #else /* CONFIG_P2P */
  347. return 0;
  348. #endif /* CONFIG_P2P */
  349. }
  350. static void ap_wps_reg_success_cb(void *ctx, const u8 *mac_addr,
  351. const u8 *uuid_e)
  352. {
  353. #ifdef CONFIG_P2P
  354. struct wpa_supplicant *wpa_s = ctx;
  355. wpas_p2p_wps_success(wpa_s, mac_addr, 1);
  356. #endif /* CONFIG_P2P */
  357. }
  358. static void wpas_ap_configured_cb(void *ctx)
  359. {
  360. struct wpa_supplicant *wpa_s = ctx;
  361. wpa_supplicant_set_state(wpa_s, WPA_COMPLETED);
  362. if (wpa_s->ap_configured_cb)
  363. wpa_s->ap_configured_cb(wpa_s->ap_configured_cb_ctx,
  364. wpa_s->ap_configured_cb_data);
  365. }
  366. int wpa_supplicant_create_ap(struct wpa_supplicant *wpa_s,
  367. struct wpa_ssid *ssid)
  368. {
  369. struct wpa_driver_associate_params params;
  370. struct hostapd_iface *hapd_iface;
  371. struct hostapd_config *conf;
  372. size_t i;
  373. if (ssid->ssid == NULL || ssid->ssid_len == 0) {
  374. wpa_printf(MSG_ERROR, "No SSID configured for AP mode");
  375. return -1;
  376. }
  377. wpa_supplicant_ap_deinit(wpa_s);
  378. wpa_printf(MSG_DEBUG, "Setting up AP (SSID='%s')",
  379. wpa_ssid_txt(ssid->ssid, ssid->ssid_len));
  380. os_memset(&params, 0, sizeof(params));
  381. params.ssid = ssid->ssid;
  382. params.ssid_len = ssid->ssid_len;
  383. switch (ssid->mode) {
  384. case WPAS_MODE_INFRA:
  385. params.mode = IEEE80211_MODE_INFRA;
  386. break;
  387. case WPAS_MODE_IBSS:
  388. params.mode = IEEE80211_MODE_IBSS;
  389. break;
  390. case WPAS_MODE_AP:
  391. case WPAS_MODE_P2P_GO:
  392. case WPAS_MODE_P2P_GROUP_FORMATION:
  393. params.mode = IEEE80211_MODE_AP;
  394. break;
  395. }
  396. params.freq = ssid->frequency;
  397. params.wpa_proto = ssid->proto;
  398. if (ssid->key_mgmt & WPA_KEY_MGMT_PSK)
  399. wpa_s->key_mgmt = WPA_KEY_MGMT_PSK;
  400. else
  401. wpa_s->key_mgmt = WPA_KEY_MGMT_NONE;
  402. params.key_mgmt_suite = key_mgmt2driver(wpa_s->key_mgmt);
  403. wpa_s->pairwise_cipher = wpa_pick_pairwise_cipher(ssid->pairwise_cipher,
  404. 1);
  405. if (wpa_s->pairwise_cipher < 0) {
  406. wpa_printf(MSG_WARNING, "WPA: Failed to select pairwise "
  407. "cipher.");
  408. return -1;
  409. }
  410. params.pairwise_suite =
  411. wpa_cipher_to_suite_driver(wpa_s->pairwise_cipher);
  412. params.group_suite = params.pairwise_suite;
  413. #ifdef CONFIG_P2P
  414. if (ssid->mode == WPAS_MODE_P2P_GO ||
  415. ssid->mode == WPAS_MODE_P2P_GROUP_FORMATION)
  416. params.p2p = 1;
  417. #endif /* CONFIG_P2P */
  418. if (wpa_s->parent->set_ap_uapsd)
  419. params.uapsd = wpa_s->parent->ap_uapsd;
  420. else
  421. params.uapsd = -1;
  422. if (wpa_drv_associate(wpa_s, &params) < 0) {
  423. wpa_msg(wpa_s, MSG_INFO, "Failed to start AP functionality");
  424. return -1;
  425. }
  426. wpa_s->ap_iface = hapd_iface = os_zalloc(sizeof(*wpa_s->ap_iface));
  427. if (hapd_iface == NULL)
  428. return -1;
  429. hapd_iface->owner = wpa_s;
  430. hapd_iface->drv_flags = wpa_s->drv_flags;
  431. hapd_iface->probe_resp_offloads = wpa_s->probe_resp_offloads;
  432. wpa_s->ap_iface->conf = conf = hostapd_config_defaults();
  433. if (conf == NULL) {
  434. wpa_supplicant_ap_deinit(wpa_s);
  435. return -1;
  436. }
  437. os_memcpy(wpa_s->ap_iface->conf->wmm_ac_params,
  438. wpa_s->conf->wmm_ac_params,
  439. sizeof(wpa_s->conf->wmm_ac_params));
  440. if (params.uapsd > 0) {
  441. conf->bss->wmm_enabled = 1;
  442. conf->bss->wmm_uapsd = 1;
  443. }
  444. if (wpa_supplicant_conf_ap(wpa_s, ssid, conf)) {
  445. wpa_printf(MSG_ERROR, "Failed to create AP configuration");
  446. wpa_supplicant_ap_deinit(wpa_s);
  447. return -1;
  448. }
  449. #ifdef CONFIG_P2P
  450. if (ssid->mode == WPAS_MODE_P2P_GO)
  451. conf->bss[0].p2p = P2P_ENABLED | P2P_GROUP_OWNER;
  452. else if (ssid->mode == WPAS_MODE_P2P_GROUP_FORMATION)
  453. conf->bss[0].p2p = P2P_ENABLED | P2P_GROUP_OWNER |
  454. P2P_GROUP_FORMATION;
  455. #endif /* CONFIG_P2P */
  456. hapd_iface->num_bss = conf->num_bss;
  457. hapd_iface->bss = os_calloc(conf->num_bss,
  458. sizeof(struct hostapd_data *));
  459. if (hapd_iface->bss == NULL) {
  460. wpa_supplicant_ap_deinit(wpa_s);
  461. return -1;
  462. }
  463. for (i = 0; i < conf->num_bss; i++) {
  464. hapd_iface->bss[i] =
  465. hostapd_alloc_bss_data(hapd_iface, conf,
  466. &conf->bss[i]);
  467. if (hapd_iface->bss[i] == NULL) {
  468. wpa_supplicant_ap_deinit(wpa_s);
  469. return -1;
  470. }
  471. hapd_iface->bss[i]->msg_ctx = wpa_s;
  472. hapd_iface->bss[i]->msg_ctx_parent = wpa_s->parent;
  473. hapd_iface->bss[i]->public_action_cb = ap_public_action_rx;
  474. hapd_iface->bss[i]->public_action_cb_ctx = wpa_s;
  475. hapd_iface->bss[i]->vendor_action_cb = ap_vendor_action_rx;
  476. hapd_iface->bss[i]->vendor_action_cb_ctx = wpa_s;
  477. hostapd_register_probereq_cb(hapd_iface->bss[i],
  478. ap_probe_req_rx, wpa_s);
  479. hapd_iface->bss[i]->wps_reg_success_cb = ap_wps_reg_success_cb;
  480. hapd_iface->bss[i]->wps_reg_success_cb_ctx = wpa_s;
  481. hapd_iface->bss[i]->wps_event_cb = ap_wps_event_cb;
  482. hapd_iface->bss[i]->wps_event_cb_ctx = wpa_s;
  483. hapd_iface->bss[i]->sta_authorized_cb = ap_sta_authorized_cb;
  484. hapd_iface->bss[i]->sta_authorized_cb_ctx = wpa_s;
  485. #ifdef CONFIG_P2P
  486. hapd_iface->bss[i]->p2p = wpa_s->global->p2p;
  487. hapd_iface->bss[i]->p2p_group = wpas_p2p_group_init(wpa_s,
  488. ssid);
  489. #endif /* CONFIG_P2P */
  490. hapd_iface->bss[i]->setup_complete_cb = wpas_ap_configured_cb;
  491. hapd_iface->bss[i]->setup_complete_cb_ctx = wpa_s;
  492. }
  493. os_memcpy(hapd_iface->bss[0]->own_addr, wpa_s->own_addr, ETH_ALEN);
  494. hapd_iface->bss[0]->driver = wpa_s->driver;
  495. hapd_iface->bss[0]->drv_priv = wpa_s->drv_priv;
  496. wpa_s->current_ssid = ssid;
  497. os_memcpy(wpa_s->bssid, wpa_s->own_addr, ETH_ALEN);
  498. wpa_s->assoc_freq = ssid->frequency;
  499. if (hostapd_setup_interface(wpa_s->ap_iface)) {
  500. wpa_printf(MSG_ERROR, "Failed to initialize AP interface");
  501. wpa_supplicant_ap_deinit(wpa_s);
  502. return -1;
  503. }
  504. return 0;
  505. }
  506. void wpa_supplicant_ap_deinit(struct wpa_supplicant *wpa_s)
  507. {
  508. #ifdef CONFIG_WPS
  509. eloop_cancel_timeout(wpas_wps_ap_pin_timeout, wpa_s, NULL);
  510. #endif /* CONFIG_WPS */
  511. if (wpa_s->ap_iface == NULL)
  512. return;
  513. wpa_s->current_ssid = NULL;
  514. wpa_s->assoc_freq = 0;
  515. #ifdef CONFIG_P2P
  516. if (wpa_s->ap_iface->bss)
  517. wpa_s->ap_iface->bss[0]->p2p_group = NULL;
  518. wpas_p2p_group_deinit(wpa_s);
  519. #endif /* CONFIG_P2P */
  520. hostapd_interface_deinit(wpa_s->ap_iface);
  521. hostapd_interface_free(wpa_s->ap_iface);
  522. wpa_s->ap_iface = NULL;
  523. wpa_drv_deinit_ap(wpa_s);
  524. }
  525. void ap_tx_status(void *ctx, const u8 *addr,
  526. const u8 *buf, size_t len, int ack)
  527. {
  528. #ifdef NEED_AP_MLME
  529. struct wpa_supplicant *wpa_s = ctx;
  530. hostapd_tx_status(wpa_s->ap_iface->bss[0], addr, buf, len, ack);
  531. #endif /* NEED_AP_MLME */
  532. }
  533. void ap_eapol_tx_status(void *ctx, const u8 *dst,
  534. const u8 *data, size_t len, int ack)
  535. {
  536. #ifdef NEED_AP_MLME
  537. struct wpa_supplicant *wpa_s = ctx;
  538. hostapd_tx_status(wpa_s->ap_iface->bss[0], dst, data, len, ack);
  539. #endif /* NEED_AP_MLME */
  540. }
  541. void ap_client_poll_ok(void *ctx, const u8 *addr)
  542. {
  543. #ifdef NEED_AP_MLME
  544. struct wpa_supplicant *wpa_s = ctx;
  545. if (wpa_s->ap_iface)
  546. hostapd_client_poll_ok(wpa_s->ap_iface->bss[0], addr);
  547. #endif /* NEED_AP_MLME */
  548. }
  549. void ap_rx_from_unknown_sta(void *ctx, const u8 *addr, int wds)
  550. {
  551. #ifdef NEED_AP_MLME
  552. struct wpa_supplicant *wpa_s = ctx;
  553. ieee802_11_rx_from_unknown(wpa_s->ap_iface->bss[0], addr, wds);
  554. #endif /* NEED_AP_MLME */
  555. }
  556. void ap_mgmt_rx(void *ctx, struct rx_mgmt *rx_mgmt)
  557. {
  558. #ifdef NEED_AP_MLME
  559. struct wpa_supplicant *wpa_s = ctx;
  560. struct hostapd_frame_info fi;
  561. os_memset(&fi, 0, sizeof(fi));
  562. fi.datarate = rx_mgmt->datarate;
  563. fi.ssi_signal = rx_mgmt->ssi_signal;
  564. ieee802_11_mgmt(wpa_s->ap_iface->bss[0], rx_mgmt->frame,
  565. rx_mgmt->frame_len, &fi);
  566. #endif /* NEED_AP_MLME */
  567. }
  568. void ap_mgmt_tx_cb(void *ctx, const u8 *buf, size_t len, u16 stype, int ok)
  569. {
  570. #ifdef NEED_AP_MLME
  571. struct wpa_supplicant *wpa_s = ctx;
  572. ieee802_11_mgmt_cb(wpa_s->ap_iface->bss[0], buf, len, stype, ok);
  573. #endif /* NEED_AP_MLME */
  574. }
  575. void wpa_supplicant_ap_rx_eapol(struct wpa_supplicant *wpa_s,
  576. const u8 *src_addr, const u8 *buf, size_t len)
  577. {
  578. ieee802_1x_receive(wpa_s->ap_iface->bss[0], src_addr, buf, len);
  579. }
  580. #ifdef CONFIG_WPS
  581. int wpa_supplicant_ap_wps_pbc(struct wpa_supplicant *wpa_s, const u8 *bssid,
  582. const u8 *p2p_dev_addr)
  583. {
  584. if (!wpa_s->ap_iface)
  585. return -1;
  586. return hostapd_wps_button_pushed(wpa_s->ap_iface->bss[0],
  587. p2p_dev_addr);
  588. }
  589. int wpa_supplicant_ap_wps_cancel(struct wpa_supplicant *wpa_s)
  590. {
  591. struct wps_registrar *reg;
  592. int reg_sel = 0, wps_sta = 0;
  593. if (!wpa_s->ap_iface || !wpa_s->ap_iface->bss[0]->wps)
  594. return -1;
  595. reg = wpa_s->ap_iface->bss[0]->wps->registrar;
  596. reg_sel = wps_registrar_wps_cancel(reg);
  597. wps_sta = ap_for_each_sta(wpa_s->ap_iface->bss[0],
  598. ap_sta_wps_cancel, NULL);
  599. if (!reg_sel && !wps_sta) {
  600. wpa_printf(MSG_DEBUG, "No WPS operation in progress at this "
  601. "time");
  602. return -1;
  603. }
  604. /*
  605. * There are 2 cases to return wps cancel as success:
  606. * 1. When wps cancel was initiated but no connection has been
  607. * established with client yet.
  608. * 2. Client is in the middle of exchanging WPS messages.
  609. */
  610. return 0;
  611. }
  612. int wpa_supplicant_ap_wps_pin(struct wpa_supplicant *wpa_s, const u8 *bssid,
  613. const char *pin, char *buf, size_t buflen,
  614. int timeout)
  615. {
  616. int ret, ret_len = 0;
  617. if (!wpa_s->ap_iface)
  618. return -1;
  619. if (pin == NULL) {
  620. unsigned int rpin = wps_generate_pin();
  621. ret_len = os_snprintf(buf, buflen, "%08d", rpin);
  622. pin = buf;
  623. } else
  624. ret_len = os_snprintf(buf, buflen, "%s", pin);
  625. ret = hostapd_wps_add_pin(wpa_s->ap_iface->bss[0], bssid, "any", pin,
  626. timeout);
  627. if (ret)
  628. return -1;
  629. return ret_len;
  630. }
  631. static void wpas_wps_ap_pin_timeout(void *eloop_data, void *user_ctx)
  632. {
  633. struct wpa_supplicant *wpa_s = eloop_data;
  634. wpa_printf(MSG_DEBUG, "WPS: AP PIN timed out");
  635. wpas_wps_ap_pin_disable(wpa_s);
  636. }
  637. static void wpas_wps_ap_pin_enable(struct wpa_supplicant *wpa_s, int timeout)
  638. {
  639. struct hostapd_data *hapd;
  640. if (wpa_s->ap_iface == NULL)
  641. return;
  642. hapd = wpa_s->ap_iface->bss[0];
  643. wpa_printf(MSG_DEBUG, "WPS: Enabling AP PIN (timeout=%d)", timeout);
  644. hapd->ap_pin_failures = 0;
  645. eloop_cancel_timeout(wpas_wps_ap_pin_timeout, wpa_s, NULL);
  646. if (timeout > 0)
  647. eloop_register_timeout(timeout, 0,
  648. wpas_wps_ap_pin_timeout, wpa_s, NULL);
  649. }
  650. void wpas_wps_ap_pin_disable(struct wpa_supplicant *wpa_s)
  651. {
  652. struct hostapd_data *hapd;
  653. if (wpa_s->ap_iface == NULL)
  654. return;
  655. wpa_printf(MSG_DEBUG, "WPS: Disabling AP PIN");
  656. hapd = wpa_s->ap_iface->bss[0];
  657. os_free(hapd->conf->ap_pin);
  658. hapd->conf->ap_pin = NULL;
  659. eloop_cancel_timeout(wpas_wps_ap_pin_timeout, wpa_s, NULL);
  660. }
  661. const char * wpas_wps_ap_pin_random(struct wpa_supplicant *wpa_s, int timeout)
  662. {
  663. struct hostapd_data *hapd;
  664. unsigned int pin;
  665. char pin_txt[9];
  666. if (wpa_s->ap_iface == NULL)
  667. return NULL;
  668. hapd = wpa_s->ap_iface->bss[0];
  669. pin = wps_generate_pin();
  670. os_snprintf(pin_txt, sizeof(pin_txt), "%08u", pin);
  671. os_free(hapd->conf->ap_pin);
  672. hapd->conf->ap_pin = os_strdup(pin_txt);
  673. if (hapd->conf->ap_pin == NULL)
  674. return NULL;
  675. wpas_wps_ap_pin_enable(wpa_s, timeout);
  676. return hapd->conf->ap_pin;
  677. }
  678. const char * wpas_wps_ap_pin_get(struct wpa_supplicant *wpa_s)
  679. {
  680. struct hostapd_data *hapd;
  681. if (wpa_s->ap_iface == NULL)
  682. return NULL;
  683. hapd = wpa_s->ap_iface->bss[0];
  684. return hapd->conf->ap_pin;
  685. }
  686. int wpas_wps_ap_pin_set(struct wpa_supplicant *wpa_s, const char *pin,
  687. int timeout)
  688. {
  689. struct hostapd_data *hapd;
  690. char pin_txt[9];
  691. int ret;
  692. if (wpa_s->ap_iface == NULL)
  693. return -1;
  694. hapd = wpa_s->ap_iface->bss[0];
  695. ret = os_snprintf(pin_txt, sizeof(pin_txt), "%s", pin);
  696. if (ret < 0 || ret >= (int) sizeof(pin_txt))
  697. return -1;
  698. os_free(hapd->conf->ap_pin);
  699. hapd->conf->ap_pin = os_strdup(pin_txt);
  700. if (hapd->conf->ap_pin == NULL)
  701. return -1;
  702. wpas_wps_ap_pin_enable(wpa_s, timeout);
  703. return 0;
  704. }
  705. void wpa_supplicant_ap_pwd_auth_fail(struct wpa_supplicant *wpa_s)
  706. {
  707. struct hostapd_data *hapd;
  708. if (wpa_s->ap_iface == NULL)
  709. return;
  710. hapd = wpa_s->ap_iface->bss[0];
  711. /*
  712. * Registrar failed to prove its knowledge of the AP PIN. Disable AP
  713. * PIN if this happens multiple times to slow down brute force attacks.
  714. */
  715. hapd->ap_pin_failures++;
  716. wpa_printf(MSG_DEBUG, "WPS: AP PIN authentication failure number %u",
  717. hapd->ap_pin_failures);
  718. if (hapd->ap_pin_failures < 3)
  719. return;
  720. wpa_printf(MSG_DEBUG, "WPS: Disable AP PIN");
  721. hapd->ap_pin_failures = 0;
  722. os_free(hapd->conf->ap_pin);
  723. hapd->conf->ap_pin = NULL;
  724. }
  725. #ifdef CONFIG_WPS_NFC
  726. struct wpabuf * wpas_ap_wps_nfc_config_token(struct wpa_supplicant *wpa_s,
  727. int ndef)
  728. {
  729. struct hostapd_data *hapd;
  730. if (wpa_s->ap_iface == NULL)
  731. return NULL;
  732. hapd = wpa_s->ap_iface->bss[0];
  733. return hostapd_wps_nfc_config_token(hapd, ndef);
  734. }
  735. struct wpabuf * wpas_ap_wps_nfc_handover_sel(struct wpa_supplicant *wpa_s,
  736. int ndef)
  737. {
  738. struct hostapd_data *hapd;
  739. if (wpa_s->ap_iface == NULL)
  740. return NULL;
  741. hapd = wpa_s->ap_iface->bss[0];
  742. return hostapd_wps_nfc_hs_cr(hapd, ndef);
  743. }
  744. #endif /* CONFIG_WPS_NFC */
  745. #endif /* CONFIG_WPS */
  746. #ifdef CONFIG_CTRL_IFACE
  747. int ap_ctrl_iface_sta_first(struct wpa_supplicant *wpa_s,
  748. char *buf, size_t buflen)
  749. {
  750. if (wpa_s->ap_iface == NULL)
  751. return -1;
  752. return hostapd_ctrl_iface_sta_first(wpa_s->ap_iface->bss[0],
  753. buf, buflen);
  754. }
  755. int ap_ctrl_iface_sta(struct wpa_supplicant *wpa_s, const char *txtaddr,
  756. char *buf, size_t buflen)
  757. {
  758. if (wpa_s->ap_iface == NULL)
  759. return -1;
  760. return hostapd_ctrl_iface_sta(wpa_s->ap_iface->bss[0], txtaddr,
  761. buf, buflen);
  762. }
  763. int ap_ctrl_iface_sta_next(struct wpa_supplicant *wpa_s, const char *txtaddr,
  764. char *buf, size_t buflen)
  765. {
  766. if (wpa_s->ap_iface == NULL)
  767. return -1;
  768. return hostapd_ctrl_iface_sta_next(wpa_s->ap_iface->bss[0], txtaddr,
  769. buf, buflen);
  770. }
  771. int ap_ctrl_iface_sta_disassociate(struct wpa_supplicant *wpa_s,
  772. const char *txtaddr)
  773. {
  774. if (wpa_s->ap_iface == NULL)
  775. return -1;
  776. return hostapd_ctrl_iface_disassociate(wpa_s->ap_iface->bss[0],
  777. txtaddr);
  778. }
  779. int ap_ctrl_iface_sta_deauthenticate(struct wpa_supplicant *wpa_s,
  780. const char *txtaddr)
  781. {
  782. if (wpa_s->ap_iface == NULL)
  783. return -1;
  784. return hostapd_ctrl_iface_deauthenticate(wpa_s->ap_iface->bss[0],
  785. txtaddr);
  786. }
  787. int ap_ctrl_iface_wpa_get_status(struct wpa_supplicant *wpa_s, char *buf,
  788. size_t buflen, int verbose)
  789. {
  790. char *pos = buf, *end = buf + buflen;
  791. int ret;
  792. struct hostapd_bss_config *conf;
  793. if (wpa_s->ap_iface == NULL)
  794. return -1;
  795. conf = wpa_s->ap_iface->bss[0]->conf;
  796. if (conf->wpa == 0)
  797. return 0;
  798. ret = os_snprintf(pos, end - pos,
  799. "pairwise_cipher=%s\n"
  800. "group_cipher=%s\n"
  801. "key_mgmt=%s\n",
  802. wpa_cipher_txt(conf->rsn_pairwise),
  803. wpa_cipher_txt(conf->wpa_group),
  804. wpa_key_mgmt_txt(conf->wpa_key_mgmt,
  805. conf->wpa));
  806. if (ret < 0 || ret >= end - pos)
  807. return pos - buf;
  808. pos += ret;
  809. return pos - buf;
  810. }
  811. #endif /* CONFIG_CTRL_IFACE */
  812. int wpa_supplicant_ap_update_beacon(struct wpa_supplicant *wpa_s)
  813. {
  814. struct hostapd_iface *iface = wpa_s->ap_iface;
  815. struct wpa_ssid *ssid = wpa_s->current_ssid;
  816. struct hostapd_data *hapd;
  817. if (ssid == NULL || wpa_s->ap_iface == NULL ||
  818. ssid->mode == WPAS_MODE_INFRA ||
  819. ssid->mode == WPAS_MODE_IBSS)
  820. return -1;
  821. #ifdef CONFIG_P2P
  822. if (ssid->mode == WPAS_MODE_P2P_GO)
  823. iface->conf->bss[0].p2p = P2P_ENABLED | P2P_GROUP_OWNER;
  824. else if (ssid->mode == WPAS_MODE_P2P_GROUP_FORMATION)
  825. iface->conf->bss[0].p2p = P2P_ENABLED | P2P_GROUP_OWNER |
  826. P2P_GROUP_FORMATION;
  827. #endif /* CONFIG_P2P */
  828. hapd = iface->bss[0];
  829. if (hapd->drv_priv == NULL)
  830. return -1;
  831. ieee802_11_set_beacons(iface);
  832. hostapd_set_ap_wps_ie(hapd);
  833. return 0;
  834. }
  835. void wpas_ap_ch_switch(struct wpa_supplicant *wpa_s, int freq, int ht,
  836. int offset)
  837. {
  838. if (!wpa_s->ap_iface)
  839. return;
  840. wpa_s->assoc_freq = freq;
  841. hostapd_event_ch_switch(wpa_s->ap_iface->bss[0], freq, ht, offset);
  842. }
  843. int wpa_supplicant_ap_mac_addr_filter(struct wpa_supplicant *wpa_s,
  844. const u8 *addr)
  845. {
  846. struct hostapd_data *hapd;
  847. struct hostapd_bss_config *conf;
  848. if (!wpa_s->ap_iface)
  849. return -1;
  850. if (addr)
  851. wpa_printf(MSG_DEBUG, "AP: Set MAC address filter: " MACSTR,
  852. MAC2STR(addr));
  853. else
  854. wpa_printf(MSG_DEBUG, "AP: Clear MAC address filter");
  855. hapd = wpa_s->ap_iface->bss[0];
  856. conf = hapd->conf;
  857. os_free(conf->accept_mac);
  858. conf->accept_mac = NULL;
  859. conf->num_accept_mac = 0;
  860. os_free(conf->deny_mac);
  861. conf->deny_mac = NULL;
  862. conf->num_deny_mac = 0;
  863. if (addr == NULL) {
  864. conf->macaddr_acl = ACCEPT_UNLESS_DENIED;
  865. return 0;
  866. }
  867. conf->macaddr_acl = DENY_UNLESS_ACCEPTED;
  868. conf->accept_mac = os_zalloc(sizeof(struct mac_acl_entry));
  869. if (conf->accept_mac == NULL)
  870. return -1;
  871. os_memcpy(conf->accept_mac[0].addr, addr, ETH_ALEN);
  872. conf->num_accept_mac = 1;
  873. return 0;
  874. }