123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491 |
- /*-
- * Copyright 2009 Colin Percival, 2011 ArtForz
- * All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- * 1. Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- * 2. Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in the
- * documentation and/or other materials provided with the distribution.
- *
- * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
- * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
- * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
- * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
- * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
- * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
- * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
- * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
- * SUCH DAMAGE.
- *
- * This file was originally written by Colin Percival as part of the Tarsnap
- * online backup system.
- */
- #include "config.h"
- #include "miner.h"
- #include <stdlib.h>
- #include <stdint.h>
- #include <string.h>
- typedef struct SHA256Context {
- uint32_t state[8];
- uint32_t buf[16];
- } SHA256_CTX;
- /*
- * Encode a length len/4 vector of (uint32_t) into a length len vector of
- * (unsigned char) in big-endian form. Assumes len is a multiple of 4.
- */
- static inline void
- be32enc_vect(uint32_t *dst, const uint32_t *src, uint32_t len)
- {
- uint32_t i;
- for (i = 0; i < len; i++)
- dst[i] = htobe32(src[i]);
- }
- /* Elementary functions used by SHA256 */
- #define Ch(x, y, z) ((x & (y ^ z)) ^ z)
- #define Maj(x, y, z) ((x & (y | z)) | (y & z))
- #define SHR(x, n) (x >> n)
- #define ROTR(x, n) ((x >> n) | (x << (32 - n)))
- #define S0(x) (ROTR(x, 2) ^ ROTR(x, 13) ^ ROTR(x, 22))
- #define S1(x) (ROTR(x, 6) ^ ROTR(x, 11) ^ ROTR(x, 25))
- #define s0(x) (ROTR(x, 7) ^ ROTR(x, 18) ^ SHR(x, 3))
- #define s1(x) (ROTR(x, 17) ^ ROTR(x, 19) ^ SHR(x, 10))
- /* SHA256 round function */
- #define RND(a, b, c, d, e, f, g, h, k) \
- t0 = h + S1(e) + Ch(e, f, g) + k; \
- t1 = S0(a) + Maj(a, b, c); \
- d += t0; \
- h = t0 + t1;
- /* Adjusted round function for rotating state */
- #define RNDr(S, W, i, k) \
- RND(S[(64 - i) % 8], S[(65 - i) % 8], \
- S[(66 - i) % 8], S[(67 - i) % 8], \
- S[(68 - i) % 8], S[(69 - i) % 8], \
- S[(70 - i) % 8], S[(71 - i) % 8], \
- W[i] + k)
- /*
- * SHA256 block compression function. The 256-bit state is transformed via
- * the 512-bit input block to produce a new state.
- */
- static void
- SHA256_Transform(uint32_t * state, const uint32_t block[16], int swap)
- {
- uint32_t W[64];
- uint32_t S[8];
- uint32_t t0, t1;
- int i;
- /* 1. Prepare message schedule W. */
- if(swap)
- for (i = 0; i < 16; i++)
- W[i] = htobe32(block[i]);
- else
- memcpy(W, block, 64);
- for (i = 16; i < 64; i += 2) {
- W[i] = s1(W[i - 2]) + W[i - 7] + s0(W[i - 15]) + W[i - 16];
- W[i+1] = s1(W[i - 1]) + W[i - 6] + s0(W[i - 14]) + W[i - 15];
- }
- /* 2. Initialize working variables. */
- memcpy(S, state, 32);
- /* 3. Mix. */
- RNDr(S, W, 0, 0x428a2f98);
- RNDr(S, W, 1, 0x71374491);
- RNDr(S, W, 2, 0xb5c0fbcf);
- RNDr(S, W, 3, 0xe9b5dba5);
- RNDr(S, W, 4, 0x3956c25b);
- RNDr(S, W, 5, 0x59f111f1);
- RNDr(S, W, 6, 0x923f82a4);
- RNDr(S, W, 7, 0xab1c5ed5);
- RNDr(S, W, 8, 0xd807aa98);
- RNDr(S, W, 9, 0x12835b01);
- RNDr(S, W, 10, 0x243185be);
- RNDr(S, W, 11, 0x550c7dc3);
- RNDr(S, W, 12, 0x72be5d74);
- RNDr(S, W, 13, 0x80deb1fe);
- RNDr(S, W, 14, 0x9bdc06a7);
- RNDr(S, W, 15, 0xc19bf174);
- RNDr(S, W, 16, 0xe49b69c1);
- RNDr(S, W, 17, 0xefbe4786);
- RNDr(S, W, 18, 0x0fc19dc6);
- RNDr(S, W, 19, 0x240ca1cc);
- RNDr(S, W, 20, 0x2de92c6f);
- RNDr(S, W, 21, 0x4a7484aa);
- RNDr(S, W, 22, 0x5cb0a9dc);
- RNDr(S, W, 23, 0x76f988da);
- RNDr(S, W, 24, 0x983e5152);
- RNDr(S, W, 25, 0xa831c66d);
- RNDr(S, W, 26, 0xb00327c8);
- RNDr(S, W, 27, 0xbf597fc7);
- RNDr(S, W, 28, 0xc6e00bf3);
- RNDr(S, W, 29, 0xd5a79147);
- RNDr(S, W, 30, 0x06ca6351);
- RNDr(S, W, 31, 0x14292967);
- RNDr(S, W, 32, 0x27b70a85);
- RNDr(S, W, 33, 0x2e1b2138);
- RNDr(S, W, 34, 0x4d2c6dfc);
- RNDr(S, W, 35, 0x53380d13);
- RNDr(S, W, 36, 0x650a7354);
- RNDr(S, W, 37, 0x766a0abb);
- RNDr(S, W, 38, 0x81c2c92e);
- RNDr(S, W, 39, 0x92722c85);
- RNDr(S, W, 40, 0xa2bfe8a1);
- RNDr(S, W, 41, 0xa81a664b);
- RNDr(S, W, 42, 0xc24b8b70);
- RNDr(S, W, 43, 0xc76c51a3);
- RNDr(S, W, 44, 0xd192e819);
- RNDr(S, W, 45, 0xd6990624);
- RNDr(S, W, 46, 0xf40e3585);
- RNDr(S, W, 47, 0x106aa070);
- RNDr(S, W, 48, 0x19a4c116);
- RNDr(S, W, 49, 0x1e376c08);
- RNDr(S, W, 50, 0x2748774c);
- RNDr(S, W, 51, 0x34b0bcb5);
- RNDr(S, W, 52, 0x391c0cb3);
- RNDr(S, W, 53, 0x4ed8aa4a);
- RNDr(S, W, 54, 0x5b9cca4f);
- RNDr(S, W, 55, 0x682e6ff3);
- RNDr(S, W, 56, 0x748f82ee);
- RNDr(S, W, 57, 0x78a5636f);
- RNDr(S, W, 58, 0x84c87814);
- RNDr(S, W, 59, 0x8cc70208);
- RNDr(S, W, 60, 0x90befffa);
- RNDr(S, W, 61, 0xa4506ceb);
- RNDr(S, W, 62, 0xbef9a3f7);
- RNDr(S, W, 63, 0xc67178f2);
- /* 4. Mix local working variables into global state */
- for (i = 0; i < 8; i++)
- state[i] += S[i];
- }
- static inline void
- SHA256_InitState(uint32_t * state)
- {
- /* Magic initialization constants */
- state[0] = 0x6A09E667;
- state[1] = 0xBB67AE85;
- state[2] = 0x3C6EF372;
- state[3] = 0xA54FF53A;
- state[4] = 0x510E527F;
- state[5] = 0x9B05688C;
- state[6] = 0x1F83D9AB;
- state[7] = 0x5BE0CD19;
- }
- static const uint32_t passwdpad[12] = {0x00000080, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x80020000};
- static const uint32_t outerpad[8] = {0x80000000, 0, 0, 0, 0, 0, 0, 0x00000300};
- /**
- * PBKDF2_SHA256(passwd, passwdlen, salt, saltlen, c, buf, dkLen):
- * Compute PBKDF2(passwd, salt, c, dkLen) using HMAC-SHA256 as the PRF, and
- * write the output to buf. The value dkLen must be at most 32 * (2^32 - 1).
- */
- static inline void
- PBKDF2_SHA256_80_128(const uint32_t * passwd, uint32_t * buf)
- {
- SHA256_CTX PShictx, PShoctx;
- uint32_t tstate[8];
- uint32_t ihash[8];
- uint32_t i;
- uint32_t pad[16];
- static const uint32_t innerpad[11] = {0x00000080, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0xa0040000};
- /* If Klen > 64, the key is really SHA256(K). */
- SHA256_InitState(tstate);
- SHA256_Transform(tstate, passwd, 1);
- memcpy(pad, passwd+16, 16);
- memcpy(pad+4, passwdpad, 48);
- SHA256_Transform(tstate, pad, 1);
- memcpy(ihash, tstate, 32);
- SHA256_InitState(PShictx.state);
- for (i = 0; i < 8; i++)
- pad[i] = ihash[i] ^ 0x36363636;
- for (; i < 16; i++)
- pad[i] = 0x36363636;
- SHA256_Transform(PShictx.state, pad, 0);
- SHA256_Transform(PShictx.state, passwd, 1);
- be32enc_vect(PShictx.buf, passwd+16, 4);
- be32enc_vect(PShictx.buf+5, innerpad, 11);
- SHA256_InitState(PShoctx.state);
- for (i = 0; i < 8; i++)
- pad[i] = ihash[i] ^ 0x5c5c5c5c;
- for (; i < 16; i++)
- pad[i] = 0x5c5c5c5c;
- SHA256_Transform(PShoctx.state, pad, 0);
- memcpy(PShoctx.buf+8, outerpad, 32);
- /* Iterate through the blocks. */
- for (i = 0; i < 4; i++) {
- uint32_t istate[8];
- uint32_t ostate[8];
- memcpy(istate, PShictx.state, 32);
- PShictx.buf[4] = i + 1;
- SHA256_Transform(istate, PShictx.buf, 0);
- memcpy(PShoctx.buf, istate, 32);
- memcpy(ostate, PShoctx.state, 32);
- SHA256_Transform(ostate, PShoctx.buf, 0);
- be32enc_vect(buf+i*8, ostate, 8);
- }
- }
- static inline void
- PBKDF2_SHA256_80_128_32(const uint32_t * passwd, const uint32_t * salt, uint32_t *ostate)
- {
- uint32_t tstate[8];
- uint32_t ihash[8];
- uint32_t i;
- /* Compute HMAC state after processing P and S. */
- uint32_t pad[16];
- static const uint32_t ihash_finalblk[16] = {0x00000001,0x80000000,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0x00000620};
- /* If Klen > 64, the key is really SHA256(K). */
- SHA256_InitState(tstate);
- SHA256_Transform(tstate, passwd, 1);
- memcpy(pad, passwd+16, 16);
- memcpy(pad+4, passwdpad, 48);
- SHA256_Transform(tstate, pad, 1);
- memcpy(ihash, tstate, 32);
- SHA256_InitState(ostate);
- for (i = 0; i < 8; i++)
- pad[i] = ihash[i] ^ 0x5c5c5c5c;
- for (; i < 16; i++)
- pad[i] = 0x5c5c5c5c;
- SHA256_Transform(ostate, pad, 0);
- SHA256_InitState(tstate);
- for (i = 0; i < 8; i++)
- pad[i] = ihash[i] ^ 0x36363636;
- for (; i < 16; i++)
- pad[i] = 0x36363636;
- SHA256_Transform(tstate, pad, 0);
- SHA256_Transform(tstate, salt, 1);
- SHA256_Transform(tstate, salt+16, 1);
- SHA256_Transform(tstate, ihash_finalblk, 0);
- memcpy(pad, tstate, 32);
- memcpy(pad+8, outerpad, 32);
- /* Feed the inner hash to the outer SHA256 operation. */
- SHA256_Transform(ostate, pad, 0);
- }
- /**
- * salsa20_8(B):
- * Apply the salsa20/8 core to the provided block.
- */
- static inline void
- salsa20_8(uint32_t B[16], const uint32_t Bx[16])
- {
- uint32_t x00,x01,x02,x03,x04,x05,x06,x07,x08,x09,x10,x11,x12,x13,x14,x15;
- size_t i;
- x00 = (B[ 0] ^= Bx[ 0]);
- x01 = (B[ 1] ^= Bx[ 1]);
- x02 = (B[ 2] ^= Bx[ 2]);
- x03 = (B[ 3] ^= Bx[ 3]);
- x04 = (B[ 4] ^= Bx[ 4]);
- x05 = (B[ 5] ^= Bx[ 5]);
- x06 = (B[ 6] ^= Bx[ 6]);
- x07 = (B[ 7] ^= Bx[ 7]);
- x08 = (B[ 8] ^= Bx[ 8]);
- x09 = (B[ 9] ^= Bx[ 9]);
- x10 = (B[10] ^= Bx[10]);
- x11 = (B[11] ^= Bx[11]);
- x12 = (B[12] ^= Bx[12]);
- x13 = (B[13] ^= Bx[13]);
- x14 = (B[14] ^= Bx[14]);
- x15 = (B[15] ^= Bx[15]);
- for (i = 0; i < 8; i += 2) {
- #define R(a,b) (((a) << (b)) | ((a) >> (32 - (b))))
- /* Operate on columns. */
- x04 ^= R(x00+x12, 7); x09 ^= R(x05+x01, 7); x14 ^= R(x10+x06, 7); x03 ^= R(x15+x11, 7);
- x08 ^= R(x04+x00, 9); x13 ^= R(x09+x05, 9); x02 ^= R(x14+x10, 9); x07 ^= R(x03+x15, 9);
- x12 ^= R(x08+x04,13); x01 ^= R(x13+x09,13); x06 ^= R(x02+x14,13); x11 ^= R(x07+x03,13);
- x00 ^= R(x12+x08,18); x05 ^= R(x01+x13,18); x10 ^= R(x06+x02,18); x15 ^= R(x11+x07,18);
- /* Operate on rows. */
- x01 ^= R(x00+x03, 7); x06 ^= R(x05+x04, 7); x11 ^= R(x10+x09, 7); x12 ^= R(x15+x14, 7);
- x02 ^= R(x01+x00, 9); x07 ^= R(x06+x05, 9); x08 ^= R(x11+x10, 9); x13 ^= R(x12+x15, 9);
- x03 ^= R(x02+x01,13); x04 ^= R(x07+x06,13); x09 ^= R(x08+x11,13); x14 ^= R(x13+x12,13);
- x00 ^= R(x03+x02,18); x05 ^= R(x04+x07,18); x10 ^= R(x09+x08,18); x15 ^= R(x14+x13,18);
- #undef R
- }
- B[ 0] += x00;
- B[ 1] += x01;
- B[ 2] += x02;
- B[ 3] += x03;
- B[ 4] += x04;
- B[ 5] += x05;
- B[ 6] += x06;
- B[ 7] += x07;
- B[ 8] += x08;
- B[ 9] += x09;
- B[10] += x10;
- B[11] += x11;
- B[12] += x12;
- B[13] += x13;
- B[14] += x14;
- B[15] += x15;
- }
- /* cpu and memory intensive function to transform a 80 byte buffer into a 32 byte output
- scratchpad size needs to be at least 63 + (128 * r * p) + (256 * r + 64) + (128 * r * N) bytes
- */
- static void scrypt_1024_1_1_256_sp(const uint32_t* input, char* scratchpad, uint32_t *ostate)
- {
- uint32_t * V;
- uint32_t X[32];
- uint32_t i;
- uint32_t j;
- uint32_t k;
- uint64_t *p1, *p2;
- p1 = (uint64_t *)X;
- V = (uint32_t *)(((uintptr_t)(scratchpad) + 63) & ~ (uintptr_t)(63));
- PBKDF2_SHA256_80_128(input, X);
- for (i = 0; i < 1024; i += 2) {
- memcpy(&V[i * 32], X, 128);
- salsa20_8(&X[0], &X[16]);
- salsa20_8(&X[16], &X[0]);
- memcpy(&V[(i + 1) * 32], X, 128);
- salsa20_8(&X[0], &X[16]);
- salsa20_8(&X[16], &X[0]);
- }
- for (i = 0; i < 1024; i += 2) {
- j = X[16] & 1023;
- p2 = (uint64_t *)(&V[j * 32]);
- for(k = 0; k < 16; k++)
- p1[k] ^= p2[k];
- salsa20_8(&X[0], &X[16]);
- salsa20_8(&X[16], &X[0]);
- j = X[16] & 1023;
- p2 = (uint64_t *)(&V[j * 32]);
- for(k = 0; k < 16; k++)
- p1[k] ^= p2[k];
- salsa20_8(&X[0], &X[16]);
- salsa20_8(&X[16], &X[0]);
- }
- PBKDF2_SHA256_80_128_32(input, X, ostate);
- }
- /* 131583 rounded up to 4 byte alignment */
- #define SCRATCHBUF_SIZE (131584)
- void scrypt_regenhash(struct work *work)
- {
- uint32_t data[20];
- char *scratchbuf;
- uint32_t *nonce = (uint32_t *)(work->data + 76);
- uint32_t *ohash = (uint32_t *)(work->hash);
- be32enc_vect(data, (const uint32_t *)work->data, 19);
- data[19] = htobe32(*nonce);
- scratchbuf = alloca(SCRATCHBUF_SIZE);
- scrypt_1024_1_1_256_sp(data, scratchbuf, ohash);
- flip32(ohash, ohash);
- }
- static const uint32_t diff1targ = 0x0000ffff;
- /* Used externally as confirmation of correct OCL code */
- int scrypt_test(unsigned char *pdata, const unsigned char *ptarget, uint32_t nonce)
- {
- uint32_t tmp_hash7, Htarg = le32toh(((const uint32_t *)ptarget)[7]);
- uint32_t data[20], ohash[8];
- char *scratchbuf;
- be32enc_vect(data, (const uint32_t *)pdata, 19);
- data[19] = htobe32(nonce);
- scratchbuf = alloca(SCRATCHBUF_SIZE);
- scrypt_1024_1_1_256_sp(data, scratchbuf, ohash);
- tmp_hash7 = be32toh(ohash[7]);
- applog(LOG_DEBUG, "htarget %08lx diff1 %08lx hash %08lx",
- (long unsigned int)Htarg,
- (long unsigned int)diff1targ,
- (long unsigned int)tmp_hash7);
- if (tmp_hash7 > diff1targ)
- return -1;
- if (tmp_hash7 > Htarg)
- return 0;
- return 1;
- }
- bool scanhash_scrypt(struct thr_info *thr, const unsigned char __maybe_unused *pmidstate,
- unsigned char *pdata, unsigned char __maybe_unused *phash1,
- unsigned char __maybe_unused *phash, const unsigned char *ptarget,
- uint32_t max_nonce, uint32_t *last_nonce, uint32_t n)
- {
- uint32_t *nonce = (uint32_t *)(pdata + 76);
- char *scratchbuf;
- uint32_t data[20];
- uint32_t tmp_hash7;
- uint32_t Htarg = le32toh(((const uint32_t *)ptarget)[7]);
- bool ret = false;
- be32enc_vect(data, (const uint32_t *)pdata, 19);
- scratchbuf = malloc(SCRATCHBUF_SIZE);
- if (unlikely(!scratchbuf)) {
- applog(LOG_ERR, "Failed to malloc scratchbuf in scanhash_scrypt");
- return ret;
- }
- while(1) {
- uint32_t ostate[8];
- *nonce = ++n;
- data[19] = htobe32(n);
- scrypt_1024_1_1_256_sp(data, scratchbuf, ostate);
- tmp_hash7 = be32toh(ostate[7]);
- if (unlikely(tmp_hash7 <= Htarg)) {
- ((uint32_t *)pdata)[19] = htobe32(n);
- *last_nonce = n;
- ret = true;
- break;
- }
- if (unlikely((n >= max_nonce) || thr->work_restart)) {
- *last_nonce = n;
- break;
- }
- }
- free(scratchbuf);;
- return ret;
- }
|