ap.c 28 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083
  1. /*
  2. * WPA Supplicant - Basic AP mode support routines
  3. * Copyright (c) 2003-2009, Jouni Malinen <j@w1.fi>
  4. * Copyright (c) 2009, Atheros Communications
  5. *
  6. * This software may be distributed under the terms of the BSD license.
  7. * See README for more details.
  8. */
  9. #include "utils/includes.h"
  10. #include "utils/common.h"
  11. #include "utils/eloop.h"
  12. #include "utils/uuid.h"
  13. #include "common/ieee802_11_defs.h"
  14. #include "common/wpa_ctrl.h"
  15. #include "eapol_supp/eapol_supp_sm.h"
  16. #include "ap/hostapd.h"
  17. #include "ap/ap_config.h"
  18. #include "ap/ap_drv_ops.h"
  19. #ifdef NEED_AP_MLME
  20. #include "ap/ieee802_11.h"
  21. #endif /* NEED_AP_MLME */
  22. #include "ap/beacon.h"
  23. #include "ap/ieee802_1x.h"
  24. #include "ap/wps_hostapd.h"
  25. #include "ap/ctrl_iface_ap.h"
  26. #include "wps/wps.h"
  27. #include "common/ieee802_11_defs.h"
  28. #include "config_ssid.h"
  29. #include "config.h"
  30. #include "wpa_supplicant_i.h"
  31. #include "driver_i.h"
  32. #include "p2p_supplicant.h"
  33. #include "ap.h"
  34. #include "ap/sta_info.h"
  35. #include "notify.h"
  36. #ifdef CONFIG_WPS
  37. static void wpas_wps_ap_pin_timeout(void *eloop_data, void *user_ctx);
  38. #endif /* CONFIG_WPS */
  39. static int wpa_supplicant_conf_ap(struct wpa_supplicant *wpa_s,
  40. struct wpa_ssid *ssid,
  41. struct hostapd_config *conf)
  42. {
  43. struct hostapd_bss_config *bss = &conf->bss[0];
  44. conf->driver = wpa_s->driver;
  45. os_strlcpy(bss->iface, wpa_s->ifname, sizeof(bss->iface));
  46. conf->hw_mode = ieee80211_freq_to_chan(ssid->frequency,
  47. &conf->channel);
  48. if (conf->hw_mode == NUM_HOSTAPD_MODES) {
  49. wpa_printf(MSG_ERROR, "Unsupported AP mode frequency: %d MHz",
  50. ssid->frequency);
  51. return -1;
  52. }
  53. /* TODO: enable HT40 if driver supports it;
  54. * drop to 11b if driver does not support 11g */
  55. #ifdef CONFIG_IEEE80211N
  56. /*
  57. * Enable HT20 if the driver supports it, by setting conf->ieee80211n
  58. * and a mask of allowed capabilities within conf->ht_capab.
  59. * Using default config settings for: conf->ht_op_mode_fixed,
  60. * conf->secondary_channel, conf->require_ht
  61. */
  62. if (wpa_s->hw.modes) {
  63. struct hostapd_hw_modes *mode = NULL;
  64. int i, no_ht = 0;
  65. for (i = 0; i < wpa_s->hw.num_modes; i++) {
  66. if (wpa_s->hw.modes[i].mode == conf->hw_mode) {
  67. mode = &wpa_s->hw.modes[i];
  68. break;
  69. }
  70. }
  71. #ifdef CONFIG_HT_OVERRIDES
  72. if (ssid->disable_ht) {
  73. conf->ieee80211n = 0;
  74. conf->ht_capab = 0;
  75. no_ht = 1;
  76. }
  77. #endif /* CONFIG_HT_OVERRIDES */
  78. if (!no_ht && mode && mode->ht_capab) {
  79. conf->ieee80211n = 1;
  80. #ifdef CONFIG_P2P
  81. if (conf->hw_mode == HOSTAPD_MODE_IEEE80211A &&
  82. (mode->ht_capab &
  83. HT_CAP_INFO_SUPP_CHANNEL_WIDTH_SET) &&
  84. ssid->ht40)
  85. conf->secondary_channel =
  86. wpas_p2p_get_ht40_mode(wpa_s, mode,
  87. conf->channel);
  88. if (conf->secondary_channel)
  89. conf->ht_capab |=
  90. HT_CAP_INFO_SUPP_CHANNEL_WIDTH_SET;
  91. #endif /* CONFIG_P2P */
  92. /*
  93. * white-list capabilities that won't cause issues
  94. * to connecting stations, while leaving the current
  95. * capabilities intact (currently disabled SMPS).
  96. */
  97. conf->ht_capab |= mode->ht_capab &
  98. (HT_CAP_INFO_GREEN_FIELD |
  99. HT_CAP_INFO_SHORT_GI20MHZ |
  100. HT_CAP_INFO_SHORT_GI40MHZ |
  101. HT_CAP_INFO_RX_STBC_MASK |
  102. HT_CAP_INFO_MAX_AMSDU_SIZE);
  103. }
  104. }
  105. #endif /* CONFIG_IEEE80211N */
  106. #ifdef CONFIG_P2P
  107. if (conf->hw_mode == HOSTAPD_MODE_IEEE80211G &&
  108. (ssid->mode == WPAS_MODE_P2P_GO ||
  109. ssid->mode == WPAS_MODE_P2P_GROUP_FORMATION)) {
  110. /* Remove 802.11b rates from supported and basic rate sets */
  111. int *list = os_malloc(4 * sizeof(int));
  112. if (list) {
  113. list[0] = 60;
  114. list[1] = 120;
  115. list[2] = 240;
  116. list[3] = -1;
  117. }
  118. conf->basic_rates = list;
  119. list = os_malloc(9 * sizeof(int));
  120. if (list) {
  121. list[0] = 60;
  122. list[1] = 90;
  123. list[2] = 120;
  124. list[3] = 180;
  125. list[4] = 240;
  126. list[5] = 360;
  127. list[6] = 480;
  128. list[7] = 540;
  129. list[8] = -1;
  130. }
  131. conf->supported_rates = list;
  132. }
  133. bss->isolate = !wpa_s->conf->p2p_intra_bss;
  134. bss->force_per_enrollee_psk = wpa_s->global->p2p_per_sta_psk;
  135. #endif /* CONFIG_P2P */
  136. if (ssid->ssid_len == 0) {
  137. wpa_printf(MSG_ERROR, "No SSID configured for AP mode");
  138. return -1;
  139. }
  140. os_memcpy(bss->ssid.ssid, ssid->ssid, ssid->ssid_len);
  141. bss->ssid.ssid_len = ssid->ssid_len;
  142. bss->ssid.ssid_set = 1;
  143. bss->ignore_broadcast_ssid = ssid->ignore_broadcast_ssid;
  144. if (ssid->auth_alg)
  145. bss->auth_algs = ssid->auth_alg;
  146. if (wpa_key_mgmt_wpa_psk(ssid->key_mgmt))
  147. bss->wpa = ssid->proto;
  148. bss->wpa_key_mgmt = ssid->key_mgmt;
  149. bss->wpa_pairwise = ssid->pairwise_cipher;
  150. if (ssid->psk_set) {
  151. os_free(bss->ssid.wpa_psk);
  152. bss->ssid.wpa_psk = os_zalloc(sizeof(struct hostapd_wpa_psk));
  153. if (bss->ssid.wpa_psk == NULL)
  154. return -1;
  155. os_memcpy(bss->ssid.wpa_psk->psk, ssid->psk, PMK_LEN);
  156. bss->ssid.wpa_psk->group = 1;
  157. } else if (ssid->passphrase) {
  158. bss->ssid.wpa_passphrase = os_strdup(ssid->passphrase);
  159. } else if (ssid->wep_key_len[0] || ssid->wep_key_len[1] ||
  160. ssid->wep_key_len[2] || ssid->wep_key_len[3]) {
  161. struct hostapd_wep_keys *wep = &bss->ssid.wep;
  162. int i;
  163. for (i = 0; i < NUM_WEP_KEYS; i++) {
  164. if (ssid->wep_key_len[i] == 0)
  165. continue;
  166. wep->key[i] = os_malloc(ssid->wep_key_len[i]);
  167. if (wep->key[i] == NULL)
  168. return -1;
  169. os_memcpy(wep->key[i], ssid->wep_key[i],
  170. ssid->wep_key_len[i]);
  171. wep->len[i] = ssid->wep_key_len[i];
  172. }
  173. wep->idx = ssid->wep_tx_keyidx;
  174. wep->keys_set = 1;
  175. }
  176. if (ssid->ap_max_inactivity)
  177. bss->ap_max_inactivity = ssid->ap_max_inactivity;
  178. if (ssid->dtim_period)
  179. bss->dtim_period = ssid->dtim_period;
  180. else if (wpa_s->conf->dtim_period)
  181. bss->dtim_period = wpa_s->conf->dtim_period;
  182. if (ssid->beacon_int)
  183. conf->beacon_int = ssid->beacon_int;
  184. else if (wpa_s->conf->beacon_int)
  185. conf->beacon_int = wpa_s->conf->beacon_int;
  186. if ((bss->wpa & 2) && bss->rsn_pairwise == 0)
  187. bss->rsn_pairwise = bss->wpa_pairwise;
  188. bss->wpa_group = wpa_select_ap_group_cipher(bss->wpa, bss->wpa_pairwise,
  189. bss->rsn_pairwise);
  190. if (bss->wpa && bss->ieee802_1x)
  191. bss->ssid.security_policy = SECURITY_WPA;
  192. else if (bss->wpa)
  193. bss->ssid.security_policy = SECURITY_WPA_PSK;
  194. else if (bss->ieee802_1x) {
  195. int cipher = WPA_CIPHER_NONE;
  196. bss->ssid.security_policy = SECURITY_IEEE_802_1X;
  197. bss->ssid.wep.default_len = bss->default_wep_key_len;
  198. if (bss->default_wep_key_len)
  199. cipher = bss->default_wep_key_len >= 13 ?
  200. WPA_CIPHER_WEP104 : WPA_CIPHER_WEP40;
  201. bss->wpa_group = cipher;
  202. bss->wpa_pairwise = cipher;
  203. bss->rsn_pairwise = cipher;
  204. } else if (bss->ssid.wep.keys_set) {
  205. int cipher = WPA_CIPHER_WEP40;
  206. if (bss->ssid.wep.len[0] >= 13)
  207. cipher = WPA_CIPHER_WEP104;
  208. bss->ssid.security_policy = SECURITY_STATIC_WEP;
  209. bss->wpa_group = cipher;
  210. bss->wpa_pairwise = cipher;
  211. bss->rsn_pairwise = cipher;
  212. } else {
  213. bss->ssid.security_policy = SECURITY_PLAINTEXT;
  214. bss->wpa_group = WPA_CIPHER_NONE;
  215. bss->wpa_pairwise = WPA_CIPHER_NONE;
  216. bss->rsn_pairwise = WPA_CIPHER_NONE;
  217. }
  218. if (bss->wpa_group_rekey < 86400 && (bss->wpa & 2) &&
  219. (bss->wpa_group == WPA_CIPHER_CCMP ||
  220. bss->wpa_group == WPA_CIPHER_GCMP)) {
  221. /*
  222. * Strong ciphers do not need frequent rekeying, so increase
  223. * the default GTK rekeying period to 24 hours.
  224. */
  225. bss->wpa_group_rekey = 86400;
  226. }
  227. #ifdef CONFIG_WPS
  228. /*
  229. * Enable WPS by default for open and WPA/WPA2-Personal network, but
  230. * require user interaction to actually use it. Only the internal
  231. * Registrar is supported.
  232. */
  233. if (bss->ssid.security_policy != SECURITY_WPA_PSK &&
  234. bss->ssid.security_policy != SECURITY_PLAINTEXT)
  235. goto no_wps;
  236. #ifdef CONFIG_WPS2
  237. if (bss->ssid.security_policy == SECURITY_WPA_PSK &&
  238. (!(bss->rsn_pairwise & WPA_CIPHER_CCMP) || !(bss->wpa & 2)))
  239. goto no_wps; /* WPS2 does not allow WPA/TKIP-only
  240. * configuration */
  241. #endif /* CONFIG_WPS2 */
  242. bss->eap_server = 1;
  243. if (!ssid->ignore_broadcast_ssid)
  244. bss->wps_state = 2;
  245. bss->ap_setup_locked = 2;
  246. if (wpa_s->conf->config_methods)
  247. bss->config_methods = os_strdup(wpa_s->conf->config_methods);
  248. os_memcpy(bss->device_type, wpa_s->conf->device_type,
  249. WPS_DEV_TYPE_LEN);
  250. if (wpa_s->conf->device_name) {
  251. bss->device_name = os_strdup(wpa_s->conf->device_name);
  252. bss->friendly_name = os_strdup(wpa_s->conf->device_name);
  253. }
  254. if (wpa_s->conf->manufacturer)
  255. bss->manufacturer = os_strdup(wpa_s->conf->manufacturer);
  256. if (wpa_s->conf->model_name)
  257. bss->model_name = os_strdup(wpa_s->conf->model_name);
  258. if (wpa_s->conf->model_number)
  259. bss->model_number = os_strdup(wpa_s->conf->model_number);
  260. if (wpa_s->conf->serial_number)
  261. bss->serial_number = os_strdup(wpa_s->conf->serial_number);
  262. if (is_nil_uuid(wpa_s->conf->uuid))
  263. os_memcpy(bss->uuid, wpa_s->wps->uuid, WPS_UUID_LEN);
  264. else
  265. os_memcpy(bss->uuid, wpa_s->conf->uuid, WPS_UUID_LEN);
  266. os_memcpy(bss->os_version, wpa_s->conf->os_version, 4);
  267. bss->pbc_in_m1 = wpa_s->conf->pbc_in_m1;
  268. no_wps:
  269. #endif /* CONFIG_WPS */
  270. if (wpa_s->max_stations &&
  271. wpa_s->max_stations < wpa_s->conf->max_num_sta)
  272. bss->max_num_sta = wpa_s->max_stations;
  273. else
  274. bss->max_num_sta = wpa_s->conf->max_num_sta;
  275. bss->disassoc_low_ack = wpa_s->conf->disassoc_low_ack;
  276. if (wpa_s->conf->ap_vendor_elements) {
  277. bss->vendor_elements =
  278. wpabuf_dup(wpa_s->conf->ap_vendor_elements);
  279. }
  280. return 0;
  281. }
  282. static void ap_public_action_rx(void *ctx, const u8 *buf, size_t len, int freq)
  283. {
  284. #ifdef CONFIG_P2P
  285. struct wpa_supplicant *wpa_s = ctx;
  286. const struct ieee80211_mgmt *mgmt;
  287. size_t hdr_len;
  288. mgmt = (const struct ieee80211_mgmt *) buf;
  289. hdr_len = (const u8 *) &mgmt->u.action.u.vs_public_action.action - buf;
  290. if (hdr_len > len)
  291. return;
  292. wpas_p2p_rx_action(wpa_s, mgmt->da, mgmt->sa, mgmt->bssid,
  293. mgmt->u.action.category,
  294. &mgmt->u.action.u.vs_public_action.action,
  295. len - hdr_len, freq);
  296. #endif /* CONFIG_P2P */
  297. }
  298. static void ap_wps_event_cb(void *ctx, enum wps_event event,
  299. union wps_event_data *data)
  300. {
  301. #ifdef CONFIG_P2P
  302. struct wpa_supplicant *wpa_s = ctx;
  303. if (event == WPS_EV_FAIL) {
  304. struct wps_event_fail *fail = &data->fail;
  305. if (wpa_s->parent && wpa_s->parent != wpa_s &&
  306. wpa_s == wpa_s->global->p2p_group_formation) {
  307. /*
  308. * src/ap/wps_hostapd.c has already sent this on the
  309. * main interface, so only send on the parent interface
  310. * here if needed.
  311. */
  312. wpa_msg(wpa_s->parent, MSG_INFO, WPS_EVENT_FAIL
  313. "msg=%d config_error=%d",
  314. fail->msg, fail->config_error);
  315. }
  316. wpas_p2p_wps_failed(wpa_s, fail);
  317. }
  318. #endif /* CONFIG_P2P */
  319. }
  320. static void ap_sta_authorized_cb(void *ctx, const u8 *mac_addr,
  321. int authorized, const u8 *p2p_dev_addr)
  322. {
  323. wpas_notify_sta_authorized(ctx, mac_addr, authorized, p2p_dev_addr);
  324. }
  325. #ifdef CONFIG_P2P
  326. static void ap_new_psk_cb(void *ctx, const u8 *mac_addr, const u8 *p2p_dev_addr,
  327. const u8 *psk, size_t psk_len)
  328. {
  329. struct wpa_supplicant *wpa_s = ctx;
  330. if (wpa_s->ap_iface == NULL || wpa_s->current_ssid == NULL)
  331. return;
  332. wpas_p2p_new_psk_cb(wpa_s, mac_addr, p2p_dev_addr, psk, psk_len);
  333. }
  334. #endif /* CONFIG_P2P */
  335. static int ap_vendor_action_rx(void *ctx, const u8 *buf, size_t len, int freq)
  336. {
  337. #ifdef CONFIG_P2P
  338. struct wpa_supplicant *wpa_s = ctx;
  339. const struct ieee80211_mgmt *mgmt;
  340. size_t hdr_len;
  341. mgmt = (const struct ieee80211_mgmt *) buf;
  342. hdr_len = (const u8 *) &mgmt->u.action.u.vs_public_action.action - buf;
  343. if (hdr_len > len)
  344. return -1;
  345. wpas_p2p_rx_action(wpa_s, mgmt->da, mgmt->sa, mgmt->bssid,
  346. mgmt->u.action.category,
  347. &mgmt->u.action.u.vs_public_action.action,
  348. len - hdr_len, freq);
  349. #endif /* CONFIG_P2P */
  350. return 0;
  351. }
  352. static int ap_probe_req_rx(void *ctx, const u8 *sa, const u8 *da,
  353. const u8 *bssid, const u8 *ie, size_t ie_len,
  354. int ssi_signal)
  355. {
  356. #ifdef CONFIG_P2P
  357. struct wpa_supplicant *wpa_s = ctx;
  358. return wpas_p2p_probe_req_rx(wpa_s, sa, da, bssid, ie, ie_len,
  359. ssi_signal);
  360. #else /* CONFIG_P2P */
  361. return 0;
  362. #endif /* CONFIG_P2P */
  363. }
  364. static void ap_wps_reg_success_cb(void *ctx, const u8 *mac_addr,
  365. const u8 *uuid_e)
  366. {
  367. #ifdef CONFIG_P2P
  368. struct wpa_supplicant *wpa_s = ctx;
  369. wpas_p2p_wps_success(wpa_s, mac_addr, 1);
  370. #endif /* CONFIG_P2P */
  371. }
  372. static void wpas_ap_configured_cb(void *ctx)
  373. {
  374. struct wpa_supplicant *wpa_s = ctx;
  375. wpa_supplicant_set_state(wpa_s, WPA_COMPLETED);
  376. if (wpa_s->ap_configured_cb)
  377. wpa_s->ap_configured_cb(wpa_s->ap_configured_cb_ctx,
  378. wpa_s->ap_configured_cb_data);
  379. }
  380. int wpa_supplicant_create_ap(struct wpa_supplicant *wpa_s,
  381. struct wpa_ssid *ssid)
  382. {
  383. struct wpa_driver_associate_params params;
  384. struct hostapd_iface *hapd_iface;
  385. struct hostapd_config *conf;
  386. size_t i;
  387. if (ssid->ssid == NULL || ssid->ssid_len == 0) {
  388. wpa_printf(MSG_ERROR, "No SSID configured for AP mode");
  389. return -1;
  390. }
  391. wpa_supplicant_ap_deinit(wpa_s);
  392. wpa_printf(MSG_DEBUG, "Setting up AP (SSID='%s')",
  393. wpa_ssid_txt(ssid->ssid, ssid->ssid_len));
  394. os_memset(&params, 0, sizeof(params));
  395. params.ssid = ssid->ssid;
  396. params.ssid_len = ssid->ssid_len;
  397. switch (ssid->mode) {
  398. case WPAS_MODE_INFRA:
  399. params.mode = IEEE80211_MODE_INFRA;
  400. break;
  401. case WPAS_MODE_IBSS:
  402. params.mode = IEEE80211_MODE_IBSS;
  403. break;
  404. case WPAS_MODE_AP:
  405. case WPAS_MODE_P2P_GO:
  406. case WPAS_MODE_P2P_GROUP_FORMATION:
  407. params.mode = IEEE80211_MODE_AP;
  408. break;
  409. }
  410. if (ssid->frequency == 0)
  411. ssid->frequency = 2462; /* default channel 11 */
  412. params.freq = ssid->frequency;
  413. params.wpa_proto = ssid->proto;
  414. if (ssid->key_mgmt & WPA_KEY_MGMT_PSK)
  415. wpa_s->key_mgmt = WPA_KEY_MGMT_PSK;
  416. else
  417. wpa_s->key_mgmt = WPA_KEY_MGMT_NONE;
  418. params.key_mgmt_suite = key_mgmt2driver(wpa_s->key_mgmt);
  419. wpa_s->pairwise_cipher = wpa_pick_pairwise_cipher(ssid->pairwise_cipher,
  420. 1);
  421. if (wpa_s->pairwise_cipher < 0) {
  422. wpa_printf(MSG_WARNING, "WPA: Failed to select pairwise "
  423. "cipher.");
  424. return -1;
  425. }
  426. params.pairwise_suite =
  427. wpa_cipher_to_suite_driver(wpa_s->pairwise_cipher);
  428. params.group_suite = params.pairwise_suite;
  429. #ifdef CONFIG_P2P
  430. if (ssid->mode == WPAS_MODE_P2P_GO ||
  431. ssid->mode == WPAS_MODE_P2P_GROUP_FORMATION)
  432. params.p2p = 1;
  433. #endif /* CONFIG_P2P */
  434. if (wpa_s->parent->set_ap_uapsd)
  435. params.uapsd = wpa_s->parent->ap_uapsd;
  436. else
  437. params.uapsd = -1;
  438. if (wpa_drv_associate(wpa_s, &params) < 0) {
  439. wpa_msg(wpa_s, MSG_INFO, "Failed to start AP functionality");
  440. #ifdef CONFIG_P2P
  441. if (ssid->mode == WPAS_MODE_P2P_GROUP_FORMATION &&
  442. wpa_s->global->p2p_group_formation == wpa_s)
  443. wpas_p2p_group_formation_failed(wpa_s->parent);
  444. #endif /* CONFIG_P2P */
  445. return -1;
  446. }
  447. wpa_s->ap_iface = hapd_iface = os_zalloc(sizeof(*wpa_s->ap_iface));
  448. if (hapd_iface == NULL)
  449. return -1;
  450. hapd_iface->owner = wpa_s;
  451. hapd_iface->drv_flags = wpa_s->drv_flags;
  452. hapd_iface->probe_resp_offloads = wpa_s->probe_resp_offloads;
  453. hapd_iface->extended_capa = wpa_s->extended_capa;
  454. hapd_iface->extended_capa_mask = wpa_s->extended_capa_mask;
  455. hapd_iface->extended_capa_len = wpa_s->extended_capa_len;
  456. wpa_s->ap_iface->conf = conf = hostapd_config_defaults();
  457. if (conf == NULL) {
  458. wpa_supplicant_ap_deinit(wpa_s);
  459. return -1;
  460. }
  461. os_memcpy(wpa_s->ap_iface->conf->wmm_ac_params,
  462. wpa_s->conf->wmm_ac_params,
  463. sizeof(wpa_s->conf->wmm_ac_params));
  464. if (params.uapsd > 0) {
  465. conf->bss->wmm_enabled = 1;
  466. conf->bss->wmm_uapsd = 1;
  467. }
  468. if (wpa_supplicant_conf_ap(wpa_s, ssid, conf)) {
  469. wpa_printf(MSG_ERROR, "Failed to create AP configuration");
  470. wpa_supplicant_ap_deinit(wpa_s);
  471. return -1;
  472. }
  473. #ifdef CONFIG_P2P
  474. if (ssid->mode == WPAS_MODE_P2P_GO)
  475. conf->bss[0].p2p = P2P_ENABLED | P2P_GROUP_OWNER;
  476. else if (ssid->mode == WPAS_MODE_P2P_GROUP_FORMATION)
  477. conf->bss[0].p2p = P2P_ENABLED | P2P_GROUP_OWNER |
  478. P2P_GROUP_FORMATION;
  479. #endif /* CONFIG_P2P */
  480. hapd_iface->num_bss = conf->num_bss;
  481. hapd_iface->bss = os_calloc(conf->num_bss,
  482. sizeof(struct hostapd_data *));
  483. if (hapd_iface->bss == NULL) {
  484. wpa_supplicant_ap_deinit(wpa_s);
  485. return -1;
  486. }
  487. for (i = 0; i < conf->num_bss; i++) {
  488. hapd_iface->bss[i] =
  489. hostapd_alloc_bss_data(hapd_iface, conf,
  490. &conf->bss[i]);
  491. if (hapd_iface->bss[i] == NULL) {
  492. wpa_supplicant_ap_deinit(wpa_s);
  493. return -1;
  494. }
  495. hapd_iface->bss[i]->msg_ctx = wpa_s;
  496. hapd_iface->bss[i]->msg_ctx_parent = wpa_s->parent;
  497. hapd_iface->bss[i]->public_action_cb = ap_public_action_rx;
  498. hapd_iface->bss[i]->public_action_cb_ctx = wpa_s;
  499. hapd_iface->bss[i]->vendor_action_cb = ap_vendor_action_rx;
  500. hapd_iface->bss[i]->vendor_action_cb_ctx = wpa_s;
  501. hostapd_register_probereq_cb(hapd_iface->bss[i],
  502. ap_probe_req_rx, wpa_s);
  503. hapd_iface->bss[i]->wps_reg_success_cb = ap_wps_reg_success_cb;
  504. hapd_iface->bss[i]->wps_reg_success_cb_ctx = wpa_s;
  505. hapd_iface->bss[i]->wps_event_cb = ap_wps_event_cb;
  506. hapd_iface->bss[i]->wps_event_cb_ctx = wpa_s;
  507. hapd_iface->bss[i]->sta_authorized_cb = ap_sta_authorized_cb;
  508. hapd_iface->bss[i]->sta_authorized_cb_ctx = wpa_s;
  509. #ifdef CONFIG_P2P
  510. hapd_iface->bss[i]->new_psk_cb = ap_new_psk_cb;
  511. hapd_iface->bss[i]->new_psk_cb_ctx = wpa_s;
  512. hapd_iface->bss[i]->p2p = wpa_s->global->p2p;
  513. hapd_iface->bss[i]->p2p_group = wpas_p2p_group_init(wpa_s,
  514. ssid);
  515. #endif /* CONFIG_P2P */
  516. hapd_iface->bss[i]->setup_complete_cb = wpas_ap_configured_cb;
  517. hapd_iface->bss[i]->setup_complete_cb_ctx = wpa_s;
  518. }
  519. os_memcpy(hapd_iface->bss[0]->own_addr, wpa_s->own_addr, ETH_ALEN);
  520. hapd_iface->bss[0]->driver = wpa_s->driver;
  521. hapd_iface->bss[0]->drv_priv = wpa_s->drv_priv;
  522. wpa_s->current_ssid = ssid;
  523. eapol_sm_notify_config(wpa_s->eapol, NULL, NULL);
  524. os_memcpy(wpa_s->bssid, wpa_s->own_addr, ETH_ALEN);
  525. wpa_s->assoc_freq = ssid->frequency;
  526. if (hostapd_setup_interface(wpa_s->ap_iface)) {
  527. wpa_printf(MSG_ERROR, "Failed to initialize AP interface");
  528. wpa_supplicant_ap_deinit(wpa_s);
  529. return -1;
  530. }
  531. return 0;
  532. }
  533. void wpa_supplicant_ap_deinit(struct wpa_supplicant *wpa_s)
  534. {
  535. #ifdef CONFIG_WPS
  536. eloop_cancel_timeout(wpas_wps_ap_pin_timeout, wpa_s, NULL);
  537. #endif /* CONFIG_WPS */
  538. if (wpa_s->ap_iface == NULL)
  539. return;
  540. wpa_s->current_ssid = NULL;
  541. eapol_sm_notify_config(wpa_s->eapol, NULL, NULL);
  542. wpa_s->assoc_freq = 0;
  543. #ifdef CONFIG_P2P
  544. if (wpa_s->ap_iface->bss)
  545. wpa_s->ap_iface->bss[0]->p2p_group = NULL;
  546. wpas_p2p_group_deinit(wpa_s);
  547. #endif /* CONFIG_P2P */
  548. hostapd_interface_deinit(wpa_s->ap_iface);
  549. hostapd_interface_free(wpa_s->ap_iface);
  550. wpa_s->ap_iface = NULL;
  551. wpa_drv_deinit_ap(wpa_s);
  552. }
  553. void ap_tx_status(void *ctx, const u8 *addr,
  554. const u8 *buf, size_t len, int ack)
  555. {
  556. #ifdef NEED_AP_MLME
  557. struct wpa_supplicant *wpa_s = ctx;
  558. hostapd_tx_status(wpa_s->ap_iface->bss[0], addr, buf, len, ack);
  559. #endif /* NEED_AP_MLME */
  560. }
  561. void ap_eapol_tx_status(void *ctx, const u8 *dst,
  562. const u8 *data, size_t len, int ack)
  563. {
  564. #ifdef NEED_AP_MLME
  565. struct wpa_supplicant *wpa_s = ctx;
  566. hostapd_tx_status(wpa_s->ap_iface->bss[0], dst, data, len, ack);
  567. #endif /* NEED_AP_MLME */
  568. }
  569. void ap_client_poll_ok(void *ctx, const u8 *addr)
  570. {
  571. #ifdef NEED_AP_MLME
  572. struct wpa_supplicant *wpa_s = ctx;
  573. if (wpa_s->ap_iface)
  574. hostapd_client_poll_ok(wpa_s->ap_iface->bss[0], addr);
  575. #endif /* NEED_AP_MLME */
  576. }
  577. void ap_rx_from_unknown_sta(void *ctx, const u8 *addr, int wds)
  578. {
  579. #ifdef NEED_AP_MLME
  580. struct wpa_supplicant *wpa_s = ctx;
  581. ieee802_11_rx_from_unknown(wpa_s->ap_iface->bss[0], addr, wds);
  582. #endif /* NEED_AP_MLME */
  583. }
  584. void ap_mgmt_rx(void *ctx, struct rx_mgmt *rx_mgmt)
  585. {
  586. #ifdef NEED_AP_MLME
  587. struct wpa_supplicant *wpa_s = ctx;
  588. struct hostapd_frame_info fi;
  589. os_memset(&fi, 0, sizeof(fi));
  590. fi.datarate = rx_mgmt->datarate;
  591. fi.ssi_signal = rx_mgmt->ssi_signal;
  592. ieee802_11_mgmt(wpa_s->ap_iface->bss[0], rx_mgmt->frame,
  593. rx_mgmt->frame_len, &fi);
  594. #endif /* NEED_AP_MLME */
  595. }
  596. void ap_mgmt_tx_cb(void *ctx, const u8 *buf, size_t len, u16 stype, int ok)
  597. {
  598. #ifdef NEED_AP_MLME
  599. struct wpa_supplicant *wpa_s = ctx;
  600. ieee802_11_mgmt_cb(wpa_s->ap_iface->bss[0], buf, len, stype, ok);
  601. #endif /* NEED_AP_MLME */
  602. }
  603. void wpa_supplicant_ap_rx_eapol(struct wpa_supplicant *wpa_s,
  604. const u8 *src_addr, const u8 *buf, size_t len)
  605. {
  606. ieee802_1x_receive(wpa_s->ap_iface->bss[0], src_addr, buf, len);
  607. }
  608. #ifdef CONFIG_WPS
  609. int wpa_supplicant_ap_wps_pbc(struct wpa_supplicant *wpa_s, const u8 *bssid,
  610. const u8 *p2p_dev_addr)
  611. {
  612. if (!wpa_s->ap_iface)
  613. return -1;
  614. return hostapd_wps_button_pushed(wpa_s->ap_iface->bss[0],
  615. p2p_dev_addr);
  616. }
  617. int wpa_supplicant_ap_wps_cancel(struct wpa_supplicant *wpa_s)
  618. {
  619. struct wps_registrar *reg;
  620. int reg_sel = 0, wps_sta = 0;
  621. if (!wpa_s->ap_iface || !wpa_s->ap_iface->bss[0]->wps)
  622. return -1;
  623. reg = wpa_s->ap_iface->bss[0]->wps->registrar;
  624. reg_sel = wps_registrar_wps_cancel(reg);
  625. wps_sta = ap_for_each_sta(wpa_s->ap_iface->bss[0],
  626. ap_sta_wps_cancel, NULL);
  627. if (!reg_sel && !wps_sta) {
  628. wpa_printf(MSG_DEBUG, "No WPS operation in progress at this "
  629. "time");
  630. return -1;
  631. }
  632. /*
  633. * There are 2 cases to return wps cancel as success:
  634. * 1. When wps cancel was initiated but no connection has been
  635. * established with client yet.
  636. * 2. Client is in the middle of exchanging WPS messages.
  637. */
  638. return 0;
  639. }
  640. int wpa_supplicant_ap_wps_pin(struct wpa_supplicant *wpa_s, const u8 *bssid,
  641. const char *pin, char *buf, size_t buflen,
  642. int timeout)
  643. {
  644. int ret, ret_len = 0;
  645. if (!wpa_s->ap_iface)
  646. return -1;
  647. if (pin == NULL) {
  648. unsigned int rpin = wps_generate_pin();
  649. ret_len = os_snprintf(buf, buflen, "%08d", rpin);
  650. pin = buf;
  651. } else
  652. ret_len = os_snprintf(buf, buflen, "%s", pin);
  653. ret = hostapd_wps_add_pin(wpa_s->ap_iface->bss[0], bssid, "any", pin,
  654. timeout);
  655. if (ret)
  656. return -1;
  657. return ret_len;
  658. }
  659. static void wpas_wps_ap_pin_timeout(void *eloop_data, void *user_ctx)
  660. {
  661. struct wpa_supplicant *wpa_s = eloop_data;
  662. wpa_printf(MSG_DEBUG, "WPS: AP PIN timed out");
  663. wpas_wps_ap_pin_disable(wpa_s);
  664. }
  665. static void wpas_wps_ap_pin_enable(struct wpa_supplicant *wpa_s, int timeout)
  666. {
  667. struct hostapd_data *hapd;
  668. if (wpa_s->ap_iface == NULL)
  669. return;
  670. hapd = wpa_s->ap_iface->bss[0];
  671. wpa_printf(MSG_DEBUG, "WPS: Enabling AP PIN (timeout=%d)", timeout);
  672. hapd->ap_pin_failures = 0;
  673. eloop_cancel_timeout(wpas_wps_ap_pin_timeout, wpa_s, NULL);
  674. if (timeout > 0)
  675. eloop_register_timeout(timeout, 0,
  676. wpas_wps_ap_pin_timeout, wpa_s, NULL);
  677. }
  678. void wpas_wps_ap_pin_disable(struct wpa_supplicant *wpa_s)
  679. {
  680. struct hostapd_data *hapd;
  681. if (wpa_s->ap_iface == NULL)
  682. return;
  683. wpa_printf(MSG_DEBUG, "WPS: Disabling AP PIN");
  684. hapd = wpa_s->ap_iface->bss[0];
  685. os_free(hapd->conf->ap_pin);
  686. hapd->conf->ap_pin = NULL;
  687. eloop_cancel_timeout(wpas_wps_ap_pin_timeout, wpa_s, NULL);
  688. }
  689. const char * wpas_wps_ap_pin_random(struct wpa_supplicant *wpa_s, int timeout)
  690. {
  691. struct hostapd_data *hapd;
  692. unsigned int pin;
  693. char pin_txt[9];
  694. if (wpa_s->ap_iface == NULL)
  695. return NULL;
  696. hapd = wpa_s->ap_iface->bss[0];
  697. pin = wps_generate_pin();
  698. os_snprintf(pin_txt, sizeof(pin_txt), "%08u", pin);
  699. os_free(hapd->conf->ap_pin);
  700. hapd->conf->ap_pin = os_strdup(pin_txt);
  701. if (hapd->conf->ap_pin == NULL)
  702. return NULL;
  703. wpas_wps_ap_pin_enable(wpa_s, timeout);
  704. return hapd->conf->ap_pin;
  705. }
  706. const char * wpas_wps_ap_pin_get(struct wpa_supplicant *wpa_s)
  707. {
  708. struct hostapd_data *hapd;
  709. if (wpa_s->ap_iface == NULL)
  710. return NULL;
  711. hapd = wpa_s->ap_iface->bss[0];
  712. return hapd->conf->ap_pin;
  713. }
  714. int wpas_wps_ap_pin_set(struct wpa_supplicant *wpa_s, const char *pin,
  715. int timeout)
  716. {
  717. struct hostapd_data *hapd;
  718. char pin_txt[9];
  719. int ret;
  720. if (wpa_s->ap_iface == NULL)
  721. return -1;
  722. hapd = wpa_s->ap_iface->bss[0];
  723. ret = os_snprintf(pin_txt, sizeof(pin_txt), "%s", pin);
  724. if (ret < 0 || ret >= (int) sizeof(pin_txt))
  725. return -1;
  726. os_free(hapd->conf->ap_pin);
  727. hapd->conf->ap_pin = os_strdup(pin_txt);
  728. if (hapd->conf->ap_pin == NULL)
  729. return -1;
  730. wpas_wps_ap_pin_enable(wpa_s, timeout);
  731. return 0;
  732. }
  733. void wpa_supplicant_ap_pwd_auth_fail(struct wpa_supplicant *wpa_s)
  734. {
  735. struct hostapd_data *hapd;
  736. if (wpa_s->ap_iface == NULL)
  737. return;
  738. hapd = wpa_s->ap_iface->bss[0];
  739. /*
  740. * Registrar failed to prove its knowledge of the AP PIN. Disable AP
  741. * PIN if this happens multiple times to slow down brute force attacks.
  742. */
  743. hapd->ap_pin_failures++;
  744. wpa_printf(MSG_DEBUG, "WPS: AP PIN authentication failure number %u",
  745. hapd->ap_pin_failures);
  746. if (hapd->ap_pin_failures < 3)
  747. return;
  748. wpa_printf(MSG_DEBUG, "WPS: Disable AP PIN");
  749. hapd->ap_pin_failures = 0;
  750. os_free(hapd->conf->ap_pin);
  751. hapd->conf->ap_pin = NULL;
  752. }
  753. #ifdef CONFIG_WPS_NFC
  754. struct wpabuf * wpas_ap_wps_nfc_config_token(struct wpa_supplicant *wpa_s,
  755. int ndef)
  756. {
  757. struct hostapd_data *hapd;
  758. if (wpa_s->ap_iface == NULL)
  759. return NULL;
  760. hapd = wpa_s->ap_iface->bss[0];
  761. return hostapd_wps_nfc_config_token(hapd, ndef);
  762. }
  763. struct wpabuf * wpas_ap_wps_nfc_handover_sel(struct wpa_supplicant *wpa_s,
  764. int ndef)
  765. {
  766. struct hostapd_data *hapd;
  767. if (wpa_s->ap_iface == NULL)
  768. return NULL;
  769. hapd = wpa_s->ap_iface->bss[0];
  770. return hostapd_wps_nfc_hs_cr(hapd, ndef);
  771. }
  772. #endif /* CONFIG_WPS_NFC */
  773. #endif /* CONFIG_WPS */
  774. #ifdef CONFIG_CTRL_IFACE
  775. int ap_ctrl_iface_sta_first(struct wpa_supplicant *wpa_s,
  776. char *buf, size_t buflen)
  777. {
  778. if (wpa_s->ap_iface == NULL)
  779. return -1;
  780. return hostapd_ctrl_iface_sta_first(wpa_s->ap_iface->bss[0],
  781. buf, buflen);
  782. }
  783. int ap_ctrl_iface_sta(struct wpa_supplicant *wpa_s, const char *txtaddr,
  784. char *buf, size_t buflen)
  785. {
  786. if (wpa_s->ap_iface == NULL)
  787. return -1;
  788. return hostapd_ctrl_iface_sta(wpa_s->ap_iface->bss[0], txtaddr,
  789. buf, buflen);
  790. }
  791. int ap_ctrl_iface_sta_next(struct wpa_supplicant *wpa_s, const char *txtaddr,
  792. char *buf, size_t buflen)
  793. {
  794. if (wpa_s->ap_iface == NULL)
  795. return -1;
  796. return hostapd_ctrl_iface_sta_next(wpa_s->ap_iface->bss[0], txtaddr,
  797. buf, buflen);
  798. }
  799. int ap_ctrl_iface_sta_disassociate(struct wpa_supplicant *wpa_s,
  800. const char *txtaddr)
  801. {
  802. if (wpa_s->ap_iface == NULL)
  803. return -1;
  804. return hostapd_ctrl_iface_disassociate(wpa_s->ap_iface->bss[0],
  805. txtaddr);
  806. }
  807. int ap_ctrl_iface_sta_deauthenticate(struct wpa_supplicant *wpa_s,
  808. const char *txtaddr)
  809. {
  810. if (wpa_s->ap_iface == NULL)
  811. return -1;
  812. return hostapd_ctrl_iface_deauthenticate(wpa_s->ap_iface->bss[0],
  813. txtaddr);
  814. }
  815. int ap_ctrl_iface_wpa_get_status(struct wpa_supplicant *wpa_s, char *buf,
  816. size_t buflen, int verbose)
  817. {
  818. char *pos = buf, *end = buf + buflen;
  819. int ret;
  820. struct hostapd_bss_config *conf;
  821. if (wpa_s->ap_iface == NULL)
  822. return -1;
  823. conf = wpa_s->ap_iface->bss[0]->conf;
  824. if (conf->wpa == 0)
  825. return 0;
  826. ret = os_snprintf(pos, end - pos,
  827. "pairwise_cipher=%s\n"
  828. "group_cipher=%s\n"
  829. "key_mgmt=%s\n",
  830. wpa_cipher_txt(conf->rsn_pairwise),
  831. wpa_cipher_txt(conf->wpa_group),
  832. wpa_key_mgmt_txt(conf->wpa_key_mgmt,
  833. conf->wpa));
  834. if (ret < 0 || ret >= end - pos)
  835. return pos - buf;
  836. pos += ret;
  837. return pos - buf;
  838. }
  839. #endif /* CONFIG_CTRL_IFACE */
  840. int wpa_supplicant_ap_update_beacon(struct wpa_supplicant *wpa_s)
  841. {
  842. struct hostapd_iface *iface = wpa_s->ap_iface;
  843. struct wpa_ssid *ssid = wpa_s->current_ssid;
  844. struct hostapd_data *hapd;
  845. if (ssid == NULL || wpa_s->ap_iface == NULL ||
  846. ssid->mode == WPAS_MODE_INFRA ||
  847. ssid->mode == WPAS_MODE_IBSS)
  848. return -1;
  849. #ifdef CONFIG_P2P
  850. if (ssid->mode == WPAS_MODE_P2P_GO)
  851. iface->conf->bss[0].p2p = P2P_ENABLED | P2P_GROUP_OWNER;
  852. else if (ssid->mode == WPAS_MODE_P2P_GROUP_FORMATION)
  853. iface->conf->bss[0].p2p = P2P_ENABLED | P2P_GROUP_OWNER |
  854. P2P_GROUP_FORMATION;
  855. #endif /* CONFIG_P2P */
  856. hapd = iface->bss[0];
  857. if (hapd->drv_priv == NULL)
  858. return -1;
  859. ieee802_11_set_beacons(iface);
  860. hostapd_set_ap_wps_ie(hapd);
  861. return 0;
  862. }
  863. void wpas_ap_ch_switch(struct wpa_supplicant *wpa_s, int freq, int ht,
  864. int offset)
  865. {
  866. if (!wpa_s->ap_iface)
  867. return;
  868. wpa_s->assoc_freq = freq;
  869. hostapd_event_ch_switch(wpa_s->ap_iface->bss[0], freq, ht, offset);
  870. }
  871. int wpa_supplicant_ap_mac_addr_filter(struct wpa_supplicant *wpa_s,
  872. const u8 *addr)
  873. {
  874. struct hostapd_data *hapd;
  875. struct hostapd_bss_config *conf;
  876. if (!wpa_s->ap_iface)
  877. return -1;
  878. if (addr)
  879. wpa_printf(MSG_DEBUG, "AP: Set MAC address filter: " MACSTR,
  880. MAC2STR(addr));
  881. else
  882. wpa_printf(MSG_DEBUG, "AP: Clear MAC address filter");
  883. hapd = wpa_s->ap_iface->bss[0];
  884. conf = hapd->conf;
  885. os_free(conf->accept_mac);
  886. conf->accept_mac = NULL;
  887. conf->num_accept_mac = 0;
  888. os_free(conf->deny_mac);
  889. conf->deny_mac = NULL;
  890. conf->num_deny_mac = 0;
  891. if (addr == NULL) {
  892. conf->macaddr_acl = ACCEPT_UNLESS_DENIED;
  893. return 0;
  894. }
  895. conf->macaddr_acl = DENY_UNLESS_ACCEPTED;
  896. conf->accept_mac = os_zalloc(sizeof(struct mac_acl_entry));
  897. if (conf->accept_mac == NULL)
  898. return -1;
  899. os_memcpy(conf->accept_mac[0].addr, addr, ETH_ALEN);
  900. conf->num_accept_mac = 1;
  901. return 0;
  902. }