ap.c 28 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068
  1. /*
  2. * WPA Supplicant - Basic AP mode support routines
  3. * Copyright (c) 2003-2009, Jouni Malinen <j@w1.fi>
  4. * Copyright (c) 2009, Atheros Communications
  5. *
  6. * This software may be distributed under the terms of the BSD license.
  7. * See README for more details.
  8. */
  9. #include "utils/includes.h"
  10. #include "utils/common.h"
  11. #include "utils/eloop.h"
  12. #include "utils/uuid.h"
  13. #include "common/ieee802_11_defs.h"
  14. #include "common/wpa_ctrl.h"
  15. #include "eapol_supp/eapol_supp_sm.h"
  16. #include "ap/hostapd.h"
  17. #include "ap/ap_config.h"
  18. #include "ap/ap_drv_ops.h"
  19. #ifdef NEED_AP_MLME
  20. #include "ap/ieee802_11.h"
  21. #endif /* NEED_AP_MLME */
  22. #include "ap/beacon.h"
  23. #include "ap/ieee802_1x.h"
  24. #include "ap/wps_hostapd.h"
  25. #include "ap/ctrl_iface_ap.h"
  26. #include "wps/wps.h"
  27. #include "common/ieee802_11_defs.h"
  28. #include "config_ssid.h"
  29. #include "config.h"
  30. #include "wpa_supplicant_i.h"
  31. #include "driver_i.h"
  32. #include "p2p_supplicant.h"
  33. #include "ap.h"
  34. #include "ap/sta_info.h"
  35. #include "notify.h"
  36. #ifdef CONFIG_WPS
  37. static void wpas_wps_ap_pin_timeout(void *eloop_data, void *user_ctx);
  38. #endif /* CONFIG_WPS */
  39. static int wpa_supplicant_conf_ap(struct wpa_supplicant *wpa_s,
  40. struct wpa_ssid *ssid,
  41. struct hostapd_config *conf)
  42. {
  43. struct hostapd_bss_config *bss = &conf->bss[0];
  44. conf->driver = wpa_s->driver;
  45. os_strlcpy(bss->iface, wpa_s->ifname, sizeof(bss->iface));
  46. conf->hw_mode = ieee80211_freq_to_chan(ssid->frequency,
  47. &conf->channel);
  48. if (conf->hw_mode == NUM_HOSTAPD_MODES) {
  49. wpa_printf(MSG_ERROR, "Unsupported AP mode frequency: %d MHz",
  50. ssid->frequency);
  51. return -1;
  52. }
  53. /* TODO: enable HT40 if driver supports it;
  54. * drop to 11b if driver does not support 11g */
  55. #ifdef CONFIG_IEEE80211N
  56. /*
  57. * Enable HT20 if the driver supports it, by setting conf->ieee80211n
  58. * and a mask of allowed capabilities within conf->ht_capab.
  59. * Using default config settings for: conf->ht_op_mode_fixed,
  60. * conf->secondary_channel, conf->require_ht
  61. */
  62. if (wpa_s->hw.modes) {
  63. struct hostapd_hw_modes *mode = NULL;
  64. int i, no_ht = 0;
  65. for (i = 0; i < wpa_s->hw.num_modes; i++) {
  66. if (wpa_s->hw.modes[i].mode == conf->hw_mode) {
  67. mode = &wpa_s->hw.modes[i];
  68. break;
  69. }
  70. }
  71. #ifdef CONFIG_HT_OVERRIDES
  72. if (ssid->disable_ht) {
  73. conf->ieee80211n = 0;
  74. conf->ht_capab = 0;
  75. no_ht = 1;
  76. }
  77. #endif /* CONFIG_HT_OVERRIDES */
  78. if (!no_ht && mode && mode->ht_capab) {
  79. conf->ieee80211n = 1;
  80. #ifdef CONFIG_P2P
  81. if (conf->hw_mode == HOSTAPD_MODE_IEEE80211A &&
  82. (mode->ht_capab &
  83. HT_CAP_INFO_SUPP_CHANNEL_WIDTH_SET) &&
  84. ssid->ht40)
  85. conf->secondary_channel =
  86. wpas_p2p_get_ht40_mode(wpa_s, mode,
  87. conf->channel);
  88. if (conf->secondary_channel)
  89. conf->ht_capab |=
  90. HT_CAP_INFO_SUPP_CHANNEL_WIDTH_SET;
  91. #endif /* CONFIG_P2P */
  92. /*
  93. * white-list capabilities that won't cause issues
  94. * to connecting stations, while leaving the current
  95. * capabilities intact (currently disabled SMPS).
  96. */
  97. conf->ht_capab |= mode->ht_capab &
  98. (HT_CAP_INFO_GREEN_FIELD |
  99. HT_CAP_INFO_SHORT_GI20MHZ |
  100. HT_CAP_INFO_SHORT_GI40MHZ |
  101. HT_CAP_INFO_RX_STBC_MASK |
  102. HT_CAP_INFO_MAX_AMSDU_SIZE);
  103. }
  104. }
  105. #endif /* CONFIG_IEEE80211N */
  106. #ifdef CONFIG_P2P
  107. if (conf->hw_mode == HOSTAPD_MODE_IEEE80211G &&
  108. (ssid->mode == WPAS_MODE_P2P_GO ||
  109. ssid->mode == WPAS_MODE_P2P_GROUP_FORMATION)) {
  110. /* Remove 802.11b rates from supported and basic rate sets */
  111. int *list = os_malloc(4 * sizeof(int));
  112. if (list) {
  113. list[0] = 60;
  114. list[1] = 120;
  115. list[2] = 240;
  116. list[3] = -1;
  117. }
  118. conf->basic_rates = list;
  119. list = os_malloc(9 * sizeof(int));
  120. if (list) {
  121. list[0] = 60;
  122. list[1] = 90;
  123. list[2] = 120;
  124. list[3] = 180;
  125. list[4] = 240;
  126. list[5] = 360;
  127. list[6] = 480;
  128. list[7] = 540;
  129. list[8] = -1;
  130. }
  131. conf->supported_rates = list;
  132. }
  133. bss->isolate = !wpa_s->conf->p2p_intra_bss;
  134. bss->force_per_enrollee_psk = wpa_s->global->p2p_per_sta_psk;
  135. #endif /* CONFIG_P2P */
  136. if (ssid->ssid_len == 0) {
  137. wpa_printf(MSG_ERROR, "No SSID configured for AP mode");
  138. return -1;
  139. }
  140. os_memcpy(bss->ssid.ssid, ssid->ssid, ssid->ssid_len);
  141. bss->ssid.ssid_len = ssid->ssid_len;
  142. bss->ssid.ssid_set = 1;
  143. bss->ignore_broadcast_ssid = ssid->ignore_broadcast_ssid;
  144. if (ssid->auth_alg)
  145. bss->auth_algs = ssid->auth_alg;
  146. if (wpa_key_mgmt_wpa_psk(ssid->key_mgmt))
  147. bss->wpa = ssid->proto;
  148. bss->wpa_key_mgmt = ssid->key_mgmt;
  149. bss->wpa_pairwise = ssid->pairwise_cipher;
  150. if (ssid->psk_set) {
  151. os_free(bss->ssid.wpa_psk);
  152. bss->ssid.wpa_psk = os_zalloc(sizeof(struct hostapd_wpa_psk));
  153. if (bss->ssid.wpa_psk == NULL)
  154. return -1;
  155. os_memcpy(bss->ssid.wpa_psk->psk, ssid->psk, PMK_LEN);
  156. bss->ssid.wpa_psk->group = 1;
  157. } else if (ssid->passphrase) {
  158. bss->ssid.wpa_passphrase = os_strdup(ssid->passphrase);
  159. } else if (ssid->wep_key_len[0] || ssid->wep_key_len[1] ||
  160. ssid->wep_key_len[2] || ssid->wep_key_len[3]) {
  161. struct hostapd_wep_keys *wep = &bss->ssid.wep;
  162. int i;
  163. for (i = 0; i < NUM_WEP_KEYS; i++) {
  164. if (ssid->wep_key_len[i] == 0)
  165. continue;
  166. wep->key[i] = os_malloc(ssid->wep_key_len[i]);
  167. if (wep->key[i] == NULL)
  168. return -1;
  169. os_memcpy(wep->key[i], ssid->wep_key[i],
  170. ssid->wep_key_len[i]);
  171. wep->len[i] = ssid->wep_key_len[i];
  172. }
  173. wep->idx = ssid->wep_tx_keyidx;
  174. wep->keys_set = 1;
  175. }
  176. if (ssid->ap_max_inactivity)
  177. bss->ap_max_inactivity = ssid->ap_max_inactivity;
  178. if (ssid->dtim_period)
  179. bss->dtim_period = ssid->dtim_period;
  180. else if (wpa_s->conf->dtim_period)
  181. bss->dtim_period = wpa_s->conf->dtim_period;
  182. if (ssid->beacon_int)
  183. conf->beacon_int = ssid->beacon_int;
  184. else if (wpa_s->conf->beacon_int)
  185. conf->beacon_int = wpa_s->conf->beacon_int;
  186. if ((bss->wpa & 2) && bss->rsn_pairwise == 0)
  187. bss->rsn_pairwise = bss->wpa_pairwise;
  188. bss->wpa_group = wpa_select_ap_group_cipher(bss->wpa, bss->wpa_pairwise,
  189. bss->rsn_pairwise);
  190. if (bss->wpa && bss->ieee802_1x)
  191. bss->ssid.security_policy = SECURITY_WPA;
  192. else if (bss->wpa)
  193. bss->ssid.security_policy = SECURITY_WPA_PSK;
  194. else if (bss->ieee802_1x) {
  195. int cipher = WPA_CIPHER_NONE;
  196. bss->ssid.security_policy = SECURITY_IEEE_802_1X;
  197. bss->ssid.wep.default_len = bss->default_wep_key_len;
  198. if (bss->default_wep_key_len)
  199. cipher = bss->default_wep_key_len >= 13 ?
  200. WPA_CIPHER_WEP104 : WPA_CIPHER_WEP40;
  201. bss->wpa_group = cipher;
  202. bss->wpa_pairwise = cipher;
  203. bss->rsn_pairwise = cipher;
  204. } else if (bss->ssid.wep.keys_set) {
  205. int cipher = WPA_CIPHER_WEP40;
  206. if (bss->ssid.wep.len[0] >= 13)
  207. cipher = WPA_CIPHER_WEP104;
  208. bss->ssid.security_policy = SECURITY_STATIC_WEP;
  209. bss->wpa_group = cipher;
  210. bss->wpa_pairwise = cipher;
  211. bss->rsn_pairwise = cipher;
  212. } else {
  213. bss->ssid.security_policy = SECURITY_PLAINTEXT;
  214. bss->wpa_group = WPA_CIPHER_NONE;
  215. bss->wpa_pairwise = WPA_CIPHER_NONE;
  216. bss->rsn_pairwise = WPA_CIPHER_NONE;
  217. }
  218. if (bss->wpa_group_rekey < 86400 && (bss->wpa & 2) &&
  219. (bss->wpa_group == WPA_CIPHER_CCMP ||
  220. bss->wpa_group == WPA_CIPHER_GCMP)) {
  221. /*
  222. * Strong ciphers do not need frequent rekeying, so increase
  223. * the default GTK rekeying period to 24 hours.
  224. */
  225. bss->wpa_group_rekey = 86400;
  226. }
  227. #ifdef CONFIG_WPS
  228. /*
  229. * Enable WPS by default for open and WPA/WPA2-Personal network, but
  230. * require user interaction to actually use it. Only the internal
  231. * Registrar is supported.
  232. */
  233. if (bss->ssid.security_policy != SECURITY_WPA_PSK &&
  234. bss->ssid.security_policy != SECURITY_PLAINTEXT)
  235. goto no_wps;
  236. #ifdef CONFIG_WPS2
  237. if (bss->ssid.security_policy == SECURITY_WPA_PSK &&
  238. (!(bss->rsn_pairwise & WPA_CIPHER_CCMP) || !(bss->wpa & 2)))
  239. goto no_wps; /* WPS2 does not allow WPA/TKIP-only
  240. * configuration */
  241. #endif /* CONFIG_WPS2 */
  242. bss->eap_server = 1;
  243. if (!ssid->ignore_broadcast_ssid)
  244. bss->wps_state = 2;
  245. bss->ap_setup_locked = 2;
  246. if (wpa_s->conf->config_methods)
  247. bss->config_methods = os_strdup(wpa_s->conf->config_methods);
  248. os_memcpy(bss->device_type, wpa_s->conf->device_type,
  249. WPS_DEV_TYPE_LEN);
  250. if (wpa_s->conf->device_name) {
  251. bss->device_name = os_strdup(wpa_s->conf->device_name);
  252. bss->friendly_name = os_strdup(wpa_s->conf->device_name);
  253. }
  254. if (wpa_s->conf->manufacturer)
  255. bss->manufacturer = os_strdup(wpa_s->conf->manufacturer);
  256. if (wpa_s->conf->model_name)
  257. bss->model_name = os_strdup(wpa_s->conf->model_name);
  258. if (wpa_s->conf->model_number)
  259. bss->model_number = os_strdup(wpa_s->conf->model_number);
  260. if (wpa_s->conf->serial_number)
  261. bss->serial_number = os_strdup(wpa_s->conf->serial_number);
  262. if (is_nil_uuid(wpa_s->conf->uuid))
  263. os_memcpy(bss->uuid, wpa_s->wps->uuid, WPS_UUID_LEN);
  264. else
  265. os_memcpy(bss->uuid, wpa_s->conf->uuid, WPS_UUID_LEN);
  266. os_memcpy(bss->os_version, wpa_s->conf->os_version, 4);
  267. bss->pbc_in_m1 = wpa_s->conf->pbc_in_m1;
  268. no_wps:
  269. #endif /* CONFIG_WPS */
  270. if (wpa_s->max_stations &&
  271. wpa_s->max_stations < wpa_s->conf->max_num_sta)
  272. bss->max_num_sta = wpa_s->max_stations;
  273. else
  274. bss->max_num_sta = wpa_s->conf->max_num_sta;
  275. bss->disassoc_low_ack = wpa_s->conf->disassoc_low_ack;
  276. if (wpa_s->conf->ap_vendor_elements) {
  277. bss->vendor_elements =
  278. wpabuf_dup(wpa_s->conf->ap_vendor_elements);
  279. }
  280. return 0;
  281. }
  282. static void ap_public_action_rx(void *ctx, const u8 *buf, size_t len, int freq)
  283. {
  284. #ifdef CONFIG_P2P
  285. struct wpa_supplicant *wpa_s = ctx;
  286. const struct ieee80211_mgmt *mgmt;
  287. size_t hdr_len;
  288. mgmt = (const struct ieee80211_mgmt *) buf;
  289. hdr_len = (const u8 *) &mgmt->u.action.u.vs_public_action.action - buf;
  290. if (hdr_len > len)
  291. return;
  292. wpas_p2p_rx_action(wpa_s, mgmt->da, mgmt->sa, mgmt->bssid,
  293. mgmt->u.action.category,
  294. &mgmt->u.action.u.vs_public_action.action,
  295. len - hdr_len, freq);
  296. #endif /* CONFIG_P2P */
  297. }
  298. static void ap_wps_event_cb(void *ctx, enum wps_event event,
  299. union wps_event_data *data)
  300. {
  301. #ifdef CONFIG_P2P
  302. struct wpa_supplicant *wpa_s = ctx;
  303. if (event == WPS_EV_FAIL) {
  304. struct wps_event_fail *fail = &data->fail;
  305. if (wpa_s->parent && wpa_s->parent != wpa_s &&
  306. wpa_s == wpa_s->global->p2p_group_formation) {
  307. /*
  308. * src/ap/wps_hostapd.c has already sent this on the
  309. * main interface, so only send on the parent interface
  310. * here if needed.
  311. */
  312. wpa_msg(wpa_s->parent, MSG_INFO, WPS_EVENT_FAIL
  313. "msg=%d config_error=%d",
  314. fail->msg, fail->config_error);
  315. }
  316. wpas_p2p_wps_failed(wpa_s, fail);
  317. }
  318. #endif /* CONFIG_P2P */
  319. }
  320. static void ap_sta_authorized_cb(void *ctx, const u8 *mac_addr,
  321. int authorized, const u8 *p2p_dev_addr)
  322. {
  323. wpas_notify_sta_authorized(ctx, mac_addr, authorized, p2p_dev_addr);
  324. }
  325. static int ap_vendor_action_rx(void *ctx, const u8 *buf, size_t len, int freq)
  326. {
  327. #ifdef CONFIG_P2P
  328. struct wpa_supplicant *wpa_s = ctx;
  329. const struct ieee80211_mgmt *mgmt;
  330. size_t hdr_len;
  331. mgmt = (const struct ieee80211_mgmt *) buf;
  332. hdr_len = (const u8 *) &mgmt->u.action.u.vs_public_action.action - buf;
  333. if (hdr_len > len)
  334. return -1;
  335. wpas_p2p_rx_action(wpa_s, mgmt->da, mgmt->sa, mgmt->bssid,
  336. mgmt->u.action.category,
  337. &mgmt->u.action.u.vs_public_action.action,
  338. len - hdr_len, freq);
  339. #endif /* CONFIG_P2P */
  340. return 0;
  341. }
  342. static int ap_probe_req_rx(void *ctx, const u8 *sa, const u8 *da,
  343. const u8 *bssid, const u8 *ie, size_t ie_len,
  344. int ssi_signal)
  345. {
  346. #ifdef CONFIG_P2P
  347. struct wpa_supplicant *wpa_s = ctx;
  348. return wpas_p2p_probe_req_rx(wpa_s, sa, da, bssid, ie, ie_len,
  349. ssi_signal);
  350. #else /* CONFIG_P2P */
  351. return 0;
  352. #endif /* CONFIG_P2P */
  353. }
  354. static void ap_wps_reg_success_cb(void *ctx, const u8 *mac_addr,
  355. const u8 *uuid_e)
  356. {
  357. #ifdef CONFIG_P2P
  358. struct wpa_supplicant *wpa_s = ctx;
  359. wpas_p2p_wps_success(wpa_s, mac_addr, 1);
  360. #endif /* CONFIG_P2P */
  361. }
  362. static void wpas_ap_configured_cb(void *ctx)
  363. {
  364. struct wpa_supplicant *wpa_s = ctx;
  365. wpa_supplicant_set_state(wpa_s, WPA_COMPLETED);
  366. if (wpa_s->ap_configured_cb)
  367. wpa_s->ap_configured_cb(wpa_s->ap_configured_cb_ctx,
  368. wpa_s->ap_configured_cb_data);
  369. }
  370. int wpa_supplicant_create_ap(struct wpa_supplicant *wpa_s,
  371. struct wpa_ssid *ssid)
  372. {
  373. struct wpa_driver_associate_params params;
  374. struct hostapd_iface *hapd_iface;
  375. struct hostapd_config *conf;
  376. size_t i;
  377. if (ssid->ssid == NULL || ssid->ssid_len == 0) {
  378. wpa_printf(MSG_ERROR, "No SSID configured for AP mode");
  379. return -1;
  380. }
  381. wpa_supplicant_ap_deinit(wpa_s);
  382. wpa_printf(MSG_DEBUG, "Setting up AP (SSID='%s')",
  383. wpa_ssid_txt(ssid->ssid, ssid->ssid_len));
  384. os_memset(&params, 0, sizeof(params));
  385. params.ssid = ssid->ssid;
  386. params.ssid_len = ssid->ssid_len;
  387. switch (ssid->mode) {
  388. case WPAS_MODE_INFRA:
  389. params.mode = IEEE80211_MODE_INFRA;
  390. break;
  391. case WPAS_MODE_IBSS:
  392. params.mode = IEEE80211_MODE_IBSS;
  393. break;
  394. case WPAS_MODE_AP:
  395. case WPAS_MODE_P2P_GO:
  396. case WPAS_MODE_P2P_GROUP_FORMATION:
  397. params.mode = IEEE80211_MODE_AP;
  398. break;
  399. }
  400. if (ssid->frequency == 0)
  401. ssid->frequency = 2462; /* default channel 11 */
  402. params.freq = ssid->frequency;
  403. params.wpa_proto = ssid->proto;
  404. if (ssid->key_mgmt & WPA_KEY_MGMT_PSK)
  405. wpa_s->key_mgmt = WPA_KEY_MGMT_PSK;
  406. else
  407. wpa_s->key_mgmt = WPA_KEY_MGMT_NONE;
  408. params.key_mgmt_suite = key_mgmt2driver(wpa_s->key_mgmt);
  409. wpa_s->pairwise_cipher = wpa_pick_pairwise_cipher(ssid->pairwise_cipher,
  410. 1);
  411. if (wpa_s->pairwise_cipher < 0) {
  412. wpa_printf(MSG_WARNING, "WPA: Failed to select pairwise "
  413. "cipher.");
  414. return -1;
  415. }
  416. params.pairwise_suite =
  417. wpa_cipher_to_suite_driver(wpa_s->pairwise_cipher);
  418. params.group_suite = params.pairwise_suite;
  419. #ifdef CONFIG_P2P
  420. if (ssid->mode == WPAS_MODE_P2P_GO ||
  421. ssid->mode == WPAS_MODE_P2P_GROUP_FORMATION)
  422. params.p2p = 1;
  423. #endif /* CONFIG_P2P */
  424. if (wpa_s->parent->set_ap_uapsd)
  425. params.uapsd = wpa_s->parent->ap_uapsd;
  426. else
  427. params.uapsd = -1;
  428. if (wpa_drv_associate(wpa_s, &params) < 0) {
  429. wpa_msg(wpa_s, MSG_INFO, "Failed to start AP functionality");
  430. #ifdef CONFIG_P2P
  431. if (ssid->mode == WPAS_MODE_P2P_GROUP_FORMATION &&
  432. wpa_s->global->p2p_group_formation == wpa_s)
  433. wpas_p2p_group_formation_failed(wpa_s->parent);
  434. #endif /* CONFIG_P2P */
  435. return -1;
  436. }
  437. wpa_s->ap_iface = hapd_iface = os_zalloc(sizeof(*wpa_s->ap_iface));
  438. if (hapd_iface == NULL)
  439. return -1;
  440. hapd_iface->owner = wpa_s;
  441. hapd_iface->drv_flags = wpa_s->drv_flags;
  442. hapd_iface->probe_resp_offloads = wpa_s->probe_resp_offloads;
  443. hapd_iface->extended_capa = wpa_s->extended_capa;
  444. hapd_iface->extended_capa_mask = wpa_s->extended_capa_mask;
  445. hapd_iface->extended_capa_len = wpa_s->extended_capa_len;
  446. wpa_s->ap_iface->conf = conf = hostapd_config_defaults();
  447. if (conf == NULL) {
  448. wpa_supplicant_ap_deinit(wpa_s);
  449. return -1;
  450. }
  451. os_memcpy(wpa_s->ap_iface->conf->wmm_ac_params,
  452. wpa_s->conf->wmm_ac_params,
  453. sizeof(wpa_s->conf->wmm_ac_params));
  454. if (params.uapsd > 0) {
  455. conf->bss->wmm_enabled = 1;
  456. conf->bss->wmm_uapsd = 1;
  457. }
  458. if (wpa_supplicant_conf_ap(wpa_s, ssid, conf)) {
  459. wpa_printf(MSG_ERROR, "Failed to create AP configuration");
  460. wpa_supplicant_ap_deinit(wpa_s);
  461. return -1;
  462. }
  463. #ifdef CONFIG_P2P
  464. if (ssid->mode == WPAS_MODE_P2P_GO)
  465. conf->bss[0].p2p = P2P_ENABLED | P2P_GROUP_OWNER;
  466. else if (ssid->mode == WPAS_MODE_P2P_GROUP_FORMATION)
  467. conf->bss[0].p2p = P2P_ENABLED | P2P_GROUP_OWNER |
  468. P2P_GROUP_FORMATION;
  469. #endif /* CONFIG_P2P */
  470. hapd_iface->num_bss = conf->num_bss;
  471. hapd_iface->bss = os_calloc(conf->num_bss,
  472. sizeof(struct hostapd_data *));
  473. if (hapd_iface->bss == NULL) {
  474. wpa_supplicant_ap_deinit(wpa_s);
  475. return -1;
  476. }
  477. for (i = 0; i < conf->num_bss; i++) {
  478. hapd_iface->bss[i] =
  479. hostapd_alloc_bss_data(hapd_iface, conf,
  480. &conf->bss[i]);
  481. if (hapd_iface->bss[i] == NULL) {
  482. wpa_supplicant_ap_deinit(wpa_s);
  483. return -1;
  484. }
  485. hapd_iface->bss[i]->msg_ctx = wpa_s;
  486. hapd_iface->bss[i]->msg_ctx_parent = wpa_s->parent;
  487. hapd_iface->bss[i]->public_action_cb = ap_public_action_rx;
  488. hapd_iface->bss[i]->public_action_cb_ctx = wpa_s;
  489. hapd_iface->bss[i]->vendor_action_cb = ap_vendor_action_rx;
  490. hapd_iface->bss[i]->vendor_action_cb_ctx = wpa_s;
  491. hostapd_register_probereq_cb(hapd_iface->bss[i],
  492. ap_probe_req_rx, wpa_s);
  493. hapd_iface->bss[i]->wps_reg_success_cb = ap_wps_reg_success_cb;
  494. hapd_iface->bss[i]->wps_reg_success_cb_ctx = wpa_s;
  495. hapd_iface->bss[i]->wps_event_cb = ap_wps_event_cb;
  496. hapd_iface->bss[i]->wps_event_cb_ctx = wpa_s;
  497. hapd_iface->bss[i]->sta_authorized_cb = ap_sta_authorized_cb;
  498. hapd_iface->bss[i]->sta_authorized_cb_ctx = wpa_s;
  499. #ifdef CONFIG_P2P
  500. hapd_iface->bss[i]->p2p = wpa_s->global->p2p;
  501. hapd_iface->bss[i]->p2p_group = wpas_p2p_group_init(wpa_s,
  502. ssid);
  503. #endif /* CONFIG_P2P */
  504. hapd_iface->bss[i]->setup_complete_cb = wpas_ap_configured_cb;
  505. hapd_iface->bss[i]->setup_complete_cb_ctx = wpa_s;
  506. }
  507. os_memcpy(hapd_iface->bss[0]->own_addr, wpa_s->own_addr, ETH_ALEN);
  508. hapd_iface->bss[0]->driver = wpa_s->driver;
  509. hapd_iface->bss[0]->drv_priv = wpa_s->drv_priv;
  510. wpa_s->current_ssid = ssid;
  511. eapol_sm_notify_config(wpa_s->eapol, NULL, NULL);
  512. os_memcpy(wpa_s->bssid, wpa_s->own_addr, ETH_ALEN);
  513. wpa_s->assoc_freq = ssid->frequency;
  514. if (hostapd_setup_interface(wpa_s->ap_iface)) {
  515. wpa_printf(MSG_ERROR, "Failed to initialize AP interface");
  516. wpa_supplicant_ap_deinit(wpa_s);
  517. return -1;
  518. }
  519. return 0;
  520. }
  521. void wpa_supplicant_ap_deinit(struct wpa_supplicant *wpa_s)
  522. {
  523. #ifdef CONFIG_WPS
  524. eloop_cancel_timeout(wpas_wps_ap_pin_timeout, wpa_s, NULL);
  525. #endif /* CONFIG_WPS */
  526. if (wpa_s->ap_iface == NULL)
  527. return;
  528. wpa_s->current_ssid = NULL;
  529. eapol_sm_notify_config(wpa_s->eapol, NULL, NULL);
  530. wpa_s->assoc_freq = 0;
  531. #ifdef CONFIG_P2P
  532. if (wpa_s->ap_iface->bss)
  533. wpa_s->ap_iface->bss[0]->p2p_group = NULL;
  534. wpas_p2p_group_deinit(wpa_s);
  535. #endif /* CONFIG_P2P */
  536. hostapd_interface_deinit(wpa_s->ap_iface);
  537. hostapd_interface_free(wpa_s->ap_iface);
  538. wpa_s->ap_iface = NULL;
  539. wpa_drv_deinit_ap(wpa_s);
  540. }
  541. void ap_tx_status(void *ctx, const u8 *addr,
  542. const u8 *buf, size_t len, int ack)
  543. {
  544. #ifdef NEED_AP_MLME
  545. struct wpa_supplicant *wpa_s = ctx;
  546. hostapd_tx_status(wpa_s->ap_iface->bss[0], addr, buf, len, ack);
  547. #endif /* NEED_AP_MLME */
  548. }
  549. void ap_eapol_tx_status(void *ctx, const u8 *dst,
  550. const u8 *data, size_t len, int ack)
  551. {
  552. #ifdef NEED_AP_MLME
  553. struct wpa_supplicant *wpa_s = ctx;
  554. hostapd_tx_status(wpa_s->ap_iface->bss[0], dst, data, len, ack);
  555. #endif /* NEED_AP_MLME */
  556. }
  557. void ap_client_poll_ok(void *ctx, const u8 *addr)
  558. {
  559. #ifdef NEED_AP_MLME
  560. struct wpa_supplicant *wpa_s = ctx;
  561. if (wpa_s->ap_iface)
  562. hostapd_client_poll_ok(wpa_s->ap_iface->bss[0], addr);
  563. #endif /* NEED_AP_MLME */
  564. }
  565. void ap_rx_from_unknown_sta(void *ctx, const u8 *addr, int wds)
  566. {
  567. #ifdef NEED_AP_MLME
  568. struct wpa_supplicant *wpa_s = ctx;
  569. ieee802_11_rx_from_unknown(wpa_s->ap_iface->bss[0], addr, wds);
  570. #endif /* NEED_AP_MLME */
  571. }
  572. void ap_mgmt_rx(void *ctx, struct rx_mgmt *rx_mgmt)
  573. {
  574. #ifdef NEED_AP_MLME
  575. struct wpa_supplicant *wpa_s = ctx;
  576. struct hostapd_frame_info fi;
  577. os_memset(&fi, 0, sizeof(fi));
  578. fi.datarate = rx_mgmt->datarate;
  579. fi.ssi_signal = rx_mgmt->ssi_signal;
  580. ieee802_11_mgmt(wpa_s->ap_iface->bss[0], rx_mgmt->frame,
  581. rx_mgmt->frame_len, &fi);
  582. #endif /* NEED_AP_MLME */
  583. }
  584. void ap_mgmt_tx_cb(void *ctx, const u8 *buf, size_t len, u16 stype, int ok)
  585. {
  586. #ifdef NEED_AP_MLME
  587. struct wpa_supplicant *wpa_s = ctx;
  588. ieee802_11_mgmt_cb(wpa_s->ap_iface->bss[0], buf, len, stype, ok);
  589. #endif /* NEED_AP_MLME */
  590. }
  591. void wpa_supplicant_ap_rx_eapol(struct wpa_supplicant *wpa_s,
  592. const u8 *src_addr, const u8 *buf, size_t len)
  593. {
  594. ieee802_1x_receive(wpa_s->ap_iface->bss[0], src_addr, buf, len);
  595. }
  596. #ifdef CONFIG_WPS
  597. int wpa_supplicant_ap_wps_pbc(struct wpa_supplicant *wpa_s, const u8 *bssid,
  598. const u8 *p2p_dev_addr)
  599. {
  600. if (!wpa_s->ap_iface)
  601. return -1;
  602. return hostapd_wps_button_pushed(wpa_s->ap_iface->bss[0],
  603. p2p_dev_addr);
  604. }
  605. int wpa_supplicant_ap_wps_cancel(struct wpa_supplicant *wpa_s)
  606. {
  607. struct wps_registrar *reg;
  608. int reg_sel = 0, wps_sta = 0;
  609. if (!wpa_s->ap_iface || !wpa_s->ap_iface->bss[0]->wps)
  610. return -1;
  611. reg = wpa_s->ap_iface->bss[0]->wps->registrar;
  612. reg_sel = wps_registrar_wps_cancel(reg);
  613. wps_sta = ap_for_each_sta(wpa_s->ap_iface->bss[0],
  614. ap_sta_wps_cancel, NULL);
  615. if (!reg_sel && !wps_sta) {
  616. wpa_printf(MSG_DEBUG, "No WPS operation in progress at this "
  617. "time");
  618. return -1;
  619. }
  620. /*
  621. * There are 2 cases to return wps cancel as success:
  622. * 1. When wps cancel was initiated but no connection has been
  623. * established with client yet.
  624. * 2. Client is in the middle of exchanging WPS messages.
  625. */
  626. return 0;
  627. }
  628. int wpa_supplicant_ap_wps_pin(struct wpa_supplicant *wpa_s, const u8 *bssid,
  629. const char *pin, char *buf, size_t buflen,
  630. int timeout)
  631. {
  632. int ret, ret_len = 0;
  633. if (!wpa_s->ap_iface)
  634. return -1;
  635. if (pin == NULL) {
  636. unsigned int rpin = wps_generate_pin();
  637. ret_len = os_snprintf(buf, buflen, "%08d", rpin);
  638. pin = buf;
  639. } else
  640. ret_len = os_snprintf(buf, buflen, "%s", pin);
  641. ret = hostapd_wps_add_pin(wpa_s->ap_iface->bss[0], bssid, "any", pin,
  642. timeout);
  643. if (ret)
  644. return -1;
  645. return ret_len;
  646. }
  647. static void wpas_wps_ap_pin_timeout(void *eloop_data, void *user_ctx)
  648. {
  649. struct wpa_supplicant *wpa_s = eloop_data;
  650. wpa_printf(MSG_DEBUG, "WPS: AP PIN timed out");
  651. wpas_wps_ap_pin_disable(wpa_s);
  652. }
  653. static void wpas_wps_ap_pin_enable(struct wpa_supplicant *wpa_s, int timeout)
  654. {
  655. struct hostapd_data *hapd;
  656. if (wpa_s->ap_iface == NULL)
  657. return;
  658. hapd = wpa_s->ap_iface->bss[0];
  659. wpa_printf(MSG_DEBUG, "WPS: Enabling AP PIN (timeout=%d)", timeout);
  660. hapd->ap_pin_failures = 0;
  661. eloop_cancel_timeout(wpas_wps_ap_pin_timeout, wpa_s, NULL);
  662. if (timeout > 0)
  663. eloop_register_timeout(timeout, 0,
  664. wpas_wps_ap_pin_timeout, wpa_s, NULL);
  665. }
  666. void wpas_wps_ap_pin_disable(struct wpa_supplicant *wpa_s)
  667. {
  668. struct hostapd_data *hapd;
  669. if (wpa_s->ap_iface == NULL)
  670. return;
  671. wpa_printf(MSG_DEBUG, "WPS: Disabling AP PIN");
  672. hapd = wpa_s->ap_iface->bss[0];
  673. os_free(hapd->conf->ap_pin);
  674. hapd->conf->ap_pin = NULL;
  675. eloop_cancel_timeout(wpas_wps_ap_pin_timeout, wpa_s, NULL);
  676. }
  677. const char * wpas_wps_ap_pin_random(struct wpa_supplicant *wpa_s, int timeout)
  678. {
  679. struct hostapd_data *hapd;
  680. unsigned int pin;
  681. char pin_txt[9];
  682. if (wpa_s->ap_iface == NULL)
  683. return NULL;
  684. hapd = wpa_s->ap_iface->bss[0];
  685. pin = wps_generate_pin();
  686. os_snprintf(pin_txt, sizeof(pin_txt), "%08u", pin);
  687. os_free(hapd->conf->ap_pin);
  688. hapd->conf->ap_pin = os_strdup(pin_txt);
  689. if (hapd->conf->ap_pin == NULL)
  690. return NULL;
  691. wpas_wps_ap_pin_enable(wpa_s, timeout);
  692. return hapd->conf->ap_pin;
  693. }
  694. const char * wpas_wps_ap_pin_get(struct wpa_supplicant *wpa_s)
  695. {
  696. struct hostapd_data *hapd;
  697. if (wpa_s->ap_iface == NULL)
  698. return NULL;
  699. hapd = wpa_s->ap_iface->bss[0];
  700. return hapd->conf->ap_pin;
  701. }
  702. int wpas_wps_ap_pin_set(struct wpa_supplicant *wpa_s, const char *pin,
  703. int timeout)
  704. {
  705. struct hostapd_data *hapd;
  706. char pin_txt[9];
  707. int ret;
  708. if (wpa_s->ap_iface == NULL)
  709. return -1;
  710. hapd = wpa_s->ap_iface->bss[0];
  711. ret = os_snprintf(pin_txt, sizeof(pin_txt), "%s", pin);
  712. if (ret < 0 || ret >= (int) sizeof(pin_txt))
  713. return -1;
  714. os_free(hapd->conf->ap_pin);
  715. hapd->conf->ap_pin = os_strdup(pin_txt);
  716. if (hapd->conf->ap_pin == NULL)
  717. return -1;
  718. wpas_wps_ap_pin_enable(wpa_s, timeout);
  719. return 0;
  720. }
  721. void wpa_supplicant_ap_pwd_auth_fail(struct wpa_supplicant *wpa_s)
  722. {
  723. struct hostapd_data *hapd;
  724. if (wpa_s->ap_iface == NULL)
  725. return;
  726. hapd = wpa_s->ap_iface->bss[0];
  727. /*
  728. * Registrar failed to prove its knowledge of the AP PIN. Disable AP
  729. * PIN if this happens multiple times to slow down brute force attacks.
  730. */
  731. hapd->ap_pin_failures++;
  732. wpa_printf(MSG_DEBUG, "WPS: AP PIN authentication failure number %u",
  733. hapd->ap_pin_failures);
  734. if (hapd->ap_pin_failures < 3)
  735. return;
  736. wpa_printf(MSG_DEBUG, "WPS: Disable AP PIN");
  737. hapd->ap_pin_failures = 0;
  738. os_free(hapd->conf->ap_pin);
  739. hapd->conf->ap_pin = NULL;
  740. }
  741. #ifdef CONFIG_WPS_NFC
  742. struct wpabuf * wpas_ap_wps_nfc_config_token(struct wpa_supplicant *wpa_s,
  743. int ndef)
  744. {
  745. struct hostapd_data *hapd;
  746. if (wpa_s->ap_iface == NULL)
  747. return NULL;
  748. hapd = wpa_s->ap_iface->bss[0];
  749. return hostapd_wps_nfc_config_token(hapd, ndef);
  750. }
  751. struct wpabuf * wpas_ap_wps_nfc_handover_sel(struct wpa_supplicant *wpa_s,
  752. int ndef)
  753. {
  754. struct hostapd_data *hapd;
  755. if (wpa_s->ap_iface == NULL)
  756. return NULL;
  757. hapd = wpa_s->ap_iface->bss[0];
  758. return hostapd_wps_nfc_hs_cr(hapd, ndef);
  759. }
  760. #endif /* CONFIG_WPS_NFC */
  761. #endif /* CONFIG_WPS */
  762. #ifdef CONFIG_CTRL_IFACE
  763. int ap_ctrl_iface_sta_first(struct wpa_supplicant *wpa_s,
  764. char *buf, size_t buflen)
  765. {
  766. if (wpa_s->ap_iface == NULL)
  767. return -1;
  768. return hostapd_ctrl_iface_sta_first(wpa_s->ap_iface->bss[0],
  769. buf, buflen);
  770. }
  771. int ap_ctrl_iface_sta(struct wpa_supplicant *wpa_s, const char *txtaddr,
  772. char *buf, size_t buflen)
  773. {
  774. if (wpa_s->ap_iface == NULL)
  775. return -1;
  776. return hostapd_ctrl_iface_sta(wpa_s->ap_iface->bss[0], txtaddr,
  777. buf, buflen);
  778. }
  779. int ap_ctrl_iface_sta_next(struct wpa_supplicant *wpa_s, const char *txtaddr,
  780. char *buf, size_t buflen)
  781. {
  782. if (wpa_s->ap_iface == NULL)
  783. return -1;
  784. return hostapd_ctrl_iface_sta_next(wpa_s->ap_iface->bss[0], txtaddr,
  785. buf, buflen);
  786. }
  787. int ap_ctrl_iface_sta_disassociate(struct wpa_supplicant *wpa_s,
  788. const char *txtaddr)
  789. {
  790. if (wpa_s->ap_iface == NULL)
  791. return -1;
  792. return hostapd_ctrl_iface_disassociate(wpa_s->ap_iface->bss[0],
  793. txtaddr);
  794. }
  795. int ap_ctrl_iface_sta_deauthenticate(struct wpa_supplicant *wpa_s,
  796. const char *txtaddr)
  797. {
  798. if (wpa_s->ap_iface == NULL)
  799. return -1;
  800. return hostapd_ctrl_iface_deauthenticate(wpa_s->ap_iface->bss[0],
  801. txtaddr);
  802. }
  803. int ap_ctrl_iface_wpa_get_status(struct wpa_supplicant *wpa_s, char *buf,
  804. size_t buflen, int verbose)
  805. {
  806. char *pos = buf, *end = buf + buflen;
  807. int ret;
  808. struct hostapd_bss_config *conf;
  809. if (wpa_s->ap_iface == NULL)
  810. return -1;
  811. conf = wpa_s->ap_iface->bss[0]->conf;
  812. if (conf->wpa == 0)
  813. return 0;
  814. ret = os_snprintf(pos, end - pos,
  815. "pairwise_cipher=%s\n"
  816. "group_cipher=%s\n"
  817. "key_mgmt=%s\n",
  818. wpa_cipher_txt(conf->rsn_pairwise),
  819. wpa_cipher_txt(conf->wpa_group),
  820. wpa_key_mgmt_txt(conf->wpa_key_mgmt,
  821. conf->wpa));
  822. if (ret < 0 || ret >= end - pos)
  823. return pos - buf;
  824. pos += ret;
  825. return pos - buf;
  826. }
  827. #endif /* CONFIG_CTRL_IFACE */
  828. int wpa_supplicant_ap_update_beacon(struct wpa_supplicant *wpa_s)
  829. {
  830. struct hostapd_iface *iface = wpa_s->ap_iface;
  831. struct wpa_ssid *ssid = wpa_s->current_ssid;
  832. struct hostapd_data *hapd;
  833. if (ssid == NULL || wpa_s->ap_iface == NULL ||
  834. ssid->mode == WPAS_MODE_INFRA ||
  835. ssid->mode == WPAS_MODE_IBSS)
  836. return -1;
  837. #ifdef CONFIG_P2P
  838. if (ssid->mode == WPAS_MODE_P2P_GO)
  839. iface->conf->bss[0].p2p = P2P_ENABLED | P2P_GROUP_OWNER;
  840. else if (ssid->mode == WPAS_MODE_P2P_GROUP_FORMATION)
  841. iface->conf->bss[0].p2p = P2P_ENABLED | P2P_GROUP_OWNER |
  842. P2P_GROUP_FORMATION;
  843. #endif /* CONFIG_P2P */
  844. hapd = iface->bss[0];
  845. if (hapd->drv_priv == NULL)
  846. return -1;
  847. ieee802_11_set_beacons(iface);
  848. hostapd_set_ap_wps_ie(hapd);
  849. return 0;
  850. }
  851. void wpas_ap_ch_switch(struct wpa_supplicant *wpa_s, int freq, int ht,
  852. int offset)
  853. {
  854. if (!wpa_s->ap_iface)
  855. return;
  856. wpa_s->assoc_freq = freq;
  857. hostapd_event_ch_switch(wpa_s->ap_iface->bss[0], freq, ht, offset);
  858. }
  859. int wpa_supplicant_ap_mac_addr_filter(struct wpa_supplicant *wpa_s,
  860. const u8 *addr)
  861. {
  862. struct hostapd_data *hapd;
  863. struct hostapd_bss_config *conf;
  864. if (!wpa_s->ap_iface)
  865. return -1;
  866. if (addr)
  867. wpa_printf(MSG_DEBUG, "AP: Set MAC address filter: " MACSTR,
  868. MAC2STR(addr));
  869. else
  870. wpa_printf(MSG_DEBUG, "AP: Clear MAC address filter");
  871. hapd = wpa_s->ap_iface->bss[0];
  872. conf = hapd->conf;
  873. os_free(conf->accept_mac);
  874. conf->accept_mac = NULL;
  875. conf->num_accept_mac = 0;
  876. os_free(conf->deny_mac);
  877. conf->deny_mac = NULL;
  878. conf->num_deny_mac = 0;
  879. if (addr == NULL) {
  880. conf->macaddr_acl = ACCEPT_UNLESS_DENIED;
  881. return 0;
  882. }
  883. conf->macaddr_acl = DENY_UNLESS_ACCEPTED;
  884. conf->accept_mac = os_zalloc(sizeof(struct mac_acl_entry));
  885. if (conf->accept_mac == NULL)
  886. return -1;
  887. os_memcpy(conf->accept_mac[0].addr, addr, ETH_ALEN);
  888. conf->num_accept_mac = 1;
  889. return 0;
  890. }