sae.c 35 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317
  1. /*
  2. * Simultaneous authentication of equals
  3. * Copyright (c) 2012-2016, Jouni Malinen <j@w1.fi>
  4. *
  5. * This software may be distributed under the terms of the BSD license.
  6. * See README for more details.
  7. */
  8. #include "includes.h"
  9. #include "common.h"
  10. #include "crypto/crypto.h"
  11. #include "crypto/sha256.h"
  12. #include "crypto/random.h"
  13. #include "crypto/dh_groups.h"
  14. #include "ieee802_11_defs.h"
  15. #include "sae.h"
  16. int sae_set_group(struct sae_data *sae, int group)
  17. {
  18. struct sae_temporary_data *tmp;
  19. sae_clear_data(sae);
  20. tmp = sae->tmp = os_zalloc(sizeof(*tmp));
  21. if (tmp == NULL)
  22. return -1;
  23. /* First, check if this is an ECC group */
  24. tmp->ec = crypto_ec_init(group);
  25. if (tmp->ec) {
  26. wpa_printf(MSG_DEBUG, "SAE: Selecting supported ECC group %d",
  27. group);
  28. sae->group = group;
  29. tmp->prime_len = crypto_ec_prime_len(tmp->ec);
  30. tmp->prime = crypto_ec_get_prime(tmp->ec);
  31. tmp->order = crypto_ec_get_order(tmp->ec);
  32. return 0;
  33. }
  34. /* Not an ECC group, check FFC */
  35. tmp->dh = dh_groups_get(group);
  36. if (tmp->dh) {
  37. wpa_printf(MSG_DEBUG, "SAE: Selecting supported FFC group %d",
  38. group);
  39. sae->group = group;
  40. tmp->prime_len = tmp->dh->prime_len;
  41. if (tmp->prime_len > SAE_MAX_PRIME_LEN) {
  42. sae_clear_data(sae);
  43. return -1;
  44. }
  45. tmp->prime_buf = crypto_bignum_init_set(tmp->dh->prime,
  46. tmp->prime_len);
  47. if (tmp->prime_buf == NULL) {
  48. sae_clear_data(sae);
  49. return -1;
  50. }
  51. tmp->prime = tmp->prime_buf;
  52. tmp->order_buf = crypto_bignum_init_set(tmp->dh->order,
  53. tmp->dh->order_len);
  54. if (tmp->order_buf == NULL) {
  55. sae_clear_data(sae);
  56. return -1;
  57. }
  58. tmp->order = tmp->order_buf;
  59. return 0;
  60. }
  61. /* Unsupported group */
  62. wpa_printf(MSG_DEBUG,
  63. "SAE: Group %d not supported by the crypto library", group);
  64. return -1;
  65. }
  66. void sae_clear_temp_data(struct sae_data *sae)
  67. {
  68. struct sae_temporary_data *tmp;
  69. if (sae == NULL || sae->tmp == NULL)
  70. return;
  71. tmp = sae->tmp;
  72. crypto_ec_deinit(tmp->ec);
  73. crypto_bignum_deinit(tmp->prime_buf, 0);
  74. crypto_bignum_deinit(tmp->order_buf, 0);
  75. crypto_bignum_deinit(tmp->sae_rand, 1);
  76. crypto_bignum_deinit(tmp->pwe_ffc, 1);
  77. crypto_bignum_deinit(tmp->own_commit_scalar, 0);
  78. crypto_bignum_deinit(tmp->own_commit_element_ffc, 0);
  79. crypto_bignum_deinit(tmp->peer_commit_element_ffc, 0);
  80. crypto_ec_point_deinit(tmp->pwe_ecc, 1);
  81. crypto_ec_point_deinit(tmp->own_commit_element_ecc, 0);
  82. crypto_ec_point_deinit(tmp->peer_commit_element_ecc, 0);
  83. wpabuf_free(tmp->anti_clogging_token);
  84. bin_clear_free(tmp, sizeof(*tmp));
  85. sae->tmp = NULL;
  86. }
  87. void sae_clear_data(struct sae_data *sae)
  88. {
  89. if (sae == NULL)
  90. return;
  91. sae_clear_temp_data(sae);
  92. crypto_bignum_deinit(sae->peer_commit_scalar, 0);
  93. os_memset(sae, 0, sizeof(*sae));
  94. }
  95. static void buf_shift_right(u8 *buf, size_t len, size_t bits)
  96. {
  97. size_t i;
  98. for (i = len - 1; i > 0; i--)
  99. buf[i] = (buf[i - 1] << (8 - bits)) | (buf[i] >> bits);
  100. buf[0] >>= bits;
  101. }
  102. static struct crypto_bignum * sae_get_rand(struct sae_data *sae)
  103. {
  104. u8 val[SAE_MAX_PRIME_LEN];
  105. int iter = 0;
  106. struct crypto_bignum *bn = NULL;
  107. int order_len_bits = crypto_bignum_bits(sae->tmp->order);
  108. size_t order_len = (order_len_bits + 7) / 8;
  109. if (order_len > sizeof(val))
  110. return NULL;
  111. for (;;) {
  112. if (iter++ > 100 || random_get_bytes(val, order_len) < 0)
  113. return NULL;
  114. if (order_len_bits % 8)
  115. buf_shift_right(val, order_len, 8 - order_len_bits % 8);
  116. bn = crypto_bignum_init_set(val, order_len);
  117. if (bn == NULL)
  118. return NULL;
  119. if (crypto_bignum_is_zero(bn) ||
  120. crypto_bignum_is_one(bn) ||
  121. crypto_bignum_cmp(bn, sae->tmp->order) >= 0) {
  122. crypto_bignum_deinit(bn, 0);
  123. continue;
  124. }
  125. break;
  126. }
  127. os_memset(val, 0, order_len);
  128. return bn;
  129. }
  130. static struct crypto_bignum * sae_get_rand_and_mask(struct sae_data *sae)
  131. {
  132. crypto_bignum_deinit(sae->tmp->sae_rand, 1);
  133. sae->tmp->sae_rand = sae_get_rand(sae);
  134. if (sae->tmp->sae_rand == NULL)
  135. return NULL;
  136. return sae_get_rand(sae);
  137. }
  138. static void sae_pwd_seed_key(const u8 *addr1, const u8 *addr2, u8 *key)
  139. {
  140. wpa_printf(MSG_DEBUG, "SAE: PWE derivation - addr1=" MACSTR
  141. " addr2=" MACSTR, MAC2STR(addr1), MAC2STR(addr2));
  142. if (os_memcmp(addr1, addr2, ETH_ALEN) > 0) {
  143. os_memcpy(key, addr1, ETH_ALEN);
  144. os_memcpy(key + ETH_ALEN, addr2, ETH_ALEN);
  145. } else {
  146. os_memcpy(key, addr2, ETH_ALEN);
  147. os_memcpy(key + ETH_ALEN, addr1, ETH_ALEN);
  148. }
  149. }
  150. static struct crypto_bignum *
  151. get_rand_1_to_p_1(const u8 *prime, size_t prime_len, size_t prime_bits,
  152. int *r_odd)
  153. {
  154. for (;;) {
  155. struct crypto_bignum *r;
  156. u8 tmp[SAE_MAX_ECC_PRIME_LEN];
  157. if (random_get_bytes(tmp, prime_len) < 0)
  158. break;
  159. if (prime_bits % 8)
  160. buf_shift_right(tmp, prime_len, 8 - prime_bits % 8);
  161. if (os_memcmp(tmp, prime, prime_len) >= 0)
  162. continue;
  163. r = crypto_bignum_init_set(tmp, prime_len);
  164. if (!r)
  165. break;
  166. if (crypto_bignum_is_zero(r)) {
  167. crypto_bignum_deinit(r, 0);
  168. continue;
  169. }
  170. *r_odd = tmp[prime_len - 1] & 0x01;
  171. return r;
  172. }
  173. return NULL;
  174. }
  175. static int is_quadratic_residue_blind(struct sae_data *sae,
  176. const u8 *prime, size_t bits,
  177. const struct crypto_bignum *qr,
  178. const struct crypto_bignum *qnr,
  179. const struct crypto_bignum *y_sqr)
  180. {
  181. struct crypto_bignum *r, *num;
  182. int r_odd, check, res = -1;
  183. /*
  184. * Use the blinding technique to mask y_sqr while determining
  185. * whether it is a quadratic residue modulo p to avoid leaking
  186. * timing information while determining the Legendre symbol.
  187. *
  188. * v = y_sqr
  189. * r = a random number between 1 and p-1, inclusive
  190. * num = (v * r * r) modulo p
  191. */
  192. r = get_rand_1_to_p_1(prime, sae->tmp->prime_len, bits, &r_odd);
  193. if (!r)
  194. return -1;
  195. num = crypto_bignum_init();
  196. if (!num ||
  197. crypto_bignum_mulmod(y_sqr, r, sae->tmp->prime, num) < 0 ||
  198. crypto_bignum_mulmod(num, r, sae->tmp->prime, num) < 0)
  199. goto fail;
  200. if (r_odd) {
  201. /*
  202. * num = (num * qr) module p
  203. * LGR(num, p) = 1 ==> quadratic residue
  204. */
  205. if (crypto_bignum_mulmod(num, qr, sae->tmp->prime, num) < 0)
  206. goto fail;
  207. check = 1;
  208. } else {
  209. /*
  210. * num = (num * qnr) module p
  211. * LGR(num, p) = -1 ==> quadratic residue
  212. */
  213. if (crypto_bignum_mulmod(num, qnr, sae->tmp->prime, num) < 0)
  214. goto fail;
  215. check = -1;
  216. }
  217. res = crypto_bignum_legendre(num, sae->tmp->prime);
  218. if (res == -2) {
  219. res = -1;
  220. goto fail;
  221. }
  222. res = res == check;
  223. fail:
  224. crypto_bignum_deinit(num, 1);
  225. crypto_bignum_deinit(r, 1);
  226. return res;
  227. }
  228. static int sae_test_pwd_seed_ecc(struct sae_data *sae, const u8 *pwd_seed,
  229. const u8 *prime,
  230. const struct crypto_bignum *qr,
  231. const struct crypto_bignum *qnr,
  232. struct crypto_bignum **ret_x_cand)
  233. {
  234. u8 pwd_value[SAE_MAX_ECC_PRIME_LEN];
  235. struct crypto_bignum *y_sqr, *x_cand;
  236. int res;
  237. size_t bits;
  238. *ret_x_cand = NULL;
  239. wpa_hexdump_key(MSG_DEBUG, "SAE: pwd-seed", pwd_seed, SHA256_MAC_LEN);
  240. /* pwd-value = KDF-z(pwd-seed, "SAE Hunting and Pecking", p) */
  241. bits = crypto_ec_prime_len_bits(sae->tmp->ec);
  242. if (sha256_prf_bits(pwd_seed, SHA256_MAC_LEN, "SAE Hunting and Pecking",
  243. prime, sae->tmp->prime_len, pwd_value, bits) < 0)
  244. return -1;
  245. if (bits % 8)
  246. buf_shift_right(pwd_value, sizeof(pwd_value), 8 - bits % 8);
  247. wpa_hexdump_key(MSG_DEBUG, "SAE: pwd-value",
  248. pwd_value, sae->tmp->prime_len);
  249. if (os_memcmp(pwd_value, prime, sae->tmp->prime_len) >= 0)
  250. return 0;
  251. x_cand = crypto_bignum_init_set(pwd_value, sae->tmp->prime_len);
  252. if (!x_cand)
  253. return -1;
  254. y_sqr = crypto_ec_point_compute_y_sqr(sae->tmp->ec, x_cand);
  255. if (!y_sqr) {
  256. crypto_bignum_deinit(x_cand, 1);
  257. return -1;
  258. }
  259. res = is_quadratic_residue_blind(sae, prime, bits, qr, qnr, y_sqr);
  260. crypto_bignum_deinit(y_sqr, 1);
  261. if (res <= 0) {
  262. crypto_bignum_deinit(x_cand, 1);
  263. return res;
  264. }
  265. *ret_x_cand = x_cand;
  266. return 1;
  267. }
  268. static int sae_test_pwd_seed_ffc(struct sae_data *sae, const u8 *pwd_seed,
  269. struct crypto_bignum *pwe)
  270. {
  271. u8 pwd_value[SAE_MAX_PRIME_LEN];
  272. size_t bits = sae->tmp->prime_len * 8;
  273. u8 exp[1];
  274. struct crypto_bignum *a, *b;
  275. int res;
  276. wpa_hexdump_key(MSG_DEBUG, "SAE: pwd-seed", pwd_seed, SHA256_MAC_LEN);
  277. /* pwd-value = KDF-z(pwd-seed, "SAE Hunting and Pecking", p) */
  278. if (sha256_prf_bits(pwd_seed, SHA256_MAC_LEN, "SAE Hunting and Pecking",
  279. sae->tmp->dh->prime, sae->tmp->prime_len, pwd_value,
  280. bits) < 0)
  281. return -1;
  282. wpa_hexdump_key(MSG_DEBUG, "SAE: pwd-value", pwd_value,
  283. sae->tmp->prime_len);
  284. if (os_memcmp(pwd_value, sae->tmp->dh->prime, sae->tmp->prime_len) >= 0)
  285. {
  286. wpa_printf(MSG_DEBUG, "SAE: pwd-value >= p");
  287. return 0;
  288. }
  289. /* PWE = pwd-value^((p-1)/r) modulo p */
  290. a = crypto_bignum_init_set(pwd_value, sae->tmp->prime_len);
  291. if (sae->tmp->dh->safe_prime) {
  292. /*
  293. * r = (p-1)/2 for the group used here, so this becomes:
  294. * PWE = pwd-value^2 modulo p
  295. */
  296. exp[0] = 2;
  297. b = crypto_bignum_init_set(exp, sizeof(exp));
  298. } else {
  299. /* Calculate exponent: (p-1)/r */
  300. exp[0] = 1;
  301. b = crypto_bignum_init_set(exp, sizeof(exp));
  302. if (b == NULL ||
  303. crypto_bignum_sub(sae->tmp->prime, b, b) < 0 ||
  304. crypto_bignum_div(b, sae->tmp->order, b) < 0) {
  305. crypto_bignum_deinit(b, 0);
  306. b = NULL;
  307. }
  308. }
  309. if (a == NULL || b == NULL)
  310. res = -1;
  311. else
  312. res = crypto_bignum_exptmod(a, b, sae->tmp->prime, pwe);
  313. crypto_bignum_deinit(a, 0);
  314. crypto_bignum_deinit(b, 0);
  315. if (res < 0) {
  316. wpa_printf(MSG_DEBUG, "SAE: Failed to calculate PWE");
  317. return -1;
  318. }
  319. /* if (PWE > 1) --> found */
  320. if (crypto_bignum_is_zero(pwe) || crypto_bignum_is_one(pwe)) {
  321. wpa_printf(MSG_DEBUG, "SAE: PWE <= 1");
  322. return 0;
  323. }
  324. wpa_printf(MSG_DEBUG, "SAE: PWE found");
  325. return 1;
  326. }
  327. static int get_random_qr_qnr(const u8 *prime, size_t prime_len,
  328. const struct crypto_bignum *prime_bn,
  329. size_t prime_bits, struct crypto_bignum **qr,
  330. struct crypto_bignum **qnr)
  331. {
  332. *qr = NULL;
  333. *qnr = NULL;
  334. while (!(*qr) || !(*qnr)) {
  335. u8 tmp[SAE_MAX_ECC_PRIME_LEN];
  336. struct crypto_bignum *q;
  337. int res;
  338. if (random_get_bytes(tmp, prime_len) < 0)
  339. break;
  340. if (prime_bits % 8)
  341. buf_shift_right(tmp, prime_len, 8 - prime_bits % 8);
  342. if (os_memcmp(tmp, prime, prime_len) >= 0)
  343. continue;
  344. q = crypto_bignum_init_set(tmp, prime_len);
  345. if (!q)
  346. break;
  347. res = crypto_bignum_legendre(q, prime_bn);
  348. if (res == 1 && !(*qr))
  349. *qr = q;
  350. else if (res == -1 && !(*qnr))
  351. *qnr = q;
  352. else
  353. crypto_bignum_deinit(q, 0);
  354. }
  355. return (*qr && *qnr) ? 0 : -1;
  356. }
  357. static int sae_derive_pwe_ecc(struct sae_data *sae, const u8 *addr1,
  358. const u8 *addr2, const u8 *password,
  359. size_t password_len)
  360. {
  361. u8 counter, k = 40;
  362. u8 addrs[2 * ETH_ALEN];
  363. const u8 *addr[2];
  364. size_t len[2];
  365. u8 dummy_password[32];
  366. size_t dummy_password_len;
  367. int pwd_seed_odd = 0;
  368. u8 prime[SAE_MAX_ECC_PRIME_LEN];
  369. size_t prime_len;
  370. struct crypto_bignum *x = NULL, *qr, *qnr;
  371. size_t bits;
  372. int res;
  373. dummy_password_len = password_len;
  374. if (dummy_password_len > sizeof(dummy_password))
  375. dummy_password_len = sizeof(dummy_password);
  376. if (random_get_bytes(dummy_password, dummy_password_len) < 0)
  377. return -1;
  378. prime_len = sae->tmp->prime_len;
  379. if (crypto_bignum_to_bin(sae->tmp->prime, prime, sizeof(prime),
  380. prime_len) < 0)
  381. return -1;
  382. bits = crypto_ec_prime_len_bits(sae->tmp->ec);
  383. /*
  384. * Create a random quadratic residue (qr) and quadratic non-residue
  385. * (qnr) modulo p for blinding purposes during the loop.
  386. */
  387. if (get_random_qr_qnr(prime, prime_len, sae->tmp->prime, bits,
  388. &qr, &qnr) < 0)
  389. return -1;
  390. wpa_hexdump_ascii_key(MSG_DEBUG, "SAE: password",
  391. password, password_len);
  392. /*
  393. * H(salt, ikm) = HMAC-SHA256(salt, ikm)
  394. * base = password
  395. * pwd-seed = H(MAX(STA-A-MAC, STA-B-MAC) || MIN(STA-A-MAC, STA-B-MAC),
  396. * base || counter)
  397. */
  398. sae_pwd_seed_key(addr1, addr2, addrs);
  399. addr[0] = password;
  400. len[0] = password_len;
  401. addr[1] = &counter;
  402. len[1] = sizeof(counter);
  403. /*
  404. * Continue for at least k iterations to protect against side-channel
  405. * attacks that attempt to determine the number of iterations required
  406. * in the loop.
  407. */
  408. for (counter = 1; counter <= k || !x; counter++) {
  409. u8 pwd_seed[SHA256_MAC_LEN];
  410. struct crypto_bignum *x_cand;
  411. if (counter > 200) {
  412. /* This should not happen in practice */
  413. wpa_printf(MSG_DEBUG, "SAE: Failed to derive PWE");
  414. break;
  415. }
  416. wpa_printf(MSG_DEBUG, "SAE: counter = %u", counter);
  417. if (hmac_sha256_vector(addrs, sizeof(addrs), 2, addr, len,
  418. pwd_seed) < 0)
  419. break;
  420. res = sae_test_pwd_seed_ecc(sae, pwd_seed,
  421. prime, qr, qnr, &x_cand);
  422. if (res < 0)
  423. goto fail;
  424. if (res > 0 && !x) {
  425. wpa_printf(MSG_DEBUG,
  426. "SAE: Selected pwd-seed with counter %u",
  427. counter);
  428. x = x_cand;
  429. pwd_seed_odd = pwd_seed[SHA256_MAC_LEN - 1] & 0x01;
  430. os_memset(pwd_seed, 0, sizeof(pwd_seed));
  431. /*
  432. * Use a dummy password for the following rounds, if
  433. * any.
  434. */
  435. addr[0] = dummy_password;
  436. len[0] = dummy_password_len;
  437. } else if (res > 0) {
  438. crypto_bignum_deinit(x_cand, 1);
  439. }
  440. }
  441. if (!x) {
  442. wpa_printf(MSG_DEBUG, "SAE: Could not generate PWE");
  443. res = -1;
  444. goto fail;
  445. }
  446. if (!sae->tmp->pwe_ecc)
  447. sae->tmp->pwe_ecc = crypto_ec_point_init(sae->tmp->ec);
  448. if (!sae->tmp->pwe_ecc)
  449. res = -1;
  450. else
  451. res = crypto_ec_point_solve_y_coord(sae->tmp->ec,
  452. sae->tmp->pwe_ecc, x,
  453. pwd_seed_odd);
  454. crypto_bignum_deinit(x, 1);
  455. if (res < 0) {
  456. /*
  457. * This should not happen since we already checked that there
  458. * is a result.
  459. */
  460. wpa_printf(MSG_DEBUG, "SAE: Could not solve y");
  461. }
  462. fail:
  463. crypto_bignum_deinit(qr, 0);
  464. crypto_bignum_deinit(qnr, 0);
  465. return res;
  466. }
  467. static int sae_derive_pwe_ffc(struct sae_data *sae, const u8 *addr1,
  468. const u8 *addr2, const u8 *password,
  469. size_t password_len)
  470. {
  471. u8 counter;
  472. u8 addrs[2 * ETH_ALEN];
  473. const u8 *addr[2];
  474. size_t len[2];
  475. int found = 0;
  476. if (sae->tmp->pwe_ffc == NULL) {
  477. sae->tmp->pwe_ffc = crypto_bignum_init();
  478. if (sae->tmp->pwe_ffc == NULL)
  479. return -1;
  480. }
  481. wpa_hexdump_ascii_key(MSG_DEBUG, "SAE: password",
  482. password, password_len);
  483. /*
  484. * H(salt, ikm) = HMAC-SHA256(salt, ikm)
  485. * pwd-seed = H(MAX(STA-A-MAC, STA-B-MAC) || MIN(STA-A-MAC, STA-B-MAC),
  486. * password || counter)
  487. */
  488. sae_pwd_seed_key(addr1, addr2, addrs);
  489. addr[0] = password;
  490. len[0] = password_len;
  491. addr[1] = &counter;
  492. len[1] = sizeof(counter);
  493. for (counter = 1; !found; counter++) {
  494. u8 pwd_seed[SHA256_MAC_LEN];
  495. int res;
  496. if (counter > 200) {
  497. /* This should not happen in practice */
  498. wpa_printf(MSG_DEBUG, "SAE: Failed to derive PWE");
  499. break;
  500. }
  501. wpa_printf(MSG_DEBUG, "SAE: counter = %u", counter);
  502. if (hmac_sha256_vector(addrs, sizeof(addrs), 2, addr, len,
  503. pwd_seed) < 0)
  504. break;
  505. res = sae_test_pwd_seed_ffc(sae, pwd_seed, sae->tmp->pwe_ffc);
  506. if (res < 0)
  507. break;
  508. if (res > 0) {
  509. wpa_printf(MSG_DEBUG, "SAE: Use this PWE");
  510. found = 1;
  511. }
  512. }
  513. return found ? 0 : -1;
  514. }
  515. static int sae_derive_commit_element_ecc(struct sae_data *sae,
  516. struct crypto_bignum *mask)
  517. {
  518. /* COMMIT-ELEMENT = inverse(scalar-op(mask, PWE)) */
  519. if (!sae->tmp->own_commit_element_ecc) {
  520. sae->tmp->own_commit_element_ecc =
  521. crypto_ec_point_init(sae->tmp->ec);
  522. if (!sae->tmp->own_commit_element_ecc)
  523. return -1;
  524. }
  525. if (crypto_ec_point_mul(sae->tmp->ec, sae->tmp->pwe_ecc, mask,
  526. sae->tmp->own_commit_element_ecc) < 0 ||
  527. crypto_ec_point_invert(sae->tmp->ec,
  528. sae->tmp->own_commit_element_ecc) < 0) {
  529. wpa_printf(MSG_DEBUG, "SAE: Could not compute commit-element");
  530. return -1;
  531. }
  532. return 0;
  533. }
  534. static int sae_derive_commit_element_ffc(struct sae_data *sae,
  535. struct crypto_bignum *mask)
  536. {
  537. /* COMMIT-ELEMENT = inverse(scalar-op(mask, PWE)) */
  538. if (!sae->tmp->own_commit_element_ffc) {
  539. sae->tmp->own_commit_element_ffc = crypto_bignum_init();
  540. if (!sae->tmp->own_commit_element_ffc)
  541. return -1;
  542. }
  543. if (crypto_bignum_exptmod(sae->tmp->pwe_ffc, mask, sae->tmp->prime,
  544. sae->tmp->own_commit_element_ffc) < 0 ||
  545. crypto_bignum_inverse(sae->tmp->own_commit_element_ffc,
  546. sae->tmp->prime,
  547. sae->tmp->own_commit_element_ffc) < 0) {
  548. wpa_printf(MSG_DEBUG, "SAE: Could not compute commit-element");
  549. return -1;
  550. }
  551. return 0;
  552. }
  553. static int sae_derive_commit(struct sae_data *sae)
  554. {
  555. struct crypto_bignum *mask;
  556. int ret = -1;
  557. unsigned int counter = 0;
  558. do {
  559. counter++;
  560. if (counter > 100) {
  561. /*
  562. * This cannot really happen in practice if the random
  563. * number generator is working. Anyway, to avoid even a
  564. * theoretical infinite loop, break out after 100
  565. * attemps.
  566. */
  567. return -1;
  568. }
  569. mask = sae_get_rand_and_mask(sae);
  570. if (mask == NULL) {
  571. wpa_printf(MSG_DEBUG, "SAE: Could not get rand/mask");
  572. return -1;
  573. }
  574. /* commit-scalar = (rand + mask) modulo r */
  575. if (!sae->tmp->own_commit_scalar) {
  576. sae->tmp->own_commit_scalar = crypto_bignum_init();
  577. if (!sae->tmp->own_commit_scalar)
  578. goto fail;
  579. }
  580. crypto_bignum_add(sae->tmp->sae_rand, mask,
  581. sae->tmp->own_commit_scalar);
  582. crypto_bignum_mod(sae->tmp->own_commit_scalar, sae->tmp->order,
  583. sae->tmp->own_commit_scalar);
  584. } while (crypto_bignum_is_zero(sae->tmp->own_commit_scalar) ||
  585. crypto_bignum_is_one(sae->tmp->own_commit_scalar));
  586. if ((sae->tmp->ec && sae_derive_commit_element_ecc(sae, mask) < 0) ||
  587. (sae->tmp->dh && sae_derive_commit_element_ffc(sae, mask) < 0))
  588. goto fail;
  589. ret = 0;
  590. fail:
  591. crypto_bignum_deinit(mask, 1);
  592. return ret;
  593. }
  594. int sae_prepare_commit(const u8 *addr1, const u8 *addr2,
  595. const u8 *password, size_t password_len,
  596. struct sae_data *sae)
  597. {
  598. if (sae->tmp == NULL ||
  599. (sae->tmp->ec && sae_derive_pwe_ecc(sae, addr1, addr2, password,
  600. password_len) < 0) ||
  601. (sae->tmp->dh && sae_derive_pwe_ffc(sae, addr1, addr2, password,
  602. password_len) < 0) ||
  603. sae_derive_commit(sae) < 0)
  604. return -1;
  605. return 0;
  606. }
  607. static int sae_derive_k_ecc(struct sae_data *sae, u8 *k)
  608. {
  609. struct crypto_ec_point *K;
  610. int ret = -1;
  611. K = crypto_ec_point_init(sae->tmp->ec);
  612. if (K == NULL)
  613. goto fail;
  614. /*
  615. * K = scalar-op(rand, (elem-op(scalar-op(peer-commit-scalar, PWE),
  616. * PEER-COMMIT-ELEMENT)))
  617. * If K is identity element (point-at-infinity), reject
  618. * k = F(K) (= x coordinate)
  619. */
  620. if (crypto_ec_point_mul(sae->tmp->ec, sae->tmp->pwe_ecc,
  621. sae->peer_commit_scalar, K) < 0 ||
  622. crypto_ec_point_add(sae->tmp->ec, K,
  623. sae->tmp->peer_commit_element_ecc, K) < 0 ||
  624. crypto_ec_point_mul(sae->tmp->ec, K, sae->tmp->sae_rand, K) < 0 ||
  625. crypto_ec_point_is_at_infinity(sae->tmp->ec, K) ||
  626. crypto_ec_point_to_bin(sae->tmp->ec, K, k, NULL) < 0) {
  627. wpa_printf(MSG_DEBUG, "SAE: Failed to calculate K and k");
  628. goto fail;
  629. }
  630. wpa_hexdump_key(MSG_DEBUG, "SAE: k", k, sae->tmp->prime_len);
  631. ret = 0;
  632. fail:
  633. crypto_ec_point_deinit(K, 1);
  634. return ret;
  635. }
  636. static int sae_derive_k_ffc(struct sae_data *sae, u8 *k)
  637. {
  638. struct crypto_bignum *K;
  639. int ret = -1;
  640. K = crypto_bignum_init();
  641. if (K == NULL)
  642. goto fail;
  643. /*
  644. * K = scalar-op(rand, (elem-op(scalar-op(peer-commit-scalar, PWE),
  645. * PEER-COMMIT-ELEMENT)))
  646. * If K is identity element (one), reject.
  647. * k = F(K) (= x coordinate)
  648. */
  649. if (crypto_bignum_exptmod(sae->tmp->pwe_ffc, sae->peer_commit_scalar,
  650. sae->tmp->prime, K) < 0 ||
  651. crypto_bignum_mulmod(K, sae->tmp->peer_commit_element_ffc,
  652. sae->tmp->prime, K) < 0 ||
  653. crypto_bignum_exptmod(K, sae->tmp->sae_rand, sae->tmp->prime, K) < 0
  654. ||
  655. crypto_bignum_is_one(K) ||
  656. crypto_bignum_to_bin(K, k, SAE_MAX_PRIME_LEN, sae->tmp->prime_len) <
  657. 0) {
  658. wpa_printf(MSG_DEBUG, "SAE: Failed to calculate K and k");
  659. goto fail;
  660. }
  661. wpa_hexdump_key(MSG_DEBUG, "SAE: k", k, sae->tmp->prime_len);
  662. ret = 0;
  663. fail:
  664. crypto_bignum_deinit(K, 1);
  665. return ret;
  666. }
  667. static int sae_derive_keys(struct sae_data *sae, const u8 *k)
  668. {
  669. u8 null_key[SAE_KEYSEED_KEY_LEN], val[SAE_MAX_PRIME_LEN];
  670. u8 keyseed[SHA256_MAC_LEN];
  671. u8 keys[SAE_KCK_LEN + SAE_PMK_LEN];
  672. struct crypto_bignum *tmp;
  673. int ret = -1;
  674. tmp = crypto_bignum_init();
  675. if (tmp == NULL)
  676. goto fail;
  677. /* keyseed = H(<0>32, k)
  678. * KCK || PMK = KDF-512(keyseed, "SAE KCK and PMK",
  679. * (commit-scalar + peer-commit-scalar) modulo r)
  680. * PMKID = L((commit-scalar + peer-commit-scalar) modulo r, 0, 128)
  681. */
  682. os_memset(null_key, 0, sizeof(null_key));
  683. hmac_sha256(null_key, sizeof(null_key), k, sae->tmp->prime_len,
  684. keyseed);
  685. wpa_hexdump_key(MSG_DEBUG, "SAE: keyseed", keyseed, sizeof(keyseed));
  686. crypto_bignum_add(sae->tmp->own_commit_scalar, sae->peer_commit_scalar,
  687. tmp);
  688. crypto_bignum_mod(tmp, sae->tmp->order, tmp);
  689. crypto_bignum_to_bin(tmp, val, sizeof(val), sae->tmp->prime_len);
  690. wpa_hexdump(MSG_DEBUG, "SAE: PMKID", val, SAE_PMKID_LEN);
  691. if (sha256_prf(keyseed, sizeof(keyseed), "SAE KCK and PMK",
  692. val, sae->tmp->prime_len, keys, sizeof(keys)) < 0)
  693. goto fail;
  694. os_memset(keyseed, 0, sizeof(keyseed));
  695. os_memcpy(sae->tmp->kck, keys, SAE_KCK_LEN);
  696. os_memcpy(sae->pmk, keys + SAE_KCK_LEN, SAE_PMK_LEN);
  697. os_memcpy(sae->pmkid, val, SAE_PMKID_LEN);
  698. os_memset(keys, 0, sizeof(keys));
  699. wpa_hexdump_key(MSG_DEBUG, "SAE: KCK", sae->tmp->kck, SAE_KCK_LEN);
  700. wpa_hexdump_key(MSG_DEBUG, "SAE: PMK", sae->pmk, SAE_PMK_LEN);
  701. ret = 0;
  702. fail:
  703. crypto_bignum_deinit(tmp, 0);
  704. return ret;
  705. }
  706. int sae_process_commit(struct sae_data *sae)
  707. {
  708. u8 k[SAE_MAX_PRIME_LEN];
  709. if (sae->tmp == NULL ||
  710. (sae->tmp->ec && sae_derive_k_ecc(sae, k) < 0) ||
  711. (sae->tmp->dh && sae_derive_k_ffc(sae, k) < 0) ||
  712. sae_derive_keys(sae, k) < 0)
  713. return -1;
  714. return 0;
  715. }
  716. void sae_write_commit(struct sae_data *sae, struct wpabuf *buf,
  717. const struct wpabuf *token)
  718. {
  719. u8 *pos;
  720. if (sae->tmp == NULL)
  721. return;
  722. wpabuf_put_le16(buf, sae->group); /* Finite Cyclic Group */
  723. if (token) {
  724. wpabuf_put_buf(buf, token);
  725. wpa_hexdump(MSG_DEBUG, "SAE: Anti-clogging token",
  726. wpabuf_head(token), wpabuf_len(token));
  727. }
  728. pos = wpabuf_put(buf, sae->tmp->prime_len);
  729. crypto_bignum_to_bin(sae->tmp->own_commit_scalar, pos,
  730. sae->tmp->prime_len, sae->tmp->prime_len);
  731. wpa_hexdump(MSG_DEBUG, "SAE: own commit-scalar",
  732. pos, sae->tmp->prime_len);
  733. if (sae->tmp->ec) {
  734. pos = wpabuf_put(buf, 2 * sae->tmp->prime_len);
  735. crypto_ec_point_to_bin(sae->tmp->ec,
  736. sae->tmp->own_commit_element_ecc,
  737. pos, pos + sae->tmp->prime_len);
  738. wpa_hexdump(MSG_DEBUG, "SAE: own commit-element(x)",
  739. pos, sae->tmp->prime_len);
  740. wpa_hexdump(MSG_DEBUG, "SAE: own commit-element(y)",
  741. pos + sae->tmp->prime_len, sae->tmp->prime_len);
  742. } else {
  743. pos = wpabuf_put(buf, sae->tmp->prime_len);
  744. crypto_bignum_to_bin(sae->tmp->own_commit_element_ffc, pos,
  745. sae->tmp->prime_len, sae->tmp->prime_len);
  746. wpa_hexdump(MSG_DEBUG, "SAE: own commit-element",
  747. pos, sae->tmp->prime_len);
  748. }
  749. }
  750. u16 sae_group_allowed(struct sae_data *sae, int *allowed_groups, u16 group)
  751. {
  752. if (allowed_groups) {
  753. int i;
  754. for (i = 0; allowed_groups[i] > 0; i++) {
  755. if (allowed_groups[i] == group)
  756. break;
  757. }
  758. if (allowed_groups[i] != group) {
  759. wpa_printf(MSG_DEBUG, "SAE: Proposed group %u not "
  760. "enabled in the current configuration",
  761. group);
  762. return WLAN_STATUS_FINITE_CYCLIC_GROUP_NOT_SUPPORTED;
  763. }
  764. }
  765. if (sae->state == SAE_COMMITTED && group != sae->group) {
  766. wpa_printf(MSG_DEBUG, "SAE: Do not allow group to be changed");
  767. return WLAN_STATUS_FINITE_CYCLIC_GROUP_NOT_SUPPORTED;
  768. }
  769. if (group != sae->group && sae_set_group(sae, group) < 0) {
  770. wpa_printf(MSG_DEBUG, "SAE: Unsupported Finite Cyclic Group %u",
  771. group);
  772. return WLAN_STATUS_FINITE_CYCLIC_GROUP_NOT_SUPPORTED;
  773. }
  774. if (sae->tmp == NULL) {
  775. wpa_printf(MSG_DEBUG, "SAE: Group information not yet initialized");
  776. return WLAN_STATUS_UNSPECIFIED_FAILURE;
  777. }
  778. if (sae->tmp->dh && !allowed_groups) {
  779. wpa_printf(MSG_DEBUG, "SAE: Do not allow FFC group %u without "
  780. "explicit configuration enabling it", group);
  781. return WLAN_STATUS_FINITE_CYCLIC_GROUP_NOT_SUPPORTED;
  782. }
  783. return WLAN_STATUS_SUCCESS;
  784. }
  785. static void sae_parse_commit_token(struct sae_data *sae, const u8 **pos,
  786. const u8 *end, const u8 **token,
  787. size_t *token_len)
  788. {
  789. if ((sae->tmp->ec ? 3 : 2) * sae->tmp->prime_len < end - *pos) {
  790. size_t tlen = end - (*pos + (sae->tmp->ec ? 3 : 2) *
  791. sae->tmp->prime_len);
  792. wpa_hexdump(MSG_DEBUG, "SAE: Anti-Clogging Token", *pos, tlen);
  793. if (token)
  794. *token = *pos;
  795. if (token_len)
  796. *token_len = tlen;
  797. *pos += tlen;
  798. } else {
  799. if (token)
  800. *token = NULL;
  801. if (token_len)
  802. *token_len = 0;
  803. }
  804. }
  805. static u16 sae_parse_commit_scalar(struct sae_data *sae, const u8 **pos,
  806. const u8 *end)
  807. {
  808. struct crypto_bignum *peer_scalar;
  809. if (sae->tmp->prime_len > end - *pos) {
  810. wpa_printf(MSG_DEBUG, "SAE: Not enough data for scalar");
  811. return WLAN_STATUS_UNSPECIFIED_FAILURE;
  812. }
  813. peer_scalar = crypto_bignum_init_set(*pos, sae->tmp->prime_len);
  814. if (peer_scalar == NULL)
  815. return WLAN_STATUS_UNSPECIFIED_FAILURE;
  816. /*
  817. * IEEE Std 802.11-2012, 11.3.8.6.1: If there is a protocol instance for
  818. * the peer and it is in Authenticated state, the new Commit Message
  819. * shall be dropped if the peer-scalar is identical to the one used in
  820. * the existing protocol instance.
  821. */
  822. if (sae->state == SAE_ACCEPTED && sae->peer_commit_scalar &&
  823. crypto_bignum_cmp(sae->peer_commit_scalar, peer_scalar) == 0) {
  824. wpa_printf(MSG_DEBUG, "SAE: Do not accept re-use of previous "
  825. "peer-commit-scalar");
  826. crypto_bignum_deinit(peer_scalar, 0);
  827. return WLAN_STATUS_UNSPECIFIED_FAILURE;
  828. }
  829. /* 1 < scalar < r */
  830. if (crypto_bignum_is_zero(peer_scalar) ||
  831. crypto_bignum_is_one(peer_scalar) ||
  832. crypto_bignum_cmp(peer_scalar, sae->tmp->order) >= 0) {
  833. wpa_printf(MSG_DEBUG, "SAE: Invalid peer scalar");
  834. crypto_bignum_deinit(peer_scalar, 0);
  835. return WLAN_STATUS_UNSPECIFIED_FAILURE;
  836. }
  837. crypto_bignum_deinit(sae->peer_commit_scalar, 0);
  838. sae->peer_commit_scalar = peer_scalar;
  839. wpa_hexdump(MSG_DEBUG, "SAE: Peer commit-scalar",
  840. *pos, sae->tmp->prime_len);
  841. *pos += sae->tmp->prime_len;
  842. return WLAN_STATUS_SUCCESS;
  843. }
  844. static u16 sae_parse_commit_element_ecc(struct sae_data *sae, const u8 *pos,
  845. const u8 *end)
  846. {
  847. u8 prime[SAE_MAX_ECC_PRIME_LEN];
  848. if (2 * sae->tmp->prime_len > end - pos) {
  849. wpa_printf(MSG_DEBUG, "SAE: Not enough data for "
  850. "commit-element");
  851. return WLAN_STATUS_UNSPECIFIED_FAILURE;
  852. }
  853. if (crypto_bignum_to_bin(sae->tmp->prime, prime, sizeof(prime),
  854. sae->tmp->prime_len) < 0)
  855. return WLAN_STATUS_UNSPECIFIED_FAILURE;
  856. /* element x and y coordinates < p */
  857. if (os_memcmp(pos, prime, sae->tmp->prime_len) >= 0 ||
  858. os_memcmp(pos + sae->tmp->prime_len, prime,
  859. sae->tmp->prime_len) >= 0) {
  860. wpa_printf(MSG_DEBUG, "SAE: Invalid coordinates in peer "
  861. "element");
  862. return WLAN_STATUS_UNSPECIFIED_FAILURE;
  863. }
  864. wpa_hexdump(MSG_DEBUG, "SAE: Peer commit-element(x)",
  865. pos, sae->tmp->prime_len);
  866. wpa_hexdump(MSG_DEBUG, "SAE: Peer commit-element(y)",
  867. pos + sae->tmp->prime_len, sae->tmp->prime_len);
  868. crypto_ec_point_deinit(sae->tmp->peer_commit_element_ecc, 0);
  869. sae->tmp->peer_commit_element_ecc =
  870. crypto_ec_point_from_bin(sae->tmp->ec, pos);
  871. if (sae->tmp->peer_commit_element_ecc == NULL)
  872. return WLAN_STATUS_UNSPECIFIED_FAILURE;
  873. if (!crypto_ec_point_is_on_curve(sae->tmp->ec,
  874. sae->tmp->peer_commit_element_ecc)) {
  875. wpa_printf(MSG_DEBUG, "SAE: Peer element is not on curve");
  876. return WLAN_STATUS_UNSPECIFIED_FAILURE;
  877. }
  878. return WLAN_STATUS_SUCCESS;
  879. }
  880. static u16 sae_parse_commit_element_ffc(struct sae_data *sae, const u8 *pos,
  881. const u8 *end)
  882. {
  883. struct crypto_bignum *res, *one;
  884. const u8 one_bin[1] = { 0x01 };
  885. if (sae->tmp->prime_len > end - pos) {
  886. wpa_printf(MSG_DEBUG, "SAE: Not enough data for "
  887. "commit-element");
  888. return WLAN_STATUS_UNSPECIFIED_FAILURE;
  889. }
  890. wpa_hexdump(MSG_DEBUG, "SAE: Peer commit-element", pos,
  891. sae->tmp->prime_len);
  892. crypto_bignum_deinit(sae->tmp->peer_commit_element_ffc, 0);
  893. sae->tmp->peer_commit_element_ffc =
  894. crypto_bignum_init_set(pos, sae->tmp->prime_len);
  895. if (sae->tmp->peer_commit_element_ffc == NULL)
  896. return WLAN_STATUS_UNSPECIFIED_FAILURE;
  897. /* 1 < element < p - 1 */
  898. res = crypto_bignum_init();
  899. one = crypto_bignum_init_set(one_bin, sizeof(one_bin));
  900. if (!res || !one ||
  901. crypto_bignum_sub(sae->tmp->prime, one, res) ||
  902. crypto_bignum_is_zero(sae->tmp->peer_commit_element_ffc) ||
  903. crypto_bignum_is_one(sae->tmp->peer_commit_element_ffc) ||
  904. crypto_bignum_cmp(sae->tmp->peer_commit_element_ffc, res) >= 0) {
  905. crypto_bignum_deinit(res, 0);
  906. crypto_bignum_deinit(one, 0);
  907. wpa_printf(MSG_DEBUG, "SAE: Invalid peer element");
  908. return WLAN_STATUS_UNSPECIFIED_FAILURE;
  909. }
  910. crypto_bignum_deinit(one, 0);
  911. /* scalar-op(r, ELEMENT) = 1 modulo p */
  912. if (crypto_bignum_exptmod(sae->tmp->peer_commit_element_ffc,
  913. sae->tmp->order, sae->tmp->prime, res) < 0 ||
  914. !crypto_bignum_is_one(res)) {
  915. wpa_printf(MSG_DEBUG, "SAE: Invalid peer element (scalar-op)");
  916. crypto_bignum_deinit(res, 0);
  917. return WLAN_STATUS_UNSPECIFIED_FAILURE;
  918. }
  919. crypto_bignum_deinit(res, 0);
  920. return WLAN_STATUS_SUCCESS;
  921. }
  922. static u16 sae_parse_commit_element(struct sae_data *sae, const u8 *pos,
  923. const u8 *end)
  924. {
  925. if (sae->tmp->dh)
  926. return sae_parse_commit_element_ffc(sae, pos, end);
  927. return sae_parse_commit_element_ecc(sae, pos, end);
  928. }
  929. u16 sae_parse_commit(struct sae_data *sae, const u8 *data, size_t len,
  930. const u8 **token, size_t *token_len, int *allowed_groups)
  931. {
  932. const u8 *pos = data, *end = data + len;
  933. u16 res;
  934. /* Check Finite Cyclic Group */
  935. if (end - pos < 2)
  936. return WLAN_STATUS_UNSPECIFIED_FAILURE;
  937. res = sae_group_allowed(sae, allowed_groups, WPA_GET_LE16(pos));
  938. if (res != WLAN_STATUS_SUCCESS)
  939. return res;
  940. pos += 2;
  941. /* Optional Anti-Clogging Token */
  942. sae_parse_commit_token(sae, &pos, end, token, token_len);
  943. /* commit-scalar */
  944. res = sae_parse_commit_scalar(sae, &pos, end);
  945. if (res != WLAN_STATUS_SUCCESS)
  946. return res;
  947. /* commit-element */
  948. res = sae_parse_commit_element(sae, pos, end);
  949. if (res != WLAN_STATUS_SUCCESS)
  950. return res;
  951. /*
  952. * Check whether peer-commit-scalar and PEER-COMMIT-ELEMENT are same as
  953. * the values we sent which would be evidence of a reflection attack.
  954. */
  955. if (!sae->tmp->own_commit_scalar ||
  956. crypto_bignum_cmp(sae->tmp->own_commit_scalar,
  957. sae->peer_commit_scalar) != 0 ||
  958. (sae->tmp->dh &&
  959. (!sae->tmp->own_commit_element_ffc ||
  960. crypto_bignum_cmp(sae->tmp->own_commit_element_ffc,
  961. sae->tmp->peer_commit_element_ffc) != 0)) ||
  962. (sae->tmp->ec &&
  963. (!sae->tmp->own_commit_element_ecc ||
  964. crypto_ec_point_cmp(sae->tmp->ec,
  965. sae->tmp->own_commit_element_ecc,
  966. sae->tmp->peer_commit_element_ecc) != 0)))
  967. return WLAN_STATUS_SUCCESS; /* scalars/elements are different */
  968. /*
  969. * This is a reflection attack - return special value to trigger caller
  970. * to silently discard the frame instead of replying with a specific
  971. * status code.
  972. */
  973. return SAE_SILENTLY_DISCARD;
  974. }
  975. static void sae_cn_confirm(struct sae_data *sae, const u8 *sc,
  976. const struct crypto_bignum *scalar1,
  977. const u8 *element1, size_t element1_len,
  978. const struct crypto_bignum *scalar2,
  979. const u8 *element2, size_t element2_len,
  980. u8 *confirm)
  981. {
  982. const u8 *addr[5];
  983. size_t len[5];
  984. u8 scalar_b1[SAE_MAX_PRIME_LEN], scalar_b2[SAE_MAX_PRIME_LEN];
  985. /* Confirm
  986. * CN(key, X, Y, Z, ...) =
  987. * HMAC-SHA256(key, D2OS(X) || D2OS(Y) || D2OS(Z) | ...)
  988. * confirm = CN(KCK, send-confirm, commit-scalar, COMMIT-ELEMENT,
  989. * peer-commit-scalar, PEER-COMMIT-ELEMENT)
  990. * verifier = CN(KCK, peer-send-confirm, peer-commit-scalar,
  991. * PEER-COMMIT-ELEMENT, commit-scalar, COMMIT-ELEMENT)
  992. */
  993. addr[0] = sc;
  994. len[0] = 2;
  995. crypto_bignum_to_bin(scalar1, scalar_b1, sizeof(scalar_b1),
  996. sae->tmp->prime_len);
  997. addr[1] = scalar_b1;
  998. len[1] = sae->tmp->prime_len;
  999. addr[2] = element1;
  1000. len[2] = element1_len;
  1001. crypto_bignum_to_bin(scalar2, scalar_b2, sizeof(scalar_b2),
  1002. sae->tmp->prime_len);
  1003. addr[3] = scalar_b2;
  1004. len[3] = sae->tmp->prime_len;
  1005. addr[4] = element2;
  1006. len[4] = element2_len;
  1007. hmac_sha256_vector(sae->tmp->kck, sizeof(sae->tmp->kck), 5, addr, len,
  1008. confirm);
  1009. }
  1010. static void sae_cn_confirm_ecc(struct sae_data *sae, const u8 *sc,
  1011. const struct crypto_bignum *scalar1,
  1012. const struct crypto_ec_point *element1,
  1013. const struct crypto_bignum *scalar2,
  1014. const struct crypto_ec_point *element2,
  1015. u8 *confirm)
  1016. {
  1017. u8 element_b1[2 * SAE_MAX_ECC_PRIME_LEN];
  1018. u8 element_b2[2 * SAE_MAX_ECC_PRIME_LEN];
  1019. crypto_ec_point_to_bin(sae->tmp->ec, element1, element_b1,
  1020. element_b1 + sae->tmp->prime_len);
  1021. crypto_ec_point_to_bin(sae->tmp->ec, element2, element_b2,
  1022. element_b2 + sae->tmp->prime_len);
  1023. sae_cn_confirm(sae, sc, scalar1, element_b1, 2 * sae->tmp->prime_len,
  1024. scalar2, element_b2, 2 * sae->tmp->prime_len, confirm);
  1025. }
  1026. static void sae_cn_confirm_ffc(struct sae_data *sae, const u8 *sc,
  1027. const struct crypto_bignum *scalar1,
  1028. const struct crypto_bignum *element1,
  1029. const struct crypto_bignum *scalar2,
  1030. const struct crypto_bignum *element2,
  1031. u8 *confirm)
  1032. {
  1033. u8 element_b1[SAE_MAX_PRIME_LEN];
  1034. u8 element_b2[SAE_MAX_PRIME_LEN];
  1035. crypto_bignum_to_bin(element1, element_b1, sizeof(element_b1),
  1036. sae->tmp->prime_len);
  1037. crypto_bignum_to_bin(element2, element_b2, sizeof(element_b2),
  1038. sae->tmp->prime_len);
  1039. sae_cn_confirm(sae, sc, scalar1, element_b1, sae->tmp->prime_len,
  1040. scalar2, element_b2, sae->tmp->prime_len, confirm);
  1041. }
  1042. void sae_write_confirm(struct sae_data *sae, struct wpabuf *buf)
  1043. {
  1044. const u8 *sc;
  1045. if (sae->tmp == NULL)
  1046. return;
  1047. /* Send-Confirm */
  1048. sc = wpabuf_put(buf, 0);
  1049. wpabuf_put_le16(buf, sae->send_confirm);
  1050. if (sae->send_confirm < 0xffff)
  1051. sae->send_confirm++;
  1052. if (sae->tmp->ec)
  1053. sae_cn_confirm_ecc(sae, sc, sae->tmp->own_commit_scalar,
  1054. sae->tmp->own_commit_element_ecc,
  1055. sae->peer_commit_scalar,
  1056. sae->tmp->peer_commit_element_ecc,
  1057. wpabuf_put(buf, SHA256_MAC_LEN));
  1058. else
  1059. sae_cn_confirm_ffc(sae, sc, sae->tmp->own_commit_scalar,
  1060. sae->tmp->own_commit_element_ffc,
  1061. sae->peer_commit_scalar,
  1062. sae->tmp->peer_commit_element_ffc,
  1063. wpabuf_put(buf, SHA256_MAC_LEN));
  1064. }
  1065. int sae_check_confirm(struct sae_data *sae, const u8 *data, size_t len)
  1066. {
  1067. u8 verifier[SHA256_MAC_LEN];
  1068. if (len < 2 + SHA256_MAC_LEN) {
  1069. wpa_printf(MSG_DEBUG, "SAE: Too short confirm message");
  1070. return -1;
  1071. }
  1072. wpa_printf(MSG_DEBUG, "SAE: peer-send-confirm %u", WPA_GET_LE16(data));
  1073. if (sae->tmp == NULL) {
  1074. wpa_printf(MSG_DEBUG, "SAE: Temporary data not yet available");
  1075. return -1;
  1076. }
  1077. if (sae->tmp->ec)
  1078. sae_cn_confirm_ecc(sae, data, sae->peer_commit_scalar,
  1079. sae->tmp->peer_commit_element_ecc,
  1080. sae->tmp->own_commit_scalar,
  1081. sae->tmp->own_commit_element_ecc,
  1082. verifier);
  1083. else
  1084. sae_cn_confirm_ffc(sae, data, sae->peer_commit_scalar,
  1085. sae->tmp->peer_commit_element_ffc,
  1086. sae->tmp->own_commit_scalar,
  1087. sae->tmp->own_commit_element_ffc,
  1088. verifier);
  1089. if (os_memcmp_const(verifier, data + 2, SHA256_MAC_LEN) != 0) {
  1090. wpa_printf(MSG_DEBUG, "SAE: Confirm mismatch");
  1091. wpa_hexdump(MSG_DEBUG, "SAE: Received confirm",
  1092. data + 2, SHA256_MAC_LEN);
  1093. wpa_hexdump(MSG_DEBUG, "SAE: Calculated verifier",
  1094. verifier, SHA256_MAC_LEN);
  1095. return -1;
  1096. }
  1097. return 0;
  1098. }
  1099. const char * sae_state_txt(enum sae_state state)
  1100. {
  1101. switch (state) {
  1102. case SAE_NOTHING:
  1103. return "Nothing";
  1104. case SAE_COMMITTED:
  1105. return "Committed";
  1106. case SAE_CONFIRMED:
  1107. return "Confirmed";
  1108. case SAE_ACCEPTED:
  1109. return "Accepted";
  1110. }
  1111. return "?";
  1112. }