/* * Copyright 2012-2013 Andrew Smith * Copyright 2012 Xiangfu * Copyright 2013-2015 Con Kolivas * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the Free * Software Foundation; either version 3 of the License, or (at your option) * any later version. See COPYING for more details. */ /* * Those code should be works fine with V2 and V3 bitstream of Icarus. * Operation: * No detection implement. * Input: 64B = 32B midstate + 20B fill bytes + last 12 bytes of block head. * Return: send back 32bits immediately when Icarus found a valid nonce. * no query protocol implemented here, if no data send back in ~11.3 * seconds (full cover time on 32bit nonce range by 380MH/s speed) * just send another work. * Notice: * 1. Icarus will start calculate when you push a work to them, even they * are busy. * 2. The 2 FPGAs on Icarus will distribute the job, one will calculate the * 0 ~ 7FFFFFFF, another one will cover the 80000000 ~ FFFFFFFF. * 3. It's possible for 2 FPGAs both find valid nonce in the meantime, the 2 * valid nonce will all be send back. * 4. Icarus will stop work when: a valid nonce has been found or 32 bits * nonce range is completely calculated. */ #include #include #include #include #include #include #include #include #include #include "config.h" #ifdef WIN32 #include #endif #include "compat.h" #include "miner.h" #include "usbutils.h" // The serial I/O speed - Linux uses a define 'B115200' in bits/termios.h #define ICARUS_IO_SPEED 115200 #define ICARUS_BUF_SIZE 8 // The size of a successful nonce read #define ANT_READ_SIZE 5 #define ICARUS_READ_SIZE 4 #define ROCK_READ_SIZE 8 // Ensure the sizes are correct for the Serial read #if (ICARUS_READ_SIZE != 4) #error ICARUS_READ_SIZE must be 4 #endif #define ASSERT1(condition) __maybe_unused static char sizeof_uint32_t_must_be_4[(condition)?1:-1] ASSERT1(sizeof(uint32_t) == 4); // TODO: USB? Different calculation? - see usbstats to work it out e.g. 1/2 of normal send time // or even use that number? 1/2 // #define ICARUS_READ_TIME(baud) ((double)ICARUS_READ_SIZE * (double)8.0 / (double)(baud)) // maybe 1ms? #define ICARUS_READ_TIME(baud) (0.001) // USB ms timeout to wait - user specified timeouts are multiples of this #define ICA_WAIT_TIMEOUT 100 #define ANT_WAIT_TIMEOUT 10 #define AU3_WAIT_TIMEOUT 1 #define ICARUS_WAIT_TIMEOUT (info->u3 ? AU3_WAIT_TIMEOUT : (info->ant ? ANT_WAIT_TIMEOUT : ICA_WAIT_TIMEOUT)) #define ICARUS_CMR2_TIMEOUT 1 // Defined in multiples of ICARUS_WAIT_TIMEOUT // Must of course be greater than ICARUS_READ_COUNT_TIMING/ICARUS_WAIT_TIMEOUT // There's no need to have this bigger, since the overhead/latency of extra work // is pretty small once you get beyond a 10s nonce range time and 10s also // means that nothing slower than 429MH/s can go idle so most icarus devices // will always mine without idling #define ICARUS_READ_TIME_LIMIT_MAX 100 // In timing mode: Default starting value until an estimate can be obtained // 5000 ms allows for up to a ~840MH/s device #define ICARUS_READ_COUNT_TIMING 5000 // Antminer USB is > 1GH/s so use a shorter limit // 1000 ms allows for up to ~4GH/s device #define ANTUSB_READ_COUNT_TIMING 1000 #define ANTU3_READ_COUNT_TIMING 100 #define ICARUS_READ_COUNT_MIN ICARUS_WAIT_TIMEOUT #define SECTOMS(s) ((int)((s) * 1000)) // How many ms below the expected completion time to abort work // extra in case the last read is delayed #define ICARUS_READ_REDUCE ((int)(ICARUS_WAIT_TIMEOUT * 1.5)) // For a standard Icarus REV3 (to 5 places) // Since this rounds up a the last digit - it is a slight overestimate // Thus the hash rate will be a VERY slight underestimate // (by a lot less than the displayed accuracy) // Minor inaccuracy of these numbers doesn't affect the work done, // only the displayed MH/s #define ICARUS_REV3_HASH_TIME 0.0000000026316 #define LANCELOT_HASH_TIME 0.0000000025000 #define ASICMINERUSB_HASH_TIME 0.0000000029761 // TODO: What is it? #define CAIRNSMORE1_HASH_TIME 0.0000000027000 // Per FPGA #define CAIRNSMORE2_HASH_TIME 0.0000000066600 #define NANOSEC 1000000000.0 #define ANTMINERUSB_HASH_MHZ 0.000000125 #define ANTMINERUSB_HASH_TIME (ANTMINERUSB_HASH_MHZ / (double)(opt_anu_freq)) #define ANTU3_HASH_MHZ 0.0000000032 #define ANTU3_HASH_TIME (ANTU3_HASH_MHZ / (double)(opt_au3_freq)) #define CAIRNSMORE2_INTS 4 // Icarus Rev3 doesn't send a completion message when it finishes // the full nonce range, so to avoid being idle we must abort the // work (by starting a new work item) shortly before it finishes // // Thus we need to estimate 2 things: // 1) How many hashes were done if the work was aborted // 2) How high can the timeout be before the Icarus is idle, // to minimise the number of work items started // We set 2) to 'the calculated estimate' - ICARUS_READ_REDUCE // to ensure the estimate ends before idle // // The simple calculation used is: // Tn = Total time in seconds to calculate n hashes // Hs = seconds per hash // Xn = number of hashes // W = code/usb overhead per work // // Rough but reasonable estimate: // Tn = Hs * Xn + W (of the form y = mx + b) // // Thus: // Line of best fit (using least squares) // // Hs = (n*Sum(XiTi)-Sum(Xi)*Sum(Ti))/(n*Sum(Xi^2)-Sum(Xi)^2) // W = Sum(Ti)/n - (Hs*Sum(Xi))/n // // N.B. W is less when aborting work since we aren't waiting for the reply // to be transferred back (ICARUS_READ_TIME) // Calculating the hashes aborted at n seconds is thus just n/Hs // (though this is still a slight overestimate due to code delays) // // Both below must be exceeded to complete a set of data // Minimum how long after the first, the last data point must be #define HISTORY_SEC 60 // Minimum how many points a single ICARUS_HISTORY should have #define MIN_DATA_COUNT 5 // The value MIN_DATA_COUNT used is doubled each history until it exceeds: #define MAX_MIN_DATA_COUNT 100 static struct timeval history_sec = { HISTORY_SEC, 0 }; // Store the last INFO_HISTORY data sets // [0] = current data, not yet ready to be included as an estimate // Each new data set throws the last old set off the end thus // keeping a ongoing average of recent data #define INFO_HISTORY 10 struct ICARUS_HISTORY { struct timeval finish; double sumXiTi; double sumXi; double sumTi; double sumXi2; uint32_t values; uint32_t hash_count_min; uint32_t hash_count_max; }; enum timing_mode { MODE_DEFAULT, MODE_SHORT, MODE_LONG, MODE_VALUE }; static const char *MODE_DEFAULT_STR = "default"; static const char *MODE_SHORT_STR = "short"; static const char *MODE_SHORT_STREQ = "short="; static const char *MODE_LONG_STR = "long"; static const char *MODE_LONG_STREQ = "long="; static const char *MODE_VALUE_STR = "value"; static const char *MODE_UNKNOWN_STR = "unknown"; #define MAX_DEVICE_NUM 100 #define MAX_WORK_BUFFER_SIZE 2 #define MAX_CHIP_NUM 24 // Set it to 3, 5 or 9 #define NONCE_CORRECTION_TIMES 5 #define MAX_TRIES 4 #define RM_CMD_MASK 0x0F #define RM_STATUS_MASK 0xF0 #define RM_CHIP_MASK 0x3F #define RM_PRODUCT_MASK 0xC0 #define RM_PRODUCT_RBOX 0x00 #define RM_PRODUCT_T1 0x40 #define RM_PRODUCT_T2 0x80 #define RM_PRODUCT_TEST 0xC0 #if (NONCE_CORRECTION_TIMES == 5) static int32_t rbox_corr_values[] = {0, 1, -1, -2, -4}; #endif #if (NONCE_CORRECTION_TIMES == 9) static int32_t rbox_corr_values[] = {0, 1, -1, 2, -2, 3, -3, 4, -4}; #endif #if (NONCE_CORRECTION_TIMES == 3) static int32_t rbox_corr_values[] = {0, 1, -1}; #endif #define ANT_QUEUE_NUM 36 typedef enum { NONCE_DATA1_OFFSET = 0, NONCE_DATA2_OFFSET, NONCE_DATA3_OFFSET, NONCE_DATA4_OFFSET, NONCE_TASK_CMD_OFFSET, NONCE_CHIP_NO_OFFSET, NONCE_TASK_NO_OFFSET, NONCE_COMMAND_OFFSET, NONCE_MAX_OFFSET } NONCE_OFFSET; typedef enum { NONCE_DATA_CMD = 0, NONCE_TASK_COMPLETE_CMD, NONCE_GET_TASK_CMD, } NONCE_COMMAND; typedef struct nonce_data { int chip_no; unsigned int task_no ; unsigned char work_state; int cmd_value; } NONCE_DATA; typedef enum { ROCKMINER_RBOX = 0, ROCKMINER_T1, ROCKMINER_T2, ROCKMINER_MAX } ROCKMINER_PRODUCT_T; typedef struct rockminer_chip_info { unsigned char freq; int error_cnt; time_t last_received_task_complete_time; } ROCKMINER_CHIP_INFO; typedef struct rockminer_device_info { unsigned char detect_chip_no; unsigned char chip_max; unsigned char product_id; float min_frq; float def_frq; float max_frq; ROCKMINER_CHIP_INFO chip[MAX_CHIP_NUM]; time_t dev_detect_time; } ROCKMINER_DEVICE_INFO; struct ICARUS_INFO { enum sub_ident ident; int intinfo; // time to calculate the golden_ob uint64_t golden_hashes; struct timeval golden_tv; struct ICARUS_HISTORY history[INFO_HISTORY+1]; uint32_t min_data_count; int timeout; // seconds per Hash double Hs; // ms til we abort int read_time; // ms limit for (short=/long=) read_time int read_time_limit; // How long without hashes is considered a failed device int fail_time; enum timing_mode timing_mode; bool do_icarus_timing; double fullnonce; int count; double W; uint32_t values; uint64_t hash_count_range; // Determine the cost of history processing // (which will only affect W) uint64_t history_count; struct timeval history_time; // icarus-options int baud; int work_division; int fpga_count; uint32_t nonce_mask; uint8_t cmr2_speed; bool speed_next_work; bool flash_next_work; int nonce_size; bool failing; pthread_mutex_t lock; ROCKMINER_DEVICE_INFO rmdev; struct work *base_work; // For when we roll work struct work *g_work[MAX_CHIP_NUM][MAX_WORK_BUFFER_SIZE]; uint32_t last_nonce[MAX_CHIP_NUM][MAX_WORK_BUFFER_SIZE]; char rock_init[64]; uint64_t nonces_checked; uint64_t nonces_correction_times; uint64_t nonces_correction_tests; uint64_t nonces_fail; uint64_t nonces_correction[NONCE_CORRECTION_TIMES]; struct work **antworks; int nonces; int workid; bool ant; bool u3; }; #define ICARUS_MIDSTATE_SIZE 32 #define ICARUS_UNUSED_SIZE 16 #define ICARUS_WORK_SIZE 12 #define ICARUS_WORK_DATA_OFFSET 64 #define ICARUS_CMR2_SPEED_FACTOR 2.5 #define ICARUS_CMR2_SPEED_MIN_INT 100 #define ICARUS_CMR2_SPEED_DEF_INT 180 #define ICARUS_CMR2_SPEED_MAX_INT 220 #define CMR2_INT_TO_SPEED(_speed) ((uint8_t)((float)_speed / ICARUS_CMR2_SPEED_FACTOR)) #define ICARUS_CMR2_SPEED_MIN CMR2_INT_TO_SPEED(ICARUS_CMR2_SPEED_MIN_INT) #define ICARUS_CMR2_SPEED_DEF CMR2_INT_TO_SPEED(ICARUS_CMR2_SPEED_DEF_INT) #define ICARUS_CMR2_SPEED_MAX CMR2_INT_TO_SPEED(ICARUS_CMR2_SPEED_MAX_INT) #define ICARUS_CMR2_SPEED_INC 1 #define ICARUS_CMR2_SPEED_DEC -1 #define ICARUS_CMR2_SPEED_FAIL -10 #define ICARUS_CMR2_PREFIX ((uint8_t)0xB7) #define ICARUS_CMR2_CMD_SPEED ((uint8_t)0) #define ICARUS_CMR2_CMD_FLASH ((uint8_t)1) #define ICARUS_CMR2_DATA_FLASH_OFF ((uint8_t)0) #define ICARUS_CMR2_DATA_FLASH_ON ((uint8_t)1) #define ICARUS_CMR2_CHECK ((uint8_t)0x6D) #define ANT_UNUSED_SIZE 15 struct ICARUS_WORK { uint8_t midstate[ICARUS_MIDSTATE_SIZE]; // These 4 bytes are for CMR2 bitstreams that handle MHz adjustment uint8_t check; uint8_t data; uint8_t cmd; uint8_t prefix; uint8_t unused[ANT_UNUSED_SIZE]; uint8_t id; // Used only by ANT, otherwise unused by other icarus uint8_t work[ICARUS_WORK_SIZE]; }; #define ANT_U1_DEFFREQ 200 #define ANT_U3_DEFFREQ 225 #define ANT_U3_MAXFREQ 250 struct { float freq; uint16_t hex; } u3freqtable[] = { { 100, 0x0783 }, { 125, 0x0983 }, { 150, 0x0b83 }, { 175, 0x0d83 }, { 193.75, 0x0f03 }, { 196.88, 0x1f07 }, { 200, 0x0782 }, { 206.25, 0x1006 }, { 212.5, 0x1086 }, { 218.75, 0x1106 }, { 225, 0x0882 }, { 237.5, 0x1286 }, { 243.75, 0x1306 }, { 250, 0x0982 }, }; #define END_CONDITION 0x0000ffff // Looking for options in --icarus-timing and --icarus-options: // // Code increments this each time we start to look at a device // However, this means that if other devices are checked by // the Icarus code (e.g. Avalon only as at 20130517) // they will count in the option offset // // This, however, is deterministic so that's OK // // If we were to increment after successfully finding an Icarus // that would be random since an Icarus may fail and thus we'd // not be able to predict the option order // // Devices are checked in the order libusb finds them which is ? // static int option_offset = -1; /* #define ICA_BUFSIZ (0x200) static void transfer_read(struct cgpu_info *icarus, uint8_t request_type, uint8_t bRequest, uint16_t wValue, uint16_t wIndex, char *buf, int bufsiz, int *amount, enum usb_cmds cmd) { int err; err = usb_transfer_read(icarus, request_type, bRequest, wValue, wIndex, buf, bufsiz, amount, cmd); applog(LOG_DEBUG, "%s: cgid %d %s got err %d", icarus->drv->name, icarus->cgminer_id, usb_cmdname(cmd), err); } */ static void _transfer(struct cgpu_info *icarus, uint8_t request_type, uint8_t bRequest, uint16_t wValue, uint16_t wIndex, uint32_t *data, int siz, enum usb_cmds cmd) { int err; err = usb_transfer_data(icarus, request_type, bRequest, wValue, wIndex, data, siz, cmd); applog(LOG_DEBUG, "%s: cgid %d %s got err %d", icarus->drv->name, icarus->cgminer_id, usb_cmdname(cmd), err); } #define transfer(icarus, request_type, bRequest, wValue, wIndex, cmd) \ _transfer(icarus, request_type, bRequest, wValue, wIndex, NULL, 0, cmd) static void icarus_initialise(struct cgpu_info *icarus, int baud) { struct ICARUS_INFO *info = (struct ICARUS_INFO *)(icarus->device_data); uint16_t wValue, wIndex; enum sub_ident ident; int interface; if (icarus->usbinfo.nodev) return; interface = _usb_interface(icarus, info->intinfo); ident = usb_ident(icarus); switch (ident) { case IDENT_BLT: case IDENT_LLT: case IDENT_CMR1: case IDENT_CMR2: // Reset transfer(icarus, FTDI_TYPE_OUT, FTDI_REQUEST_RESET, FTDI_VALUE_RESET, interface, C_RESET); if (icarus->usbinfo.nodev) return; // Latency _usb_ftdi_set_latency(icarus, info->intinfo); if (icarus->usbinfo.nodev) return; // Set data control transfer(icarus, FTDI_TYPE_OUT, FTDI_REQUEST_DATA, FTDI_VALUE_DATA_BLT, interface, C_SETDATA); if (icarus->usbinfo.nodev) return; // default to BLT/LLT 115200 wValue = FTDI_VALUE_BAUD_BLT; wIndex = FTDI_INDEX_BAUD_BLT; if (ident == IDENT_CMR1 || ident == IDENT_CMR2) { switch (baud) { case 115200: wValue = FTDI_VALUE_BAUD_CMR_115; wIndex = FTDI_INDEX_BAUD_CMR_115; break; case 57600: wValue = FTDI_VALUE_BAUD_CMR_57; wIndex = FTDI_INDEX_BAUD_CMR_57; break; default: quit(1, "icarus_intialise() invalid baud (%d) for Cairnsmore1", baud); break; } } // Set the baud transfer(icarus, FTDI_TYPE_OUT, FTDI_REQUEST_BAUD, wValue, (wIndex & 0xff00) | interface, C_SETBAUD); if (icarus->usbinfo.nodev) return; // Set Modem Control transfer(icarus, FTDI_TYPE_OUT, FTDI_REQUEST_MODEM, FTDI_VALUE_MODEM, interface, C_SETMODEM); if (icarus->usbinfo.nodev) return; // Set Flow Control transfer(icarus, FTDI_TYPE_OUT, FTDI_REQUEST_FLOW, FTDI_VALUE_FLOW, interface, C_SETFLOW); if (icarus->usbinfo.nodev) return; // Clear any sent data transfer(icarus, FTDI_TYPE_OUT, FTDI_REQUEST_RESET, FTDI_VALUE_PURGE_TX, interface, C_PURGETX); if (icarus->usbinfo.nodev) return; // Clear any received data transfer(icarus, FTDI_TYPE_OUT, FTDI_REQUEST_RESET, FTDI_VALUE_PURGE_RX, interface, C_PURGERX); break; case IDENT_ICA: // Set Data Control transfer(icarus, PL2303_CTRL_OUT, PL2303_REQUEST_CTRL, PL2303_VALUE_CTRL, interface, C_SETDATA); if (icarus->usbinfo.nodev) return; // Set Line Control uint32_t ica_data[2] = { PL2303_VALUE_LINE0, PL2303_VALUE_LINE1 }; _transfer(icarus, PL2303_CTRL_OUT, PL2303_REQUEST_LINE, PL2303_VALUE_LINE, interface, &ica_data[0], PL2303_VALUE_LINE_SIZE, C_SETLINE); if (icarus->usbinfo.nodev) return; // Vendor transfer(icarus, PL2303_VENDOR_OUT, PL2303_REQUEST_VENDOR, PL2303_VALUE_VENDOR, interface, C_VENDOR); break; case IDENT_AMU: case IDENT_ANU: case IDENT_AU3: case IDENT_LIN: // Enable the UART transfer(icarus, CP210X_TYPE_OUT, CP210X_REQUEST_IFC_ENABLE, CP210X_VALUE_UART_ENABLE, interface, C_ENABLE_UART); if (icarus->usbinfo.nodev) return; // Set data control transfer(icarus, CP210X_TYPE_OUT, CP210X_REQUEST_DATA, CP210X_VALUE_DATA, interface, C_SETDATA); if (icarus->usbinfo.nodev) return; // Set the baud uint32_t data = CP210X_DATA_BAUD; _transfer(icarus, CP210X_TYPE_OUT, CP210X_REQUEST_BAUD, 0, interface, &data, sizeof(data), C_SETBAUD); break; case IDENT_AVA: break; default: quit(1, "icarus_intialise() called with invalid %s cgid %i ident=%d", icarus->drv->name, icarus->cgminer_id, ident); } } static void rev(unsigned char *s, size_t l) { size_t i, j; unsigned char t; for (i = 0, j = l - 1; i < j; i++, j--) { t = s[i]; s[i] = s[j]; s[j] = t; } } #define ICA_NONCE_ERROR -1 #define ICA_NONCE_OK 0 #define ICA_NONCE_RESTART 1 #define ICA_NONCE_TIMEOUT 2 static int icarus_get_nonce(struct cgpu_info *icarus, unsigned char *buf, struct timeval *tv_start, struct timeval *tv_finish, struct thr_info *thr, int read_time) { struct ICARUS_INFO *info = (struct ICARUS_INFO *)(icarus->device_data); int err, amt, rc; if (icarus->usbinfo.nodev) return ICA_NONCE_ERROR; cgtime(tv_start); err = usb_read_ii_timeout_cancellable(icarus, info->intinfo, (char *)buf, info->nonce_size, &amt, read_time, C_GETRESULTS); cgtime(tv_finish); if (err < 0 && err != LIBUSB_ERROR_TIMEOUT) { applog(LOG_ERR, "%s %i: Comms error (rerr=%d amt=%d)", icarus->drv->name, icarus->device_id, err, amt); dev_error(icarus, REASON_DEV_COMMS_ERROR); return ICA_NONCE_ERROR; } if (amt >= info->nonce_size) return ICA_NONCE_OK; rc = SECTOMS(tdiff(tv_finish, tv_start)); if (thr && thr->work_restart) { applog(LOG_DEBUG, "Icarus Read: Work restart at %d ms", rc); return ICA_NONCE_RESTART; } if (amt > 0) applog(LOG_DEBUG, "Icarus Read: Timeout reading for %d ms", rc); else applog(LOG_DEBUG, "Icarus Read: No data for %d ms", rc); return ICA_NONCE_TIMEOUT; } static const char *timing_mode_str(enum timing_mode timing_mode) { switch(timing_mode) { case MODE_DEFAULT: return MODE_DEFAULT_STR; case MODE_SHORT: return MODE_SHORT_STR; case MODE_LONG: return MODE_LONG_STR; case MODE_VALUE: return MODE_VALUE_STR; default: return MODE_UNKNOWN_STR; } } static void set_timing_mode(int this_option_offset, struct cgpu_info *icarus) { struct ICARUS_INFO *info = (struct ICARUS_INFO *)(icarus->device_data); int read_count_timing = 0; enum sub_ident ident; double Hs, fail_time; char buf[BUFSIZ+1]; char *ptr, *comma, *eq; size_t max; int i; if (opt_icarus_timing == NULL) buf[0] = '\0'; else { ptr = opt_icarus_timing; for (i = 0; i < this_option_offset; i++) { comma = strchr(ptr, ','); if (comma == NULL) break; ptr = comma + 1; } comma = strchr(ptr, ','); if (comma == NULL) max = strlen(ptr); else max = comma - ptr; if (max > BUFSIZ) max = BUFSIZ; strncpy(buf, ptr, max); buf[max] = '\0'; } ident = usb_ident(icarus); switch (ident) { case IDENT_ICA: case IDENT_AVA: info->Hs = ICARUS_REV3_HASH_TIME; read_count_timing = ICARUS_READ_COUNT_TIMING; break; case IDENT_BLT: case IDENT_LLT: info->Hs = LANCELOT_HASH_TIME; read_count_timing = ICARUS_READ_COUNT_TIMING; break; case IDENT_AMU: info->Hs = ASICMINERUSB_HASH_TIME; read_count_timing = ICARUS_READ_COUNT_TIMING; break; case IDENT_CMR1: info->Hs = CAIRNSMORE1_HASH_TIME; read_count_timing = ICARUS_READ_COUNT_TIMING; break; case IDENT_CMR2: info->Hs = CAIRNSMORE2_HASH_TIME; read_count_timing = ICARUS_READ_COUNT_TIMING; break; case IDENT_ANU: info->Hs = ANTMINERUSB_HASH_TIME; read_count_timing = ANTUSB_READ_COUNT_TIMING; break; case IDENT_AU3: info->Hs = ANTU3_HASH_TIME; read_count_timing = ANTU3_READ_COUNT_TIMING; break; default: quit(1, "Icarus get_options() called with invalid %s ident=%d", icarus->drv->name, ident); } info->read_time = 0; info->read_time_limit = 0; // 0 = no limit if (strcasecmp(buf, MODE_SHORT_STR) == 0) { // short info->read_time = read_count_timing; info->timing_mode = MODE_SHORT; info->do_icarus_timing = true; } else if (strncasecmp(buf, MODE_SHORT_STREQ, strlen(MODE_SHORT_STREQ)) == 0) { // short=limit info->read_time = read_count_timing; info->timing_mode = MODE_SHORT; info->do_icarus_timing = true; info->read_time_limit = atoi(&buf[strlen(MODE_SHORT_STREQ)]); if (info->read_time_limit < 0) info->read_time_limit = 0; if (info->read_time_limit > ICARUS_READ_TIME_LIMIT_MAX) info->read_time_limit = ICARUS_READ_TIME_LIMIT_MAX; } else if (strcasecmp(buf, MODE_LONG_STR) == 0) { // long info->read_time = read_count_timing; info->timing_mode = MODE_LONG; info->do_icarus_timing = true; } else if (strncasecmp(buf, MODE_LONG_STREQ, strlen(MODE_LONG_STREQ)) == 0) { // long=limit info->read_time = read_count_timing; info->timing_mode = MODE_LONG; info->do_icarus_timing = true; info->read_time_limit = atoi(&buf[strlen(MODE_LONG_STREQ)]); if (info->read_time_limit < 0) info->read_time_limit = 0; if (info->read_time_limit > ICARUS_READ_TIME_LIMIT_MAX) info->read_time_limit = ICARUS_READ_TIME_LIMIT_MAX; } else if ((Hs = atof(buf)) != 0) { // ns[=read_time] info->Hs = Hs / NANOSEC; info->fullnonce = info->Hs * (((double)0xffffffff) + 1); if ((eq = strchr(buf, '=')) != NULL) info->read_time = atoi(eq+1) * ICARUS_WAIT_TIMEOUT; if (info->read_time < ICARUS_READ_COUNT_MIN) info->read_time = SECTOMS(info->fullnonce) - ICARUS_READ_REDUCE; if (unlikely(info->read_time < ICARUS_READ_COUNT_MIN)) info->read_time = ICARUS_READ_COUNT_MIN; info->timing_mode = MODE_VALUE; info->do_icarus_timing = false; } else { // Anything else in buf just uses DEFAULT mode info->fullnonce = info->Hs * (((double)0xffffffff) + 1); if ((eq = strchr(buf, '=')) != NULL) info->read_time = atoi(eq+1) * ICARUS_WAIT_TIMEOUT; if (info->read_time < ICARUS_READ_COUNT_MIN) info->read_time = SECTOMS(info->fullnonce) - ICARUS_READ_REDUCE; if (unlikely(info->read_time < ICARUS_READ_COUNT_MIN)) info->read_time = ICARUS_READ_COUNT_MIN; info->timing_mode = MODE_DEFAULT; info->do_icarus_timing = false; } info->min_data_count = MIN_DATA_COUNT; // All values are in multiples of ICARUS_WAIT_TIMEOUT info->read_time_limit *= ICARUS_WAIT_TIMEOUT; applog(LOG_DEBUG, "%s: cgid %d Init: mode=%s read_time=%dms limit=%dms Hs=%e", icarus->drv->name, icarus->cgminer_id, timing_mode_str(info->timing_mode), info->read_time, info->read_time_limit, info->Hs); /* Set the time to detect a dead device to 30 full nonce ranges. */ fail_time = info->Hs * 0xffffffffull * 30.0; /* Integer accuracy is definitely enough. */ info->fail_time = fail_time + 1; } static uint32_t mask(int work_division) { uint32_t nonce_mask = 0x7fffffff; // yes we can calculate these, but this way it's easy to see what they are switch (work_division) { case 1: nonce_mask = 0xffffffff; break; case 2: nonce_mask = 0x7fffffff; break; case 4: nonce_mask = 0x3fffffff; break; case 8: nonce_mask = 0x1fffffff; break; default: quit(1, "Invalid2 icarus-options for work_division (%d) must be 1, 2, 4 or 8", work_division); } return nonce_mask; } static void get_options(int this_option_offset, struct cgpu_info *icarus, int *baud, int *work_division, int *fpga_count) { char buf[BUFSIZ+1]; char *ptr, *comma, *colon, *colon2; enum sub_ident ident; size_t max; int i, tmp; if (opt_icarus_options == NULL) buf[0] = '\0'; else { ptr = opt_icarus_options; for (i = 0; i < this_option_offset; i++) { comma = strchr(ptr, ','); if (comma == NULL) break; ptr = comma + 1; } comma = strchr(ptr, ','); if (comma == NULL) max = strlen(ptr); else max = comma - ptr; if (max > BUFSIZ) max = BUFSIZ; strncpy(buf, ptr, max); buf[max] = '\0'; } ident = usb_ident(icarus); switch (ident) { case IDENT_ICA: case IDENT_BLT: case IDENT_LLT: case IDENT_AVA: *baud = ICARUS_IO_SPEED; *work_division = 2; *fpga_count = 2; break; case IDENT_AMU: case IDENT_ANU: case IDENT_AU3: *baud = ICARUS_IO_SPEED; *work_division = 1; *fpga_count = 1; break; case IDENT_CMR1: *baud = ICARUS_IO_SPEED; *work_division = 2; *fpga_count = 2; break; case IDENT_CMR2: *baud = ICARUS_IO_SPEED; *work_division = 1; *fpga_count = 1; break; default: quit(1, "Icarus get_options() called with invalid %s ident=%d", icarus->drv->name, ident); } if (*buf) { colon = strchr(buf, ':'); if (colon) *(colon++) = '\0'; if (*buf) { tmp = atoi(buf); switch (tmp) { case 115200: *baud = 115200; break; case 57600: *baud = 57600; break; default: quit(1, "Invalid icarus-options for baud (%s) must be 115200 or 57600", buf); } } if (colon && *colon) { colon2 = strchr(colon, ':'); if (colon2) *(colon2++) = '\0'; if (*colon) { tmp = atoi(colon); if (tmp == 1 || tmp == 2 || tmp == 4 || tmp == 8) { *work_division = tmp; *fpga_count = tmp; // default to the same } else { quit(1, "Invalid icarus-options for work_division (%s) must be 1, 2, 4 or 8", colon); } } if (colon2 && *colon2) { tmp = atoi(colon2); if (tmp > 0 && tmp <= *work_division) *fpga_count = tmp; else { quit(1, "Invalid icarus-options for fpga_count (%s) must be >0 and <=work_division (%d)", colon2, *work_division); } } } } } unsigned char crc5(unsigned char *ptr, unsigned char len) { unsigned char i, j, k; unsigned char crc = 0x1f; unsigned char crcin[5] = {1, 1, 1, 1, 1}; unsigned char crcout[5] = {1, 1, 1, 1, 1}; unsigned char din = 0; j = 0x80; k = 0; for (i = 0; i < len; i++) { if (*ptr & j) din = 1; else din = 0; crcout[0] = crcin[4] ^ din; crcout[1] = crcin[0]; crcout[2] = crcin[1] ^ crcin[4] ^ din; crcout[3] = crcin[2]; crcout[4] = crcin[3]; j = j >> 1; k++; if (k == 8) { j = 0x80; k = 0; ptr++; } memcpy(crcin, crcout, 5); } crc = 0; if (crcin[4]) crc |= 0x10; if (crcin[3]) crc |= 0x08; if (crcin[2]) crc |= 0x04; if (crcin[1]) crc |= 0x02; if (crcin[0]) crc |= 0x01; return crc; } static uint16_t anu_find_freqhex(void) { float fout, best_fout = opt_anu_freq; int od, nf, nr, no, n, m, bs; uint16_t anu_freq_hex = 0; float best_diff = 1000; if (!best_fout) best_fout = ANT_U1_DEFFREQ; for (od = 0; od < 4; od++) { no = 1 << od; for (n = 0; n < 16; n++) { nr = n + 1; for (m = 0; m < 64; m++) { nf = m + 1; fout = 25 * (float)nf /((float)(nr) * (float)(no)); if (fabsf(fout - opt_anu_freq) > best_diff) continue; if (500 <= (fout * no) && (fout * no) <= 1000) bs = 1; else bs = 0; best_diff = fabsf(fout - opt_anu_freq); best_fout = fout; anu_freq_hex = (bs << 14) | (m << 7) | (n << 2) | od; if (fout == opt_anu_freq) { applog(LOG_DEBUG, "ANU found exact frequency %.1f with hex %04x", opt_anu_freq, anu_freq_hex); goto out; } } } } applog(LOG_NOTICE, "ANU found nearest frequency %.1f with hex %04x", best_fout, anu_freq_hex); out: return anu_freq_hex; } static uint16_t anu3_find_freqhex(void) { int i = 0, freq = opt_au3_freq, u3freq; uint16_t anu_freq_hex = 0x0882; if (!freq) freq = ANT_U3_DEFFREQ; do { u3freq = u3freqtable[i].freq; if (u3freq <= freq) anu_freq_hex = u3freqtable[i].hex; i++; } while (u3freq < ANT_U3_MAXFREQ); return anu_freq_hex; } static bool set_anu_freq(struct cgpu_info *icarus, struct ICARUS_INFO *info, uint16_t anu_freq_hex) { unsigned char cmd_buf[4], rdreg_buf[4]; int amount, err; char buf[512]; if (!anu_freq_hex) anu_freq_hex = anu_find_freqhex(); memset(cmd_buf, 0, 4); memset(rdreg_buf, 0, 4); cmd_buf[0] = 2 | 0x80; cmd_buf[1] = (anu_freq_hex & 0xff00u) >> 8; cmd_buf[2] = (anu_freq_hex & 0x00ffu); cmd_buf[3] = crc5(cmd_buf, 27); rdreg_buf[0] = 4 | 0x80; rdreg_buf[1] = 0; //16-23 rdreg_buf[2] = 0x04; //8-15 rdreg_buf[3] = crc5(rdreg_buf, 27); applog(LOG_DEBUG, "%s %i: Send frequency %02x%02x%02x%02x", icarus->drv->name, icarus->device_id, cmd_buf[0], cmd_buf[1], cmd_buf[2], cmd_buf[3]); err = usb_write_ii(icarus, info->intinfo, (char *)cmd_buf, 4, &amount, C_ANU_SEND_CMD); if (err != LIBUSB_SUCCESS || amount != 4) { applog(LOG_ERR, "%s %i: Write freq Comms error (werr=%d amount=%d)", icarus->drv->name, icarus->device_id, err, amount); return false; } err = usb_read_ii_timeout(icarus, info->intinfo, buf, 512, &amount, 100, C_GETRESULTS); if (err < 0 && err != LIBUSB_ERROR_TIMEOUT) { applog(LOG_ERR, "%s %i: Read freq Comms error (rerr=%d amount=%d)", icarus->drv->name, icarus->device_id, err, amount); return false; } applog(LOG_DEBUG, "%s %i: Send freq getstatus %02x%02x%02x%02x", icarus->drv->name, icarus->device_id, rdreg_buf[0], rdreg_buf[1], rdreg_buf[2], rdreg_buf[3]); err = usb_write_ii(icarus, info->intinfo, (char *)cmd_buf, 4, &amount, C_ANU_SEND_RDREG); if (err != LIBUSB_SUCCESS || amount != 4) { applog(LOG_ERR, "%s %i: Write freq Comms error (werr=%d amount=%d)", icarus->drv->name, icarus->device_id, err, amount); return false; } err = usb_read_ii_timeout(icarus, info->intinfo, buf, 512, &amount, 100, C_GETRESULTS); if (err < 0 && err != LIBUSB_ERROR_TIMEOUT) { applog(LOG_ERR, "%s %i: Read freq Comms error (rerr=%d amount=%d)", icarus->drv->name, icarus->device_id, err, amount); return false; } return true; } static void set_anu_volt(struct cgpu_info *icarus) { unsigned char voltage_data[2], cmd_buf[4]; char volt_buf[8]; int err, amount; /* Allow a zero setting to imply not to try and set voltage */ if (!opt_au3_volt) return; if (opt_au3_volt < 725 || opt_au3_volt > 850) { applog(LOG_WARNING, "Invalid ANU voltage %d specified, must be 725-850", opt_au3_volt); return; } sprintf(volt_buf, "%04d", opt_au3_volt); hex2bin(voltage_data, volt_buf, 2); cmd_buf[0] = 0xaa; cmd_buf[1] = voltage_data[0]; cmd_buf[1] &=0x0f; cmd_buf[1] |=0xb0; cmd_buf[2] = voltage_data[1]; cmd_buf[3] = 0x00; //0-7 cmd_buf[3] = crc5(cmd_buf, 4*8 - 5); cmd_buf[3] |= 0xc0; applog(LOG_INFO, "Send ANU voltage %02x%02x%02x%02x", cmd_buf[0], cmd_buf[1], cmd_buf[2], cmd_buf[3]); cgsleep_ms(500); err = usb_write(icarus, (char * )cmd_buf, 4, &amount, C_ANU_SEND_VOLT); if (err != LIBUSB_SUCCESS || amount != 4) applog(LOG_ERR, "Write voltage Comms error (werr=%d amount=%d)", err, amount); } static void rock_init_last_received_task_complete_time(struct ICARUS_INFO *info) { int i; if (opt_rock_freq < info->rmdev.min_frq || opt_rock_freq > info->rmdev.max_frq) opt_rock_freq = info->rmdev.def_frq; for (i = 0; i < MAX_CHIP_NUM; ++i) { info->rmdev.chip[i].last_received_task_complete_time = time(NULL); info->rmdev.chip[i].freq = opt_rock_freq/10 - 1; info->rmdev.chip[i].error_cnt = 0; } info->rmdev.dev_detect_time = time(NULL); } static void icarus_clear(struct cgpu_info *icarus, struct ICARUS_INFO *info) { char buf[512]; int amt; do { usb_read_ii_timeout(icarus, info->intinfo, buf, 512, &amt, 100, C_GETRESULTS); } while (amt > 0); } static struct cgpu_info *icarus_detect_one(struct libusb_device *dev, struct usb_find_devices *found) { int this_option_offset = ++option_offset; struct ICARUS_INFO *info; struct timeval tv_start, tv_finish; // Block 171874 nonce = (0xa2870100) = 0x000187a2 // N.B. golden_ob MUST take less time to calculate // than the timeout set in icarus_open() // This one takes ~0.53ms on Rev3 Icarus const char golden_ob[] = "4679ba4ec99876bf4bfe086082b40025" "4df6c356451471139a3afa71e48f544a" "00000000000000000000000000000000" "0000000087320b1a1426674f2fa722ce"; const char golden_nonce[] = "000187a2"; const uint32_t golden_nonce_val = 0x000187a2; unsigned char nonce_bin[ICARUS_BUF_SIZE]; struct ICARUS_WORK workdata; char *nonce_hex; int baud, uninitialised_var(work_division), uninitialised_var(fpga_count); bool anu_freqset = false; struct cgpu_info *icarus; int ret, err, amount, tries, i; bool ok; bool cmr2_ok[CAIRNSMORE2_INTS]; int cmr2_count; if ((sizeof(workdata) << 1) != (sizeof(golden_ob) - 1)) quithere(1, "Data and golden_ob sizes don't match"); icarus = usb_alloc_cgpu(&icarus_drv, 1); if (!usb_init(icarus, dev, found)) goto shin; get_options(this_option_offset, icarus, &baud, &work_division, &fpga_count); hex2bin((void *)(&workdata), golden_ob, sizeof(workdata)); info = cgcalloc(1, sizeof(struct ICARUS_INFO)); icarus->device_data = (void *)info; info->ident = usb_ident(icarus); switch (info->ident) { case IDENT_ICA: case IDENT_AVA: case IDENT_BLT: case IDENT_LLT: case IDENT_AMU: case IDENT_CMR1: info->timeout = ICARUS_WAIT_TIMEOUT; break; case IDENT_ANU: info->timeout = ANT_WAIT_TIMEOUT; break; case IDENT_AU3: info->timeout = AU3_WAIT_TIMEOUT; break; case IDENT_CMR2: if (found->intinfo_count != CAIRNSMORE2_INTS) { quithere(1, "CMR2 Interface count (%d) isn't expected: %d", found->intinfo_count, CAIRNSMORE2_INTS); } info->timeout = ICARUS_CMR2_TIMEOUT; cmr2_count = 0; for (i = 0; i < CAIRNSMORE2_INTS; i++) cmr2_ok[i] = false; break; default: quit(1, "%s icarus_detect_one() invalid %s ident=%d", icarus->drv->dname, icarus->drv->dname, info->ident); } info->nonce_size = ICARUS_READ_SIZE; // For CMR2 test each USB Interface retry: tries = 2; ok = false; while (!ok && tries-- > 0) { icarus_clear(icarus, info); icarus_initialise(icarus, baud); if (info->u3) { uint16_t anu_freq_hex = anu3_find_freqhex(); set_anu_volt(icarus); if (!set_anu_freq(icarus, info, anu_freq_hex)) { applog(LOG_WARNING, "%s %i: Failed to set frequency, too much overclock?", icarus->drv->name, icarus->device_id); continue; } icarus->usbdev->ident = info->ident = IDENT_AU3; info->Hs = ANTU3_HASH_TIME; icarus->drv->name = "AU3"; applog(LOG_DEBUG, "%s %i: Detected Antminer U3", icarus->drv->name, icarus->device_id); } else if (info->ident == IDENT_ANU && !info->u3) { if (!set_anu_freq(icarus, info, 0)) { applog(LOG_WARNING, "%s %i: Failed to set frequency, too much overclock?", icarus->drv->name, icarus->device_id); continue; } } err = usb_write_ii(icarus, info->intinfo, (char *)(&workdata), sizeof(workdata), &amount, C_SENDWORK); if (err != LIBUSB_SUCCESS || amount != sizeof(workdata)) continue; memset(nonce_bin, 0, sizeof(nonce_bin)); ret = icarus_get_nonce(icarus, nonce_bin, &tv_start, &tv_finish, NULL, 300); if (ret != ICA_NONCE_OK) continue; if (info->nonce_size == ICARUS_READ_SIZE && usb_buffer_size(icarus) == 4) { applog(LOG_DEBUG, "%s %i: Detected Rockminer, deferring detection", icarus->drv->name, icarus->device_id); usb_buffer_clear(icarus); break; } if (info->nonce_size == ICARUS_READ_SIZE && usb_buffer_size(icarus) == 1) { info->ant = true; usb_buffer_clear(icarus); icarus->usbdev->ident = info->ident = IDENT_ANU; info->nonce_size = ANT_READ_SIZE; info->Hs = ANTMINERUSB_HASH_TIME; icarus->drv->name = "ANU"; applog(LOG_DEBUG, "%s %i: Detected Antminer U1/2/3, changing nonce size to %d", icarus->drv->name, icarus->device_id, ANT_READ_SIZE); } nonce_hex = bin2hex(nonce_bin, sizeof(nonce_bin)); if (strncmp(nonce_hex, golden_nonce, 8) == 0) { if (info->ant && !anu_freqset) anu_freqset = true; else ok = true; } else { if (tries < 0 && info->ident != IDENT_CMR2) { applog(LOG_ERR, "Icarus Detect: " "Test failed at %s: get %s, should: %s", icarus->device_path, nonce_hex, golden_nonce); } } free(nonce_hex); } if (!ok) { if (info->ident != IDENT_CMR2) { if (info->u3) goto unshin; info->u3 = true; goto retry; } if (info->intinfo < CAIRNSMORE2_INTS-1) { info->intinfo++; goto retry; } } else { if (info->ident == IDENT_CMR2) { applog(LOG_DEBUG, "Icarus Detect: " "Test succeeded at %s i%d: got %s", icarus->device_path, info->intinfo, golden_nonce); cmr2_ok[info->intinfo] = true; cmr2_count++; if (info->intinfo < CAIRNSMORE2_INTS-1) { info->intinfo++; goto retry; } } } if (info->ident == IDENT_CMR2) { if (cmr2_count == 0) { applog(LOG_ERR, "Icarus Detect: Test failed at %s: for all %d CMR2 Interfaces", icarus->device_path, CAIRNSMORE2_INTS); goto unshin; } // set the interface to the first one that succeeded for (i = 0; i < CAIRNSMORE2_INTS; i++) if (cmr2_ok[i]) { info->intinfo = i; break; } } else { applog(LOG_DEBUG, "Icarus Detect: " "Test succeeded at %s: got %s", icarus->device_path, golden_nonce); } /* We have a real Icarus! */ if (!add_cgpu(icarus)) goto unshin; update_usb_stats(icarus); applog(LOG_INFO, "%s %d: Found at %s", icarus->drv->name, icarus->device_id, icarus->device_path); if (info->ident == IDENT_CMR2) { applog(LOG_INFO, "%s %d: with %d Interface%s", icarus->drv->name, icarus->device_id, cmr2_count, cmr2_count > 1 ? "s" : ""); // Assume 1 or 2 are running FPGA pairs if (cmr2_count < 3) { work_division = fpga_count = 2; info->Hs /= 2; } } applog(LOG_DEBUG, "%s %d: Init baud=%d work_division=%d fpga_count=%d", icarus->drv->name, icarus->device_id, baud, work_division, fpga_count); info->baud = baud; info->work_division = work_division; info->fpga_count = fpga_count; info->nonce_mask = mask(work_division); info->golden_hashes = (golden_nonce_val & info->nonce_mask) * fpga_count; timersub(&tv_finish, &tv_start, &(info->golden_tv)); set_timing_mode(this_option_offset, icarus); if (info->ident == IDENT_CMR2) { int i; for (i = info->intinfo + 1; i < icarus->usbdev->found->intinfo_count; i++) { struct cgpu_info *cgtmp; struct ICARUS_INFO *intmp; if (!cmr2_ok[i]) continue; cgtmp = usb_copy_cgpu(icarus); if (!cgtmp) { applog(LOG_ERR, "%s %d: Init failed initinfo %d", icarus->drv->name, icarus->device_id, i); continue; } cgtmp->usbinfo.usbstat = USB_NOSTAT; intmp = cgmalloc(sizeof(struct ICARUS_INFO)); cgtmp->device_data = (void *)intmp; // Initialise everything to match memcpy(intmp, info, sizeof(struct ICARUS_INFO)); intmp->intinfo = i; icarus_initialise(cgtmp, baud); if (!add_cgpu(cgtmp)) { usb_uninit(cgtmp); free(intmp); continue; } update_usb_stats(cgtmp); } } return icarus; unshin: usb_uninit(icarus); free(info); icarus->device_data = NULL; shin: icarus = usb_free_cgpu(icarus); return NULL; } static int64_t rock_scanwork(struct thr_info *thr); static void rock_statline_before(char *buf, size_t bufsiz, struct cgpu_info *cgpu) { if (cgpu->temp) tailsprintf(buf, bufsiz, "%3.0fMHz %3.0fC", opt_rock_freq, cgpu->temp); else tailsprintf(buf, bufsiz, "%.0fMHz", opt_rock_freq); } /* The only thing to do on flush_work is to remove the base work to prevent us * rolling what is now stale work */ static void rock_flush(struct cgpu_info *icarus) { struct ICARUS_INFO *info = icarus->device_data; struct work *work; mutex_lock(&info->lock); work = info->base_work; info->base_work = NULL; mutex_unlock(&info->lock); if (work) free_work(work); } static struct cgpu_info *rock_detect_one(struct libusb_device *dev, struct usb_find_devices *found) { struct ICARUS_INFO *info; struct timeval tv_start, tv_finish; char *ob_hex = NULL; // Block 171874 nonce = (0xa2870100) = 0x000187a2 // N.B. golden_ob MUST take less time to calculate // than the timeout set in icarus_open() // This one takes ~0.53ms on Rev3 Icarus const char golden_ob[] = "4679ba4ec99876bf4bfe086082b40025" "4df6c356451471139a3afa71e48f544a" "00000000000000000000000000000000" "aa1ff05587320b1a1426674f2fa722ce"; const char golden_nonce[] = "000187a2"; const uint32_t golden_nonce_val = 0x000187a2; unsigned char nonce_bin[ICARUS_BUF_SIZE]; struct ICARUS_WORK workdata; char *nonce_hex; struct cgpu_info *icarus; int ret, err, amount, tries; bool ok; int correction_times = 0; NONCE_DATA nonce_data; uint32_t nonce; char *newname = NULL; if ((sizeof(workdata) << 1) != (sizeof(golden_ob) - 1)) quithere(1, "Data and golden_ob sizes don't match"); icarus = usb_alloc_cgpu(&icarus_drv, 1); if (!usb_init(icarus, dev, found)) goto shin; hex2bin((void *)(&workdata), golden_ob, sizeof(workdata)); rev((void *)(&(workdata.midstate)), ICARUS_MIDSTATE_SIZE); rev((void *)(&(workdata.work)), ICARUS_WORK_SIZE); if (opt_debug) { ob_hex = bin2hex((void *)(&workdata), sizeof(workdata)); applog(LOG_WARNING, "%s %d: send_gold_nonce %s", icarus->drv->name, icarus->device_id, ob_hex); free(ob_hex); } info = cgcalloc(1, sizeof(struct ICARUS_INFO)); (void)memset(info, 0, sizeof(struct ICARUS_INFO)); icarus->device_data = (void *)info; icarus->usbdev->ident = info->ident = IDENT_LIN; info->nonce_size = ROCK_READ_SIZE; info->fail_time = 10; info->nonce_mask = 0xffffffff; update_usb_stats(icarus); tries = MAX_TRIES; ok = false; while (!ok && tries-- > 0) { icarus_initialise(icarus, info->baud); applog(LOG_DEBUG, "tries: %d", tries); workdata.unused[ICARUS_UNUSED_SIZE - 3] = opt_rock_freq/10 - 1; workdata.unused[ICARUS_UNUSED_SIZE - 2] = (MAX_TRIES-1-tries); info->rmdev.detect_chip_no++; if (info->rmdev.detect_chip_no >= MAX_TRIES) info->rmdev.detect_chip_no = 0; //g_detect_chip_no = (g_detect_chip_no + 1) & MAX_CHIP_NUM; usb_buffer_clear(icarus); err = usb_write_ii(icarus, info->intinfo, (char *)(&workdata), sizeof(workdata), &amount, C_SENDWORK); if (err != LIBUSB_SUCCESS || amount != sizeof(workdata)) continue; memset(nonce_bin, 0, sizeof(nonce_bin)); ret = icarus_get_nonce(icarus, nonce_bin, &tv_start, &tv_finish, NULL, 100); applog(LOG_DEBUG, "Rockminer nonce_bin: %02x %02x %02x %02x %02x %02x %02x %02x", nonce_bin[0], nonce_bin[1], nonce_bin[2], nonce_bin[3], nonce_bin[4], nonce_bin[5], nonce_bin[6], nonce_bin[7]); if (ret != ICA_NONCE_OK) { applog(LOG_DEBUG, "detect_one get_gold_nonce error, tries = %d", tries); continue; } if (usb_buffer_size(icarus) == 1) { applog(LOG_INFO, "Rock detect found an ANU, skipping"); usb_buffer_clear(icarus); break; } newname = NULL; switch (nonce_bin[NONCE_CHIP_NO_OFFSET] & RM_PRODUCT_MASK) { case RM_PRODUCT_T1: newname = "LIR"; // Rocketbox info->rmdev.product_id = ROCKMINER_T1; info->rmdev.chip_max = 12; info->rmdev.min_frq = 200; info->rmdev.def_frq = 330; info->rmdev.max_frq = 400; break; #if 0 case RM_PRODUCT_T2: // what's this? newname = "LIX"; info->rmdev.product_id = ROCKMINER_T2; info->rmdev.chip_max = 16; info->rmdev.min_frq = 200; info->rmdev.def_frq = 300; info->rmdev.max_frq = 400; break; #endif case RM_PRODUCT_RBOX: newname = "LIN"; // R-Box info->rmdev.product_id = ROCKMINER_RBOX; info->rmdev.chip_max = 4; info->rmdev.min_frq = 200; info->rmdev.def_frq = 270; info->rmdev.max_frq = 400; break; default: continue; } snprintf(info->rock_init, sizeof(info->rock_init), "%02x %02x %02x %02x", nonce_bin[4], nonce_bin[5], nonce_bin[6], nonce_bin[7]); nonce_data.chip_no = nonce_bin[NONCE_CHIP_NO_OFFSET] & RM_CHIP_MASK; if (nonce_data.chip_no >= info->rmdev.chip_max) nonce_data.chip_no = 0; nonce_data.cmd_value = nonce_bin[NONCE_TASK_CMD_OFFSET] & RM_CMD_MASK; if (nonce_data.cmd_value == NONCE_TASK_COMPLETE_CMD) { applog(LOG_DEBUG, "complete g_detect_chip_no: %d", info->rmdev.detect_chip_no); workdata.unused[ICARUS_UNUSED_SIZE - 3] = opt_rock_freq/10 - 1; workdata.unused[ICARUS_UNUSED_SIZE - 2] = info->rmdev.detect_chip_no; info->rmdev.detect_chip_no++; if (info->rmdev.detect_chip_no >= MAX_TRIES) info->rmdev.detect_chip_no = 0; err = usb_write_ii(icarus, info->intinfo, (char *)(&workdata), sizeof(workdata), &amount, C_SENDWORK); if (err != LIBUSB_SUCCESS || amount != sizeof(workdata)) continue; applog(LOG_DEBUG, "send_gold_nonce usb_write_ii"); continue; } memcpy((char *)&nonce, nonce_bin, ICARUS_READ_SIZE); nonce = htobe32(nonce); applog(LOG_DEBUG, "Rockminer nonce: %08X", nonce); correction_times = 0; while (correction_times < NONCE_CORRECTION_TIMES) { nonce_hex = bin2hex(nonce_bin, 4); if (golden_nonce_val == nonce + rbox_corr_values[correction_times]) { memset(&(info->g_work[0]), 0, sizeof(info->g_work)); rock_init_last_received_task_complete_time(info); ok = true; break; } else { applog(LOG_DEBUG, "detect_one gold_nonce compare error times = %d", correction_times); if (tries < 0 && info->ident != IDENT_CMR2) { applog(LOG_WARNING, "Icarus Detect: " "Test failed at %s: get %s, should: %s", icarus->device_path, nonce_hex, golden_nonce); } if (nonce == 0) break; } free(nonce_hex); correction_times++; } } if (!ok) goto unshin; if (newname) { if (!icarus->drv->copy) icarus->drv = copy_drv(icarus->drv); icarus->drv->name = newname; } applog(LOG_DEBUG, "Icarus Detect: Test succeeded at %s: got %s", icarus->device_path, golden_nonce); /* We have a real Rockminer! */ if (!add_cgpu(icarus)) goto unshin; icarus->drv->scanwork = rock_scanwork; icarus->drv->dname = "Rockminer"; icarus->drv->get_statline_before = &rock_statline_before; icarus->drv->flush_work = &rock_flush; mutex_init(&info->lock); applog(LOG_INFO, "%s %d: Found at %s", icarus->drv->name, icarus->device_id, icarus->device_path); timersub(&tv_finish, &tv_start, &(info->golden_tv)); return icarus; unshin: usb_uninit(icarus); free(info); icarus->device_data = NULL; shin: icarus = usb_free_cgpu(icarus); return NULL; } static void icarus_detect(bool __maybe_unused hotplug) { usb_detect(&icarus_drv, rock_detect_one); usb_detect(&icarus_drv, icarus_detect_one); } static bool icarus_prepare(struct thr_info *thr) { struct cgpu_info *icarus = thr->cgpu; struct ICARUS_INFO *info = (struct ICARUS_INFO *)(icarus->device_data); if (info->ant) info->antworks = cgcalloc(sizeof(struct work *), ANT_QUEUE_NUM); return true; } static void cmr2_command(struct cgpu_info *icarus, uint8_t cmd, uint8_t data) { struct ICARUS_INFO *info = (struct ICARUS_INFO *)(icarus->device_data); struct ICARUS_WORK workdata; int amount; memset((void *)(&workdata), 0, sizeof(workdata)); workdata.prefix = ICARUS_CMR2_PREFIX; workdata.cmd = cmd; workdata.data = data; workdata.check = workdata.data ^ workdata.cmd ^ workdata.prefix ^ ICARUS_CMR2_CHECK; usb_write_ii(icarus, info->intinfo, (char *)(&workdata), sizeof(workdata), &amount, C_SENDWORK); } static void cmr2_commands(struct cgpu_info *icarus) { struct ICARUS_INFO *info = (struct ICARUS_INFO *)(icarus->device_data); if (info->speed_next_work) { info->speed_next_work = false; cmr2_command(icarus, ICARUS_CMR2_CMD_SPEED, info->cmr2_speed); return; } if (info->flash_next_work) { info->flash_next_work = false; cmr2_command(icarus, ICARUS_CMR2_CMD_FLASH, ICARUS_CMR2_DATA_FLASH_ON); cgsleep_ms(250); cmr2_command(icarus, ICARUS_CMR2_CMD_FLASH, ICARUS_CMR2_DATA_FLASH_OFF); cgsleep_ms(250); cmr2_command(icarus, ICARUS_CMR2_CMD_FLASH, ICARUS_CMR2_DATA_FLASH_ON); cgsleep_ms(250); cmr2_command(icarus, ICARUS_CMR2_CMD_FLASH, ICARUS_CMR2_DATA_FLASH_OFF); return; } } void rock_send_task(unsigned char chip_no, unsigned int current_task_id, struct thr_info *thr) { struct cgpu_info *icarus = thr->cgpu; struct ICARUS_INFO *info = (struct ICARUS_INFO *)(icarus->device_data); int err, amount; struct ICARUS_WORK workdata; char *ob_hex; struct work *work = NULL; /* Only base_work needs locking since it can be asynchronously deleted * by flush work */ if (info->g_work[chip_no][current_task_id] == NULL) { mutex_lock(&info->lock); if (!info->base_work) info->base_work = get_work(thr, thr->id); if (info->base_work->drv_rolllimit > 0) { info->base_work->drv_rolllimit--; roll_work(info->base_work); work = make_clone(info->base_work); } else { work = info->base_work; info->base_work = NULL; } mutex_unlock(&info->lock); info->g_work[chip_no][current_task_id] = work; } else { work = info->g_work[chip_no][current_task_id]; applog(LOG_DEBUG, "::resend work"); } memset((void *)(&workdata), 0, sizeof(workdata)); memcpy(&(workdata.midstate), work->midstate, ICARUS_MIDSTATE_SIZE); memcpy(&(workdata.work), work->data + ICARUS_WORK_DATA_OFFSET, ICARUS_WORK_SIZE); workdata.unused[ICARUS_UNUSED_SIZE - 4] = 0xaa; if (info->rmdev.chip[chip_no].freq > (info->rmdev.max_frq/10 - 1) || info->rmdev.chip[chip_no].freq < (info->rmdev.min_frq/10 - 1)) rock_init_last_received_task_complete_time(info); workdata.unused[ICARUS_UNUSED_SIZE - 3] = info->rmdev.chip[chip_no].freq; //icarus->freq/10 - 1; ; workdata.unused[ICARUS_UNUSED_SIZE - 2] = chip_no ; workdata.id = 0x55; if (opt_debug) { ob_hex = bin2hex((void *)(work->data), 128); applog(LOG_WARNING, "%s %d: work->data %s", icarus->drv->name, icarus->device_id, ob_hex); free(ob_hex); } // We only want results for the work we are about to send usb_buffer_clear(icarus); err = usb_write_ii(icarus, info->intinfo, (char *)(&workdata), sizeof(workdata), &amount, C_SENDWORK); if (err < 0 || amount != sizeof(workdata)) { applog(LOG_ERR, "%s %i: Comms error (werr=%d amt=%d)", icarus->drv->name, icarus->device_id, err, amount); dev_error(icarus, REASON_DEV_COMMS_ERROR); icarus_initialise(icarus, info->baud); if (info->g_work[chip_no][current_task_id]) { free_work(info->g_work[chip_no][current_task_id]); info->g_work[chip_no][current_task_id] = NULL; } return; } return; } static void process_history(struct cgpu_info *icarus, struct ICARUS_INFO *info, uint32_t nonce, uint64_t hash_count, struct timeval *elapsed, struct timeval *tv_start) { struct ICARUS_HISTORY *history0, *history; struct timeval tv_history_start, tv_history_finish; int count; double Hs, W, fullnonce; int read_time, i; bool limited; uint32_t values; int64_t hash_count_range; double Ti, Xi; // Ignore possible end condition values ... // TODO: set limitations on calculated values depending on the device // to avoid crap values caused by CPU/Task Switching/Swapping/etc if ((nonce & info->nonce_mask) <= END_CONDITION || (nonce & info->nonce_mask) >= (info->nonce_mask & ~END_CONDITION)) return; cgtime(&tv_history_start); history0 = &(info->history[0]); if (history0->values == 0) timeradd(tv_start, &history_sec, &(history0->finish)); Ti = (double)(elapsed->tv_sec) + ((double)(elapsed->tv_usec))/((double)1000000) - ((double)ICARUS_READ_TIME(info->baud)); Xi = (double)hash_count; history0->sumXiTi += Xi * Ti; history0->sumXi += Xi; history0->sumTi += Ti; history0->sumXi2 += Xi * Xi; history0->values++; if (history0->hash_count_max < hash_count) history0->hash_count_max = hash_count; if (history0->hash_count_min > hash_count || history0->hash_count_min == 0) history0->hash_count_min = hash_count; if (history0->values >= info->min_data_count && timercmp(tv_start, &(history0->finish), >)) { for (i = INFO_HISTORY; i > 0; i--) memcpy(&(info->history[i]), &(info->history[i-1]), sizeof(struct ICARUS_HISTORY)); // Initialise history0 to zero for summary calculation memset(history0, 0, sizeof(struct ICARUS_HISTORY)); // We just completed a history data set // So now recalc read_time based on the whole history thus we will // initially get more accurate until it completes INFO_HISTORY // total data sets count = 0; for (i = 1 ; i <= INFO_HISTORY; i++) { history = &(info->history[i]); if (history->values >= MIN_DATA_COUNT) { count++; history0->sumXiTi += history->sumXiTi; history0->sumXi += history->sumXi; history0->sumTi += history->sumTi; history0->sumXi2 += history->sumXi2; history0->values += history->values; if (history0->hash_count_max < history->hash_count_max) history0->hash_count_max = history->hash_count_max; if (history0->hash_count_min > history->hash_count_min || history0->hash_count_min == 0) history0->hash_count_min = history->hash_count_min; } } // All history data Hs = (history0->values*history0->sumXiTi - history0->sumXi*history0->sumTi) / (history0->values*history0->sumXi2 - history0->sumXi*history0->sumXi); W = history0->sumTi/history0->values - Hs*history0->sumXi/history0->values; hash_count_range = history0->hash_count_max - history0->hash_count_min; values = history0->values; // Initialise history0 to zero for next data set memset(history0, 0, sizeof(struct ICARUS_HISTORY)); fullnonce = W + Hs * (((double)0xffffffff) + 1); read_time = SECTOMS(fullnonce) - ICARUS_READ_REDUCE; if (info->read_time_limit > 0 && read_time > info->read_time_limit) { read_time = info->read_time_limit; limited = true; } else limited = false; info->Hs = Hs; info->read_time = read_time; info->fullnonce = fullnonce; info->count = count; info->W = W; info->values = values; info->hash_count_range = hash_count_range; if (info->min_data_count < MAX_MIN_DATA_COUNT) info->min_data_count *= 2; else if (info->timing_mode == MODE_SHORT) info->do_icarus_timing = false; applog(LOG_WARNING, "%s %d Re-estimate: Hs=%e W=%e read_time=%dms%s fullnonce=%.3fs", icarus->drv->name, icarus->device_id, Hs, W, read_time, limited ? " (limited)" : "", fullnonce); } info->history_count++; cgtime(&tv_history_finish); timersub(&tv_history_finish, &tv_history_start, &tv_history_finish); timeradd(&tv_history_finish, &(info->history_time), &(info->history_time)); } static int64_t icarus_scanwork(struct thr_info *thr) { struct cgpu_info *icarus = thr->cgpu; struct ICARUS_INFO *info = (struct ICARUS_INFO *)(icarus->device_data); int ret, err, amount; unsigned char nonce_bin[ICARUS_BUF_SIZE]; struct ICARUS_WORK workdata; char *ob_hex; uint32_t nonce; int64_t hash_count = 0; struct timeval tv_start, tv_finish, elapsed; int curr_hw_errors; bool was_hw_error; struct work *work; int64_t estimate_hashes; uint8_t workid = 0; if (unlikely(share_work_tdiff(icarus) > info->fail_time)) { if (info->failing) { if (share_work_tdiff(icarus) > info->fail_time + 60) { applog(LOG_ERR, "%s %d: Device failed to respond to restart", icarus->drv->name, icarus->device_id); usb_nodev(icarus); return -1; } } else { applog(LOG_WARNING, "%s %d: No valid hashes for over %d secs, attempting to reset", icarus->drv->name, icarus->device_id, info->fail_time); usb_reset(icarus); info->failing = true; } } // Device is gone if (icarus->usbinfo.nodev) return -1; elapsed.tv_sec = elapsed.tv_usec = 0; work = get_work(thr, thr->id); memset((void *)(&workdata), 0, sizeof(workdata)); memcpy(&(workdata.midstate), work->midstate, ICARUS_MIDSTATE_SIZE); memcpy(&(workdata.work), work->data + ICARUS_WORK_DATA_OFFSET, ICARUS_WORK_SIZE); rev((void *)(&(workdata.midstate)), ICARUS_MIDSTATE_SIZE); rev((void *)(&(workdata.work)), ICARUS_WORK_SIZE); if (info->ant) { workid = info->workid; if (++info->workid >= 0x1F) info->workid = 0; if (info->antworks[workid]) free_work(info->antworks[workid]); info->antworks[workid] = work; workdata.id = workid; } if (info->speed_next_work || info->flash_next_work) cmr2_commands(icarus); // We only want results for the work we are about to send usb_buffer_clear(icarus); err = usb_write_ii(icarus, info->intinfo, (char *)(&workdata), sizeof(workdata), &amount, C_SENDWORK); if (err < 0 || amount != sizeof(workdata)) { applog(LOG_ERR, "%s %i: Comms error (werr=%d amt=%d)", icarus->drv->name, icarus->device_id, err, amount); dev_error(icarus, REASON_DEV_COMMS_ERROR); icarus_initialise(icarus, info->baud); goto out; } if (opt_debug) { ob_hex = bin2hex((void *)(&workdata), sizeof(workdata)); applog(LOG_DEBUG, "%s %d: sent %s", icarus->drv->name, icarus->device_id, ob_hex); free(ob_hex); } more_nonces: /* Icarus will return nonces or nothing. If we know we have enough data * for a response in the buffer already, there will be no usb read * performed. */ memset(nonce_bin, 0, sizeof(nonce_bin)); ret = icarus_get_nonce(icarus, nonce_bin, &tv_start, &tv_finish, thr, info->read_time); if (ret == ICA_NONCE_ERROR) goto out; // aborted before becoming idle, get new work if (ret == ICA_NONCE_TIMEOUT || ret == ICA_NONCE_RESTART) { if (info->ant) goto out; timersub(&tv_finish, &tv_start, &elapsed); // ONLY up to just when it aborted // We didn't read a reply so we don't subtract ICARUS_READ_TIME estimate_hashes = ((double)(elapsed.tv_sec) + ((double)(elapsed.tv_usec))/((double)1000000)) / info->Hs; // If some Serial-USB delay allowed the full nonce range to // complete it can't have done more than a full nonce if (unlikely(estimate_hashes > 0xffffffff)) estimate_hashes = 0xffffffff; applog(LOG_DEBUG, "%s %d: no nonce = 0x%08lX hashes (%ld.%06lds)", icarus->drv->name, icarus->device_id, (long unsigned int)estimate_hashes, (long)elapsed.tv_sec, (long)elapsed.tv_usec); hash_count = estimate_hashes; goto out; } if (info->ant) { workid = nonce_bin[4] & 0x1F; if (info->antworks[workid]) work = info->antworks[workid]; else goto out; } memcpy((char *)&nonce, nonce_bin, ICARUS_READ_SIZE); nonce = htobe32(nonce); curr_hw_errors = icarus->hw_errors; if (submit_nonce(thr, work, nonce)) info->failing = false; was_hw_error = (curr_hw_errors < icarus->hw_errors); /* U3s return shares fast enough to use just that for hashrate * calculation, otherwise the result is inaccurate instead. */ if (info->ant) { info->nonces++; if (usb_buffer_size(icarus) >= ANT_READ_SIZE) goto more_nonces; } else { hash_count = (nonce & info->nonce_mask); hash_count++; hash_count *= info->fpga_count; } #if 0 // This appears to only return zero nonce values if (usb_buffer_size(icarus) > 3) { memcpy((char *)&nonce, icarus->usbdev->buffer, sizeof(nonce_bin)); nonce = htobe32(nonce); applog(LOG_WARNING, "%s %d: attempting to submit 2nd nonce = 0x%08lX", icarus->drv->name, icarus->device_id, (long unsigned int)nonce); curr_hw_errors = icarus->hw_errors; submit_nonce(thr, work, nonce); was_hw_error = (curr_hw_errors > icarus->hw_errors); } #endif if (opt_debug || info->do_icarus_timing) timersub(&tv_finish, &tv_start, &elapsed); applog(LOG_DEBUG, "%s %d: nonce = 0x%08x = 0x%08lX hashes (%ld.%06lds)", icarus->drv->name, icarus->device_id, nonce, (long unsigned int)hash_count, (long)elapsed.tv_sec, (long)elapsed.tv_usec); if (info->do_icarus_timing && !was_hw_error) process_history(icarus, info, nonce, hash_count, &elapsed, &tv_start); out: if (!info->ant) free_work(work); else { /* Ant USBs free the work themselves. Return only one full * nonce worth on each pass to smooth out displayed hashrate */ if (info->nonces) { hash_count = 0xffffffff; info->nonces--; } } return hash_count; } static int64_t rock_scanwork(struct thr_info *thr) { struct cgpu_info *icarus = thr->cgpu; struct ICARUS_INFO *info = (struct ICARUS_INFO *)(icarus->device_data); int ret; unsigned char nonce_bin[ICARUS_BUF_SIZE]; uint32_t nonce; int64_t hash_count = 0; struct timeval tv_start, tv_finish, elapsed; struct work *work = NULL; int64_t estimate_hashes; int correction_times = 0; NONCE_DATA nonce_data; double temp; int chip_no = 0; time_t recv_time = 0; if (unlikely(share_work_tdiff(icarus) > info->fail_time)) { if (info->failing) { if (share_work_tdiff(icarus) > info->fail_time + 60) { applog(LOG_ERR, "%s %d: Device failed to respond to restart", icarus->drv->name, icarus->device_id); usb_nodev(icarus); return -1; } } else { applog(LOG_WARNING, "%s %d: No valid hashes for over %d secs, attempting to reset", icarus->drv->name, icarus->device_id, info->fail_time); usb_reset(icarus); info->failing = true; } } // Device is gone if (icarus->usbinfo.nodev) return -1; elapsed.tv_sec = elapsed.tv_usec = 0; for (chip_no = 0; chip_no < info->rmdev.chip_max; chip_no++) { recv_time = time(NULL); if (recv_time > info->rmdev.chip[chip_no].last_received_task_complete_time + 1) { info->rmdev.chip[chip_no].last_received_task_complete_time = recv_time; rock_send_task(chip_no, 0,thr); break; } } memset(nonce_bin, 0, sizeof(nonce_bin)); ret = icarus_get_nonce(icarus, nonce_bin, &tv_start, &tv_finish, thr, 3000);//info->read_time); nonce_data.chip_no = nonce_bin[NONCE_CHIP_NO_OFFSET] & RM_CHIP_MASK; if (nonce_data.chip_no >= info->rmdev.chip_max) nonce_data.chip_no = 0; nonce_data.task_no = nonce_bin[NONCE_TASK_NO_OFFSET] & 0x1; nonce_data.cmd_value = nonce_bin[NONCE_TASK_CMD_OFFSET] & RM_CMD_MASK; nonce_data.work_state = nonce_bin[NONCE_TASK_CMD_OFFSET] & RM_STATUS_MASK; temp = (double)nonce_bin[NONCE_COMMAND_OFFSET]; if (temp != 128) icarus->temp = temp; if (nonce_data.cmd_value == NONCE_TASK_COMPLETE_CMD) { info->rmdev.chip[nonce_data.chip_no].last_received_task_complete_time = time(NULL); if (info->g_work[nonce_data.chip_no][nonce_data.task_no]) { free_work(info->g_work[nonce_data.chip_no][nonce_data.task_no]); info->g_work[nonce_data.chip_no][nonce_data.task_no] = NULL; } goto out; } if (nonce_data.cmd_value == NONCE_GET_TASK_CMD) { rock_send_task(nonce_data.chip_no, nonce_data.task_no, thr); goto out; } if (ret == ICA_NONCE_TIMEOUT) rock_send_task(nonce_data.chip_no, nonce_data.task_no, thr); work = info->g_work[nonce_data.chip_no][nonce_data.task_no]; if (work == NULL) goto out; if (ret == ICA_NONCE_ERROR) goto out; // aborted before becoming idle, get new work if (ret == ICA_NONCE_TIMEOUT || ret == ICA_NONCE_RESTART) { timersub(&tv_finish, &tv_start, &elapsed); // ONLY up to just when it aborted // We didn't read a reply so we don't subtract ICARUS_READ_TIME estimate_hashes = ((double)(elapsed.tv_sec) + ((double)(elapsed.tv_usec))/((double)1000000)) / info->Hs; // If some Serial-USB delay allowed the full nonce range to // complete it can't have done more than a full nonce if (unlikely(estimate_hashes > 0xffffffff)) estimate_hashes = 0xffffffff; applog(LOG_DEBUG, "%s %d: no nonce = 0x%08lX hashes (%ld.%06lds)", icarus->drv->name, icarus->device_id, (long unsigned int)estimate_hashes, (long)elapsed.tv_sec, (long)elapsed.tv_usec); goto out; } memcpy((char *)&nonce, nonce_bin, ICARUS_READ_SIZE); nonce = htobe32(nonce); recv_time = time(NULL); if ((recv_time-info->rmdev.dev_detect_time) >= 60) { unsigned char i; info->rmdev.dev_detect_time = recv_time; for (i = 0; i < info->rmdev.chip_max; i ++) { if (info->rmdev.chip[i].error_cnt >= 12) { if (info->rmdev.chip[i].freq > info->rmdev.min_frq) info->rmdev.chip[i].freq--; } else if (info->rmdev.chip[i].error_cnt <= 1) { if (info->rmdev.chip[i].freq < (info->rmdev.def_frq / 10 - 1)) info->rmdev.chip[i].freq++; } info->rmdev.chip[i].error_cnt = 0; } } correction_times = 0; info->nonces_checked++; while (correction_times < NONCE_CORRECTION_TIMES) { uint32_t new_nonce; if (correction_times > 0) { info->nonces_correction_tests++; if (correction_times == 1) info->nonces_correction_times++; } new_nonce = nonce + rbox_corr_values[correction_times]; /* Basic dupe testing */ if (new_nonce == info->last_nonce[nonce_data.chip_no][nonce_data.task_no]) break; if (test_nonce(work, new_nonce)) { nonce = new_nonce; submit_tested_work(thr, work); info->last_nonce[nonce_data.chip_no][nonce_data.task_no] = nonce; info->nonces_correction[correction_times]++; hash_count++; info->failing = false; applog(LOG_DEBUG, "Rockminer nonce :::OK:::"); break; } else { applog(LOG_DEBUG, "Rockminer nonce error times = %d", correction_times); if (new_nonce == 0) break; } correction_times++; } if (correction_times >= NONCE_CORRECTION_TIMES) { inc_hw_errors(thr); info->nonces_fail++; } hash_count = (hash_count * info->nonce_mask); if (opt_debug || info->do_icarus_timing) timersub(&tv_finish, &tv_start, &elapsed); applog(LOG_DEBUG, "%s %d: nonce = 0x%08x = 0x%08lX hashes (%ld.%06lds)", icarus->drv->name, icarus->device_id, nonce, (long unsigned int)hash_count, (long)elapsed.tv_sec, (long)elapsed.tv_usec); out: return hash_count; } static struct api_data *icarus_api_stats(struct cgpu_info *cgpu) { struct api_data *root = NULL; struct ICARUS_INFO *info = (struct ICARUS_INFO *)(cgpu->device_data); char data[4096]; int i, off; size_t len; float avg; // Warning, access to these is not locked - but we don't really // care since hashing performance is way more important than // locking access to displaying API debug 'stats' // If locking becomes an issue for any of them, use copy_data=true also root = api_add_int(root, "read_time", &(info->read_time), false); root = api_add_int(root, "read_time_limit", &(info->read_time_limit), false); root = api_add_double(root, "fullnonce", &(info->fullnonce), false); root = api_add_int(root, "count", &(info->count), false); root = api_add_hs(root, "Hs", &(info->Hs), false); root = api_add_double(root, "W", &(info->W), false); root = api_add_uint(root, "total_values", &(info->values), false); root = api_add_uint64(root, "range", &(info->hash_count_range), false); root = api_add_uint64(root, "history_count", &(info->history_count), false); root = api_add_timeval(root, "history_time", &(info->history_time), false); root = api_add_uint(root, "min_data_count", &(info->min_data_count), false); root = api_add_uint(root, "timing_values", &(info->history[0].values), false); root = api_add_const(root, "timing_mode", timing_mode_str(info->timing_mode), false); root = api_add_bool(root, "is_timing", &(info->do_icarus_timing), false); root = api_add_int(root, "baud", &(info->baud), false); root = api_add_int(root, "work_division", &(info->work_division), false); root = api_add_int(root, "fpga_count", &(info->fpga_count), false); if (info->ident == IDENT_LIN) { root = api_add_string(root, "rock_init", info->rock_init, false); root = api_add_uint8(root, "rock_chips", &(info->rmdev.detect_chip_no), false); root = api_add_uint8(root, "rock_chip_max", &(info->rmdev.chip_max), false); root = api_add_uint8(root, "rock_prod_id", &(info->rmdev.product_id), false); root = api_add_avg(root, "rock_min_freq", &(info->rmdev.min_frq), false); root = api_add_avg(root, "rock_max_freq", &(info->rmdev.max_frq), false); root = api_add_uint64(root, "rock_check", &(info->nonces_checked), false); root = api_add_uint64(root, "rock_corr", &(info->nonces_correction_times), false); root = api_add_uint64(root, "rock_corr_tests", &(info->nonces_correction_tests), false); root = api_add_uint64(root, "rock_corr_fail", &(info->nonces_fail), false); if (info->nonces_checked <= 0) avg = 0; else avg = (float)(info->nonces_correction_tests) / (float)(info->nonces_checked); root = api_add_avg(root, "rock_corr_avg", &avg, true); data[0] = '\0'; off = 0; for (i = 0; i < NONCE_CORRECTION_TIMES; i++) { len = snprintf(data+off, sizeof(data)-off, "%s%"PRIu64, i > 0 ? "/" : "", info->nonces_correction[i]); if (len >= (sizeof(data)-off)) off = sizeof(data)-1; else { if (len > 0) off += len; } } root = api_add_string(root, "rock_corr_finds", data, true); } return root; } static void icarus_statline_before(char *buf, size_t bufsiz, struct cgpu_info *cgpu) { struct ICARUS_INFO *info = (struct ICARUS_INFO *)(cgpu->device_data); if (info->ant) { if (info->u3) tailsprintf(buf, bufsiz, "%3.0fMHz %3dmV", opt_au3_freq, opt_au3_volt); else tailsprintf(buf, bufsiz, "%3.0fMHz", opt_anu_freq); } else if (info->ident == IDENT_CMR2 && info->cmr2_speed > 0) tailsprintf(buf, bufsiz, "%5.1fMhz", (float)(info->cmr2_speed) * ICARUS_CMR2_SPEED_FACTOR); } static void icarus_shutdown(__maybe_unused struct thr_info *thr) { // TODO: ? } static void icarus_identify(struct cgpu_info *cgpu) { struct ICARUS_INFO *info = (struct ICARUS_INFO *)(cgpu->device_data); if (info->ident == IDENT_CMR2) info->flash_next_work = true; } static char *icarus_set(struct cgpu_info *cgpu, char *option, char *setting, char *replybuf) { struct ICARUS_INFO *info = (struct ICARUS_INFO *)(cgpu->device_data); int val; if (info->ident != IDENT_CMR2) { strcpy(replybuf, "no set options available"); return replybuf; } if (strcasecmp(option, "help") == 0) { sprintf(replybuf, "clock: range %d-%d", ICARUS_CMR2_SPEED_MIN_INT, ICARUS_CMR2_SPEED_MAX_INT); return replybuf; } if (strcasecmp(option, "clock") == 0) { if (!setting || !*setting) { sprintf(replybuf, "missing clock setting"); return replybuf; } val = atoi(setting); if (val < ICARUS_CMR2_SPEED_MIN_INT || val > ICARUS_CMR2_SPEED_MAX_INT) { sprintf(replybuf, "invalid clock: '%s' valid range %d-%d", setting, ICARUS_CMR2_SPEED_MIN_INT, ICARUS_CMR2_SPEED_MAX_INT); } info->cmr2_speed = CMR2_INT_TO_SPEED(val); info->speed_next_work = true; return NULL; } sprintf(replybuf, "Unknown option: %s", option); return replybuf; } struct device_drv icarus_drv = { .drv_id = DRIVER_icarus, .dname = "Icarus", .name = "ICA", .drv_detect = icarus_detect, .hash_work = &hash_driver_work, .get_api_stats = icarus_api_stats, .get_statline_before = icarus_statline_before, .set_device = icarus_set, .identify_device = icarus_identify, .thread_prepare = icarus_prepare, .scanwork = icarus_scanwork, .thread_shutdown = icarus_shutdown, };